Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2791
標題: 以陽極氧化製備矽晶微奈米孔洞陣列
Fabrication micro-nanopores array on silicon using anodic oxidation method
作者: 黃士元
Huang, Shih-Yuan
關鍵字: 陽極氧化法
anodic oxidation
矽微奈米孔洞陣列
矽微奈米單孔
micro-nanochannel array on silicon
single micro-nanochannel on silicon
出版社: 機械工程學系所
引用: [1] http://tainano.com/chin/plenty%20room.htm. [2] http://zh.wikipedia.org/wiki/%E6%91%A9%E5%B0%94%E5%A E%9A%E5%BE%8B. [3] 后希庭, &quot;多孔矽製程研究、結構分析及其應用,&quot; 聖約翰科技大學自動化及機電整合研究所碩士學位論文, 民 95. [4] 張瑞家, &quot;多孔矽材料薄膜特性分析及光電應用,&quot; 聖約翰科技大學自動化及機電整合研究所碩士學位論文, 民 97. [5] E. Kayahan, &quot;White light luminescence from annealed thin ZnO deposited porous silicon,&quot; Journal of Luminescence, vol. 130, pp. 1295-1299, 2010. [6] A. Ramizy, Z. Hassan, and K. Omar, &quot;Porous GaN on Si(111) and its application to hydrogen gas sensor,&quot; Sensors and Actuators B: Chemical, vol. 155, pp. 699-708, 2011. [7] A. Matoussi, F. Ben Nasr, T. Boufaden, R. Salh, Z. Fakhfakh, S. Guermazi, B. ElJani, and H. J. Fitting, &quot;Luminescent properties of GaN films grown on porous silicon substrate,&quot; Journal of Luminescence, vol. 130, pp. 399-403, 2010. [8] A. Y. Polyakov, A. V. Markov, M. P. Duhnovsky, M. V. Mezhennyi, A. A. Donskov, S. S. Malakhov, A. V. Govorkov, Y. P. Kozlova, V. F. Pavlov, N. B. Smirnov, T. G. Yugova, A. I. Belogorokhov, I. A. Belogorokhov, A. K. Ratnikova, Y. Y. Fyodorov, O. Y. Kudryashov, I. A. Leontyev, V. I. Ratushnyi, and S. J. Pearton, &quot;GaN epitaxial films grown by hydride vapor phase epitaxy on polycrystalline chemical vapor deposition diamond substrates using surface nanostructuring with TiN or anodic Al oxide,&quot; Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 28, p. 1011, 2010. [9] F. Yang, S. Ma, X. Zhang, M. Zhang, F. Li, J. Liu, and Q. Zhao, &quot;Blue–green and red luminescence from ZnO/porous silicon and ZnO:Cu/porous silicon nanocomposite films,&quot; Superlattices and Microstructures, vol. 52, pp. 210-220, 2012. [10] B. Das and S. P. McGinnis, &quot;Porous silicon pn junctiob light emitting diodes,&quot; Semicond. Sci. Technol, vol. 14, pp. 988-993, 1999. [11] P. Jaguiro, P. Katsuba, S. Lazarouk, and A. Smirnov, &quot;Porous silicon Avalanche LEDs and their Applications in Optoelectronics and Information Displays,&quot; ACTA PHYSICA POLONICA A, vol. 112, pp. 1031-1036, 2007. [12] K. Molnar, T. Mohacsy, P. Varga, E. Vazsonyi, and I. Barsony, &quot;<Characterization of ITO/porous silicon LED structures,” Journal of Luminescence, vol. 80, pp. 91-97, 1999. [13] R. S. Dubey and D. K. Gautam, &quot;Synthesis and characterization of porous silicon layers for 1D photonic crystal application,&quot; Optik - International Journal for Light and Electron Optics, vol. 122, pp. 494-497, 2011. [14] C. Pacholski, &quot;Photonic crystal sensors based on porous silicon,&quot; Sensors (Basel), vol. 13, pp. 4694-713, 2013. [15] G. Recio-Sanchez, V. Torres-Costa, M. Manso-Silvan, and R. J. Martin-Palma, &quot;Nanostructured Porous Silicon Photonic Crystal for Applications in the Infrared,&quot; Journal of Nanotechnology, vol. 2012, pp. 1-6, 2012. [16] N. Gutman, A. Osherov, Y. Golan, and A. Sa''ar, &quot;Composite photonic crystal cavities of macro porous silicon and lead sulfide thin films,&quot; physica status solidi (a), vol. 208, pp. 1394-1398, 2011. [17] Y. Shang, X. Wang, E. Xu, C. Tong, and J. Wu, &quot;Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye,&quot; Anal Chim Acta, vol. 685, pp. 58-64, Jan 24 2011. [18] H.-J. Kim, Y.-Y. Kim, and K.-W. Lee, &quot;Multiparametric sensor based on DBR porous silicon for detection of ethanol gas,&quot; Current Applied Physics, vol. 10, pp. 181-183, 2010. [19] L. N. Acquaroli, R. Urteaga, and R. R. Koropecki, &quot;Innovative design for optical porous silicon gas sensor,&quot; Sensors and Actuators B: Chemical, vol. 149, pp. 189-193, 2010. [20] K.-S. Kim and G.-S. Chung, &quot;Characterization of porous cubic silicon carbide deposited with Pd and Pt nanoparticles as a hydrogen sensor,&quot; Sensors and Actuators B: Chemical, vol. 157, pp. 482-487, 2011. [21] S. Dhanekar and S. Jain, &quot;Porous silicon biosensor: current status,&quot; Biosens Bioelectron, vol. 41, pp. 54-64, Mar 15 2013. [22] J.-H. Jin, E. C. Alocilja, and D. L. Grooms, &quot;Fabrication and electroanalytical characterization of label-free DNA sensor based on direct electropolymerization of pyrrole on p-type porous silicon substrates,&quot; Journal of Porous Materials, vol. 17, pp. 169-176, 2009. [23] P. Singh, S. N. Sharma, and N. M. Ravindra, &quot;Applicatins of Porous Silicon Thin Film in Solar Cells and Biosensors,&quot; JOM, vol. 62, pp. 15-24, 2010. [24] A. Ramizy, W. J. Aziz, Z. Hassan, K. Omar, and K. Ibrahim, &quot;Improved performance of solar cell based on porous silicon surfaces,&quot; Optik - International Journal for Light and Electron Optics, vol. 122, pp. 2075-2077, 2011. [25] A. Ramizy, Z. Hassan, K. Omar, Y. Al-Douri, and M. A. Mahdi, &quot;New optical features to enhance solar cell performance based on porous silicon surfaces,&quot; Applied Surface Science, vol. 257, pp. 6112-6117, 2011. [26] A. Najar, J. Charrier, P. Pirastesh, and R. Sougrat, &quot;Ultra-low reflection porous silicon nanowires for solar cell applications,&quot; Optics Express, vol. 20, pp. 16861-16870, 2012. [27] A. S. Stragier, T. Signamarcheix, T. Salvetat, E. Nolot, J. Dechamp, D. Mercier, P. Gergaud, A. Tauzin, L. Clavelier, and M. Lemiti, &quot;200 mm Silicon On Porous Layer Substrates Made by the Smart Cut Technology for Double Layer-Transfer Applications,&quot; Journal of The Electrochemical Society, vol. 158, p. H595, 2011. [28] B. Veeramachaneni, J. D. Winans, S. Hu, D. Kawamura, P. M. Fauchet, K. Witt, and K. D. Hirschman, &quot;A novel technique for localized formation of SOI active regions,&quot; physica status solidi (c), vol. 8, pp. 1865-1868, 2011. [29] 莊達人, VLSI製造技術: 高立圖書有限公司, 2005. [30] A. Uhlir, &quot;Electrolytic Shaping of Germanium and silicon,&quot; The Bell System Technical Journal, pp. 333-347, 1956. [31] T. Unagami, &quot;Formation Mechanism of Porous Silicon Layer by Anodization in HF Solution,&quot; Journal of The Electrochemical Society, vol. 127,No.2, pp. 476-483, 1980. [32] V. Lehmann and U. Gosele, &quot;Porous silicon formation: A quantum wire effect,&quot; Applied Physics Letters, vol. 58, p. 856, 1991. [33] R. L. Smith, S. F. Chuang, and S. D. Collins, &quot;A theoretical model of the formation morphologies of porous silicon,&quot; Journal of Electronic Materials, vol. 17, pp. 533-541, 1988. [34] R. L. Smith and S. D. Collins, &quot;Porous silicon formation mechanisms,&quot; Journal of Applied Physics, vol. 71, pp. R1-R22, 1992. [35] X. G. Zhang, S. D. Collins, and R. L. Smith, &quot;Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution,&quot; Journal of The Electrochemical Society, vol. 136, pp. 1561-1565, 1989. [36] X. G. Zhang, &quot;Mechanism of pore formation on n-type silicon,&quot; Journal of The Electrochemical Society, vol. 138, pp. 3750-3756, 1991. [37] V. Lehmann and H.Foll, &quot;Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon,&quot; Journal of The Electrochemical Society, vol. 137,No.2, pp. 653-659, 1990. [38] V. Lehmann, &quot;The physics of Macropore Formation in Low Doped n-Type Silicon,&quot; Journal of The Electrochemical Society, vol. 140,No.10, pp. 2836-2843, 1993. [39] V. Lehmann and S.Ronnebeck, &quot;The Physics of Macropore Formation in Low-Doped p-Type Silicon,&quot; Journal of The Electrochemical Society, vol. 146(8), pp. 2968-2975, 1999. [40] G. Wang, S. Fu, L. Chen, J. Wang, X. Qin, Y. Wang, Z. Zheng, and Q. Duanmu, &quot;Influence of voltage on photo-electrochemical etching of n-type macroporous silicon arrays,&quot; Journal of Semiconductors, vol. 31, p. 116002, 2010. [41] A. Satoh, &quot;Formation of Through-Holes on Silicon Wafer by OPtical Excitation Electropolishing Method,&quot; Journal of Applied Physics, vol. 39, pp. 378-386, 2000. [42] 林景崎, &quot;在氟化銨中以光電化學法蝕刻n-Si(100)單晶表面製作微米溝槽,&quot; Journal of Chinese Corrosion Engineering vol. 20,NO. 4, pp. 353-362, 2006. [43] 羅嘉佑, &quot;晶圓穿孔陣列之光輔助電化學蝕刻特性研究,&quot; 國立台灣師範大學機電科技學系碩士論文, 民97. [44] 何京諭, &quot;矽晶片奈米孔洞陣列之製備與應用,&quot; 國立中興大學機械工程研究所碩士學位論文, 民99. [45] Y. R. Kim, J. Min, I. H. Lee, S. Kim, A. G. Kim, K. Kim, K. Namkoong, and C. Ko, &quot;Nanopore sensor for fast label-free detection of short double-stranded DNAs,&quot; Biosens Bioelectron, vol. 22, pp. 2926-31, Jun 15 2007. [46] D. Pedone, M. Langecker, A. M. Munzer, R. Wei, R. D. Nagel, and U. Rant, &quot;Fabrication and electrical characterization of a pore-cavity-pore device,&quot; J Phys Condens Matter, vol. 22, p. 454115, Nov 17 2010. [47] Y. Astier, L. Datas, R. Carney, F. Stellacci, F. Gentile, and E. DiFabrizio, &quot;Artificial surface-modified Si(3)N(4) nanopores for single surface-modified gold nanoparticle scanning,&quot; Small, vol. 7, pp. 455-9, Feb 18 2011. [48] K.-H. Paik, Y. Liu, V. Tabard-Cossa, M. J. Waugh, D. E. Huber, J. Provine, R. T. Howe, R. W. Dutton, and R. W. Davis, &quot;Control of DNA Capture by Nanofluidic Transistors,&quot; ACS Nano, vol. 6,NO.8, pp. 6767-6775, 2012. [49] R. dela Torre, J. Larkin, A. Singer, and A. Meller, &quot;Fabrication and characterization of solid-state nanopore arrays for high-throughput DNA sequencing,&quot; Nanotechnology, vol. 23, p. 385308, Sep 28 2012. [50] D. V. Melnikov, J. P. Leburton, and M. E. Gracheva, &quot;Slowing down and stretching DNA with an electrically tunable nanopore in a p-n semiconductor membrane,&quot; Nanotechnology, vol. 23, p. 255501, Jun 29 2012.
摘要: 本研究探討以陽極氧化法製備高深寬比之矽晶微奈米孔洞陣列與單一微奈米孔洞結構,其製備優點為具有較低的製程成本、生成之孔洞圖形可規則排列、可大面積製作,藉由控制製程參數如電壓、蝕刻液濃度、光照度、蝕刻時間可以改變多孔矽孔洞形貌、孔徑大小、長度。 本研究於N型矽晶圓表面,以濃度4M氟化氫(HF)水溶液與定電壓0.6 V陽極氧化製程,成功製備微奈米孔洞陣列,其多孔矽孔徑為5 μm、孔深可達140.5 μm。以濃度4M HF水溶液與定電壓0.8 V陽極氧化製程,並加入蝕刻停止點追蹤,可成功製備微奈米多孔矽單孔,其奈米單孔孔徑為444 nm。接著將孔徑444 nm之單孔奈米結構應用於離子通透性量測,於0.1 V定電壓下,可量測到300 nA之穩定電流,矽晶微米孔洞陣列可應用於生醫用高分子微米針陣列製備。
This study focuses on the fabrication of high aspect ratio micro-nanochannel array and single micro-nanochannel on silicon using the anodic oxidation method. The anodic oxidation approach possesses advantages such as cost-effective process, controllable array pattern, and capable of large area production. The channel diameter and length can be well controlled by the process parameters such as the applied voltage, etchant concentration, light intensity, and processing time. Using a 4 M hydrogen fluoride acid (HF) and a constant applied voltage of 0.6 V, a micro-nanochannel array with channel diameter of 5 μm and depth of 140.5 μm could be produced on a N-type silicon wafer. A φ= 440 nm single micro-nanochannel could also be fabricated using the process containing a 4 M HF, a constant applied voltage of 0.8 V, and an additional etching termination detection. The 440 nm single micro-nanochannel was further applied to the measurement of ion permeability. A constant 300 nA current through the single micro-nanochannel could be detected under an applied voltage of 0.1 V. The micro-nanochannel array can be further used as the mold for the casting of polymer micro-needle array for biomedical applications.
URI: http://hdl.handle.net/11455/2791
其他識別: U0005-2207201314393700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2207201314393700
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.