Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/27993
標題: Adsorption of Chlorophenols and 2,4-D by Synthetic Magnetically-Separable Alginate bead
磁性可分離海藻酸顆粒之合成及其對氯酚類及2,4-D的吸附研究
作者: Li, Chia-Wen
李嘉雯
關鍵字: Alginate beads
海藻酸顆粒
Chlorophenol
Adsorption
氯酚
吸附
出版社: 土壤環境科學系所
引用: Duncan J. Shaw 原著。膠體及界面化學入門(張有義,郭蘭生編譯)。 金相燦、程振華、徐南妮、李海生。1998。環境毒性有機物污染化學。 淑馨出版社。 張家銘。1997。北台灣與澎湖島紅壤中鐵淦氧磁性氧化鐵之鑑定以及 尖晶石型式鐵與鋁氧化物表面去質子化反應的量子化學研究。台灣 大學農業化學研究所博士論文。 林彥伯。2004。立方型孔道中孔洞材料MCM-48及中孔碳材之合成。 國立成功大學化學研究所碩士論文。 張正明。2002。酸性溶液下中孔徑分子篩的反應機構之探討。中原大學 化學研究所碩士論文。 陳古汎。2001。以生物復育法整治2,4-二氯酚汙染之地下水。國立中山 大學環境工程研究所。 行政院環境保護署網頁94年公告。 Akbal, F. 2005. Sorption of phenol and 4-chlorophenol onto pumice treated with cationic surfactant. J. Environ. Manage. 74:39-44. Aksu, Z., and G. Bülbül. 1999. Determination of the effective diffusion coefficient of phenol in Ca-alginate-immobilized P. putida beads. Enzyme Microb. Technol. 25:344-348. Allan, J.E.M., J.M.D. Coey, M. Resende, and J.D. Fabris. 1988. Magnetic properties of iron-rich oxisols. Phys. Chem. Miner. 15:470-475. Aslani, P., and R.A. Kennedy. 1996. Studies on diffusion in alginate gels. I. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophen. J Control Release 42. Braccini, I., and S. Pérez. 2001. Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules. 2:1089-1096. Cheetham, P.S.J., K.W. Blunk, and C. Bucke. 1979. Physical studies on cell immobilization using calcium alginate gels. Biotechnol. Bioeng. 21:2155-2168. Cheung, C.W., J.F. Porter, and G. Mckay. 2000. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. J Chem Technol Biotechnol. 75:963-970. Crini, G. 2005. Recent Developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30:38-70. Czaplicka, M. 2004. Sources and transformations of chlorophenols in the natural environment. Science of the Total Enviroment. 322:21-39. EdRamos, C.M., A.E. Irwin, J.L. Nauss, and B.E. Stout. 1997. 13C NMR and molecular modeling studies of alginic acid binding with alkaline earth and lanthanide metal ions. Inorg. Chim. Acta 256:69-75. Emmerichs, N., J. Wingender, H.-C. Flemming, and C. Mayer. 2004. Interaction between alginates and manganese cations: identification of preferred cation binding sites. Internationl Journal of Biological Macromolecules. 34:73-79. Exon, J.H., and L.D. Koller. 1983. Effects of chlorinated phenols on immunity in rats. Immunopharmacology 5:131-136. Gåserød, O., A. Sannes, and G. Skjåk-Bræk. 1999. Microcapsules of alginate-chitosan. Ⅱ. A study of capsule stability and permeability. Biomaterials. 20:773-783. Gerbsch, N., and R. Buchholz. 1995. New processes and actual trends in biotechnology. Fems Microbiol. Rev. 16:259-269. Gotoh, T., K. Matsushima, and K.I. Kikuchi. 2004. Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere. 55:135-140. Haggerty, G.M., and R.S. Bowman. 1994. Sorption of chrmate and other inorganic anions by organo-zeolite. Environ. Sci. Technol. 28:452-458. Haigh, S.D. 1996. A review of the interaction of surgactants with organic contaminants in soil. The Science of the Total Environment.:161-170. Ibánez, J.P., and Y. Umetsu. 2002. Potential of protonated alginate beads for heavy metals uptake. Hydrometallurgy. 64:89-99. Ikeda, A., A. Takemura, and H. Ono. 2000. Preparation of low-molecular weight alginic acid by acid hydrolysis. Carbohydr. Polym. 42:421-425. Jeon, C., J.Y. Park, and Y.J. Yoo. 2002a. Novel immobilization of alginic acid for heavy metal removal. Biochem. Eng. J. 11:159-166. Jeon, C., J.Y. Park, and Y.J. Yoo. 2002b. Characteristics of metal removal using carboxylated alginic acid. Water Res. 36:1814-1824. Karagunduz, A., Y. Kaya, B. Keskinler, and S. Oncel. 2005. Influence of surfactant entrapment to dried alginate beads on sorption and removal of Cu2+ ions. J. Hazard. Mater. 131:79-83. Kent, M., and A. James. 1983. Riegel hanbook of industry chemistry Van Nostrand Reinhold Company:747-787. Kikuchi, A., M. Kawabuchi, M. Sugihara, and Y. Sakurai. 1997. Pulsed dextran release from calcium-alginate gel beads. J Control Release 47:21-29. Kung, K.-H.S., and K.F. Hayes. 1993. Fourier transform Infrared spectroscopic study of the adsorption of cetyltrimethylammonium bromide and cetylpyridinium chloride on silica. Langmuir 9:263-267. Li, z., and L. Gallus. 2005. Surface configuration of sorbed hexadecyltrimethylammonium on kaolinite as indicated by surfactant and counterion sorption, cation desorption, and FTIR. Colloids and Surfaces A. 264:61-67. Li, Z.H., and R.S. Boqman. 1998. Sorption of chromate and PCE by surfactant-modified zeolite. J. Disper. Sci.Tchnol. 19:843-857. Lin, S.H., and M.J. Cheng. 2002. Adsorption of phenol and m-chlorophenol on organobentonites and repeated thermal regeneration. Waste Manage. 22:595-603. Lin, Y.B., B. Fugetsu, N. Rerui, and S. Tanaka. 2005. Removal of organic compounds by alginate gel beads with entrapped activated carbon. J. Hazard. Mater. B120:237-241. Liu, D., K. Thompson, and K. Kaiser. 1982. Quantitative structure-toxicity relationship of halogenated phenols on bacteria. Bull Environ Contam Toxicol 24:130-136. Llanes, F., D.H. Ryan, and R.H. Marchessault. 2000a. Magnetic nanostructured composites using alginates of different M/G ratios as polymeric matrix. Int. J. Biol. Macromol. 27:35-40. Llanes, F., D.H. Ryan, and R.H. Marchessault. 2000b. Magnetic nanostructured composites using alginates of different M/G ratios as polymeric matrix. Internationl Journal of Biological Macromolecules. 27:35-40. Lu, Y., and E. Wilkins. 1996. Heavymetal removal by causticc-treated yeast immobilized in alginate. J. Hazard. Mater. 49:165-179. Martinsen, A., G. Skjåk-Bræk, and O. Smidsrød. 1989. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 33:79-89. Mulligan, C.N., R.N. Yong, and B.F. Gibbs. 2001. Surfactan-enhanced remediation of contaminated soil: a review. Eng. Geol. 60:371-380. Nishihama, S., G. Nishimura, T. Hirai, and I. Komasawa. 2004. Separetion and recovery of Cr(VI) from simulated plating waste using microcapsules containing quaternary ammonium salt extractant and phosphoric acid extractant. Ind. Eng. Chem. Res. 43:751-757. Őberg, T., K. Warman, and J. Bergstorm. 1989. Production of chlorinated aromatics in the post-combustion zon and boiler. Chemosphere. 19:317-322. Oikari, A., B. Holmbom, E. Aanaes, M. Miilunpalo, G. Kruzynski, and G. Castren. 1985. Ecotoxicological aspects of pulp and paper mill effluents discharged to an inland water system: distribution in water and toxicant residues and physiological effects in caged fish (Salmo gairdneri). Aquat. Toxicol. 6:219-239. Pandey, A.K., S.D. Pandey, V. Misra, and A.K. Srimal. 2003. Removal of chromium and reduction of toxicity to Microtox system from tannery effluent by the use of calcium alginate beads containing humic acid. Chemosphere. 51:329-333. Park, H.G., and M.Y. Chae. 2004. Novel type of alginate gel-based adsorbents for heavy metal removal. J. Chem Technol Biotechnol. 79:1080-1083. Ress, D.A., and E.J. Welsh. 1977. Secondary and teritiary structure of polysaccharides in solutions and gels. Angew. Chem. Int. Edit. Engl. 16:214-224. Saito, H., M. Sudo, T. Shigeoka, and F. Yamauchi. 1991. In vitro cytotoxicity of chlorophenols to goldfish GF-scale (GSF) cell and quantitative structure-activity relationships. Environ. Toxic. Chem. 10:235-241. Seely, F.R., and R.L. Hart. 1977. Preparation of stained alginate beads for photosensitized oxidation of organic pollutants. Environ. Sci. Technol. 11:623-625. Sheeja, R.Y., and T. Murugesan. 2002. Studies on biodegradation of phenol using response surface methodology. J. Chem Technol Biotechnol. 77:1219-1230. Shen, Y.H. 2004. Phenol sorption by organoclays having different charge characteristics. Colloids and Surfaces A. 232:143-149. Tang, S., and A.J. Freeman. 1993. Importance of adsorbate-adsorbate interactions for As and Sb chemisorption on Si(100). Phys. Rev. B 48:8068-8075. Tang, S., A.J. Freeman, and G.B. Olson. 1993. Phosphorus-induced relaxation in an iron grain boundary: A cluster-model study. Phys. Rev. B 47. Xit, T.M., K. Abrahamsson, and E. Fogelqvist. 1986. Distribution of chlorophenols in a marine environment. Environ. Sci. Technol. 20:457-463. Xu, S., and S.A. Boyd. 1995. Cationic surfactant sorption to a vermiculitic subsoil via hydrophobic bonding. Environ. Sci. Technol. 29:312-320.
摘要: 從過去的研究中已證實界面活性劑因具有非極性疏水端對有機汙染物有良好的移除效果,然而利用界面活性劑修飾型吸附質材處理水體中的有機汙染物,仍存在固液相分離及質材回收的後續問題。近年來,發現許多生物性聚合物可作為吸附劑,其中海藻酸鈉為天然海藻所萃取出的多醣類物質,由α-L-(1-4)- guluronic acid 及β-D-(1-4)-mannuronic acid (M)所構成。海藻酸結構中之羧基,對二價金屬陽離子具有高親和力,當與二價鹼金屬離子接觸時,便會產生膠結作用(Gelling)。由於此膠結的特性,因此可製備成顆粒狀,相較於其他化學吸附劑減少了固液相分離的問題,具有製備簡單、價格便宜的經濟優勢。本研究嘗試利用海藻酸鈉包覆陽離子界面活性劑HDTMA-Br,實驗中合成0.2%、1%及2%三種不同濃度界面活性劑的海藻酸顆粒,以批次法於150 rpm、恆溫25℃、pH5下對2,4,5-三氯酚、2-氯酚及2,4-D進行等溫吸附及動力學實驗,再以密度泛涵理論(DFT)計算對三種有機分子進行化學計算,探討分子本身化學性質與其吸附常數間的關係進而推測樣品移除有機汙染物間的機制。 結果顯示海藻酸鈉對三種有機分子的吸附量大小順序為:2,4,5-三氯酚> 2-氯酚> 2,4-D,藉由分子計算結果中電荷密度差異與偶極矩的數值,推測此與海藻酸及有機物間氫鍵的形成及偶極偶極作用力有關;隨著修飾的界面活性劑濃度越高,對三種有機汙染物的移除能力均有提高的現象,其修飾後的樣品對三種有機物的親和力大小為2,4,5-三氯酚> 2-氯酚> 2,4-D,與有機分子本身的水-辛醇分配係數logKow及結合能(Binding energy)有相同的趨勢;而顆粒的磁性修飾,可增加將來汙染物移除後質材本身回收的便利性。
Many investigations has demonstrated that surfactants can enhance the removal of organic compounds because of hydrophobicity. However, using surfactants modified materials as adsorbents to deal with organic pollutants still can not solve adsorbents separation and recovery from aqueous phase. Recently, the use of biopolymers as adsorbents for the removal of toxic contaminants has been studied. Among biological materials alginate has become one of the important groups of adsorbents. Alginate, which is mainly obtained from brown algae, is composed of varying compositions of α-L-1,4-guluronic acids and β-1,4-D-mannuronic acids. Alginate has high affinity to divalent cations by the carboxyl groups. The gelling process occurs when alginate contacts with divalent cations. Because of the gelling property, alginate can be formed as many types such as membranes and beads. Compare with other adsorbents, it can produce a easy made and cheap adsorbent that can improve the problem of separated from aqueous phase. In this study, the removal of 2,4,5-trichlorophenol, 2-chlorophenol and 2,4-D by alginate beads and HDTMA entrapped alginate beads was investigated. Batch experiments for sorption isotherm and kinetics were conducted in the conditions of 150 rpm, 25℃ and pH5. The DFT calculation parameters of three organic compounds were discuss with Freundlich fitting parameters to suppose the interactions between organic compounds and alginate or HDTMA entrapped alginate. The results show that the removal of organic compounds by 2% HDTMA entrapped alginate beads were greater than plain , 1% and 0.2% HDTMA entrapped alginate beads. The affinity of alginate and HDTMA alginate to three organic compounds was relative to logKow and binding energy of organic compounds. Magnetic treatment can increase the convenience for adsorbents recovery after remove pollutants.
URI: http://hdl.handle.net/11455/27993
其他識別: U0005-0407200623362900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0407200623362900
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.