請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/2798
標題: 兩種用於預測搪孔刀具切削穩定性與動態響應系統模式之比較
A Comparison of Two System Models for Predicting the Stability and Dynamic Responses of Boring Bar During Cutting Process
作者: 蔣孟哲
Jiang, Meng-Zhe
關鍵字: 搪孔
boring
穩定性
動態響應
stability
dynamic responses
出版社: 機械工程學系所
引用: [1] S. G. Tewani, K. E. Rouch and B. L. Walcott, “A Study of Cutting Process Stability of a Boring Bar with Active Dynamic Absorber,” International Journal of Machine Tools & Manufacture, Vol. 35, pp. 91-108 (1995) [2] S. Nagano, T. Koizumi, T. Fujii, N. Tsujiuchi, H. Ueda and K. Steel, “Development of a Composite Boring Bar,” Composite Structures, Vol. 38, pp. 531-539 (1997). [3] D. G. Lee, H. Y. Hwang and J. K. Kim, “Design and Manufacture of a Carbon Fiber Epoxy Rotating Boring Bar,” Composite Structures, Vol. 60, pp. 115-124 (2003). [4] M. Y. Chang, J. K. Chen and C. Y. Chang, “A Simple Spinning Laminated Composite Shaft Modal,” Solids and Structures, Vol. 41, pp. 637-662 (2004) [5] N. D. Sims, “Vibration Absorbers for Chatter Suppression: A New Analytical Tuning Methodology,” Journal of Sound and Vibration, Vol. 301, pp. 592-607 (2007). [6] H. Moradi, F. Bakhtiari-Nejad and M. R. Movahhedy, “Tuneable Vibration Absorber Design to Suppress Vibrations : An Application In Boring Manufacturing Process,’’ Journal of Sound and Vibration, Vol. 318, pp. 93-108 (2008). [7] B. Moetakef-Imani and N. Z. Yussefian, “ Dynamic Simulation of Boring Process,” International Journal of Machine Tools & Manufacture, Vol. 49, pp. 1096-1103 (2009) [8] M. H. Miguelez, L. Rubio, J. A. Loya, and J. Fernandez-Saez, “Improvement of Chatter Stability in Boring Operations with Passive Vibration Absorbers,” International Journal of Mechanical Sciences, Vol. 52, pp. 1376-1384 (2010) [9] L. Houck III, T. L. Schmitz, K. S. Smith, “A Tuned Holder for Increased Boring Bar Dynamic Stiffness,” Journal of Manufacturing Processes, Vol. 13, pp. 24-39 (2011) [10] 陳鄭貴, 複合材料旋轉軸之動態響應與其振動控制之探討, 碩士論文, 中興大學機械研究所 (1998). [11] 蔡家偉, 複合材料旋轉軸-圓盤系統振動特性之探討, 碩士論文, 中興大學機械研究所 (2005). [12] 李官穎, 搪孔刀具加工時動態響應之探討, 碩士論文, 中興大學機械研究所 (2009). [13] 魏瑞宏, 旋轉軸系統之振動與控制-兩種數學模式之比較, 碩士論文, 中興大學機械研究所 (2001). [14] J. N. Reddy, An Introduction to Finite Element Method, McGraw-Hill (1984). [15] Y. Altintas, Manufacturing Automation: metal Cutting Mechanics, Machine Tool Vibration, and CNC Design, New York: Cambridge University Press (2000). [16] C. W. Bert and C. D. Kim, “Whirling of Composite-Material Driveshafts Including Bending-Twisting Coupling and Transverse Shear Deformation,” Journal of Vibration and Acoustics, Vol. 117, pp. 17-21 (1995). [17] 嚴秀文, 含外加吸振器搪孔刀具動態響應之探討, 碩士論文, 中興大學機械研究所 (2011).
摘要: 本論文主要研究的目標是探討並比較含外加吸振器之兩種搪孔刀具系統模式,用於分析切削加工過程中系統的穩定邊界與動態響應。分析時將搪孔刀具視為等向性材料或複合材料製成的軸,而裝置在這些軸外部的吸振器則以質量塊、彈簧與阻尼器來模擬,其運動方向固定,並未隨軸轉動。本文考慮兩種有限元素模式模擬刀具,其一之位移場以慣性座標表示,另一之位移場則以固定於軸上的轉動座標表示。考慮旋轉軸動能,旋轉軸應變能,以及吸振器和工件因切削對旋轉軸之作用力所做的功,應用漢米爾頓原理配合有限元素方法可分別推導出動座標[17]與慣性座標含外加吸振器之旋轉搪孔刀具系統的運動方程式。 求取切削系統的穩定性邊界時,為了簡化分析,忽略了運動方程中的迴旋矩陣(gyroscopic matrix)。其次利用模態法將運動方程中刀具的振動位移以模態座標表示。此處採用刀具的單一振動模態與吸振器耦合的簡化系統,再利用Altintas[14]中的方法求得搪孔刀具切削的穩定性邊界。為了檢視利用前述簡化系統所求得的穩定性邊界,本文另以直接積分法中的Newmark方法,對原始包含吸振器效應之有限元素運動方程做暫態響應分析,並決定系統的穩定性邊界。 採用上述方法,本文於實例中依序分析等向性材料與複合材料之搪孔刀具,並比較慣性座標與動座標兩種切削系統模式的穩定性邊界與暫態響應。由分析的結果得知,對等向性搪孔刀具而言,此兩種刀具模式所預測的切削穩定性邊界相近,但對複合材料搪孔刀具而言,則所預測的穩定性邊界會有些許的偏差。其次,使用簡化穩定性模型和用Newmark法所預測的穩定性邊界值,兩者顯然已較參考文獻[17]中分析的結果接近但差異仍然存在。前述結果並未考慮切向切削力Ft,若此切削力也同時被考慮時,使用Newmark法分析發現系統的穩定性邊界會急遽降低,但此結果並未能由本文中簡化的穩定性模式分析獲得。
The main goal of this thesis is to explore and compare two different system models of boring bar containing external vibration absorbers for analyses of the stability lobes and dynamic responses during the machining process. The boring bar is modeled as a shaft that is made of isotropic or composite materials. The vibration absorbers contain masses, springs and dampers and do not rotate with the boring bar. Two different finite element models are used to represent the boring bar, one whose displacement fields are expressed in terms of inertial coordinate systems, and the other in terms of the rotating coordinate system fixed to the boring bar. Obtaining the kinetic and strain energy expressions and also the work done on the shaft by the cutting force as well as by the force that the vibration absorber exerts, the Hamilton’s principle then can be applied together with the finite element method to derive the equations of motion of the boring bar system in terms of both coordinate systems. In the analysis of the stability lobes of the boring process, the gyroscopic matrix in the equations of motion is omitted. Next the displacements of shaft are transformed into modal coordinates by modal analysis. A simplified couple system model consisting of a single vibration mode of boring bar and vibration absorbers is used to determine the stability lobes using method in Altintas [14]. To examine above stability lobes obtained from the simplified system model, Newmark method is also employed to integrate the original coupled equations of motion to determine the stability lobes from transient responses of the system. Adopting above methods, both the steel and the composite boring bars are analyzed where the stability lobes and transient responses of two different boring bar models are compared. The results indicate that for isotropic boring bars the stability lobes predicted by both models are very close. However, for the case of the composite boring bar there exist some discrepancies between these two models. One also finds that the stability lobes determined using the simplified system model and by integrating the original system model using Newmark method are closer to each other than those shown in reference [17]. Finally, the influence of the tangential cutting force Ft is studied. Through analyses of systems using Newmark method, it is found that by considering force Ft in additional to Fr, the stability lobes become much lower than that without Ft. Such results, however, could not be verified using the simplified stability model presented in this thesis.
URI: http://hdl.handle.net/11455/2798
其他識別: U0005-2008201316500700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201316500700
顯示於類別:機械工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。