Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28026
標題: The Effects of Structural Characteristics of Repetitively Extracted Humic Acids on the Sorption of 2,4,6-Trichlorophenol
重複萃取腐植酸之結構特性及其對2,4,6-三氯酚吸附之影響
作者: Huang, Ying-Ying
黃盈盈
關鍵字: humic acid
腐植酸
repetitive extraction
aromaticity
aliphaticity
sorption
重複萃取
芳香性
脂肪性
吸附
出版社: 土壤環境科學系所
引用: 王一雄。1997. 土壤環境化學。明文書局 沈大家。2001. 多環芳香烴化合物與溶解性有機物結合係數之動力學研究。國立中山大學海洋環境及工程學系碩士班碩士論文。 陳立夫。1990. 台灣兩種主要農耕土壤腐植質特性之研究。國立中興大學土壤學研究所碩士論文。 陳立夫、王敏昭。1992. 臺灣兩種農耕土壤不同分子量黃酸之光譜及其他分析特性。中國農業化學會誌。30: 441-453。 陳谷汎。2001. 以生物復育法整治2,4-二氯酚污染之地下水。國立中山大學環境工程研究所碩士論文。 陳孝仲。2003. 氯酚污染物在土壤與水系統中分佈機制之探討。朝陽科技大學環境工程與管理系碩士論文。 Ahmad, R., R.S. Kookana, A.M. Alston, and J.O. Skjemstad. 2001. The nature of soil organic matter affects sorption of pesticides. 1. Relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy Environ. Sci. Technol. 35:878-884. Aiken, G.R., and R.L. McKnight. 1985. Humic substances in soil, sediment and water. Geochemistry, isolation and characterization Wiley-Intersci, New York. Alberta Environment. Drinking water survey 1978-1985. Municipal Engineering Branch. Pollution Control Division. Edmonton; 1985. Antonaraki, S., E. Androulaki, D. Dimotikali, A. Hiskia, and E. Papaconstantinou. 2002. Photolytic degradation of all chlorophenols with polyoxometallates and H2O2. Journal of Photochemistry and Photobiology A: Chemistry 148:191-197. Asplund, G., and A. Grimvall. 1991. Organohalogens in nature. Environ. Sci. Technol. 25:1346-1352. Baes, A.U., and P.R. Bloom. 1989. Disffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids. Soil Sci. Soc. Am. J. 53:695-700. Barak, P., and Y. Chen. 1992. Equivalent radii of humic macromolecules from acid-base titration. Soil Science 154:184-195. Boutwell, R.K., and D.K. Bosch. 1959. The tumor-promoting action of phenol and related compounds for mouse skin. Cancer Res. 19:413-421. Chefetz, B. 2003. Sorption of phenanthrene and atrazine by plant cuticular fractions. Environmental Toxicology and Chemistry 22:2492-2498. Chefetz, B., A.P. Deshmukh, and P.G. Hatcher. 2000. Pyrene sorption by natural organic matter. Environ. Sci. Technol. 34:2925-2930. Chefetz, B., Y.I. Bilkis, and T. Polubesova. 2004. Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river sediments. Water Res. 38:4383-4394. Chefetz, B., M.J. Salloum, A.P. Deshmukh, and P.G. Hatcher. 2002. Structural components of humic acids as determined by chemical modifications and carbon-13 NMR, pyrolysis-, and thermochemolysis-gas chromatography/mass spectrometry. Soil Sci. Soc. Am. J. 66:1159-1171. Chen, B., and B. Xing. 2005. Sorption and conformational characteristics of reconstituted plant cuticular waxes on montmorillonite Environ. Sci. Technol. 39:8315-8323. Chen, B., B.J. Johnson, B. Chefetz, L. Zhu, and B. Xing. 2005. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: Role of polarity and accessibility. Environ. Sci. Technol. 39:6138-6146. Chien, Y.Y., and W.F. Bleam. 1998. Two-dimensional NOESY nuclear magnetic resonance study of pH-dependent changes in humic acid conformation in aqueous solution. Environ. Sci. Technol. 32:3653-3658. Chin, Y.P., G.R. Aiken, and K.M. Danielsen. 1997. Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environ. Sci. Technol. 31:1630-1635. Chiou, C.T. 1989. Theoretical considerations for the partition uptake of nonionic organic compounds by soil organic matter, p. 1-29, In B. L. Sawhney, Brown, K., ed. Reactions and movement of organic chemicals in soils, Vol. 22. Madison, WI. Chiou, C.T. 2002. Partitoning and adsorption of organic contaminants in environmental systems John Wiley & Sons, New York. Chiou, C.T., and D.E. Kile. 1998. Deviation from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations. Environ. Sci. Technol. 32:338-343. Chiou, C.T., L.J. Peters, and V.H. Freed. 1979. A physical concept of soil-water equilibria for nonionic organic compounds. Science 206:831-832. Chiou, C.T., S.E. McGroddy, and D.E. Kile. 1998a. Partition Characteristics of Polycyclic Aromatic Hydrocarbons on Soils and Sediments Environ. Sci. Technol. 32:264-269. Chiou, C.T., S.E. McGroddy, and D.E. Kile. 1998b. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ. Sci. Technol. 32:264-269. Chiou, C.T., D.E. Kile, and D.W. Rutherford. 2000. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity. Environ. Sci. Technol. 34:1254-1258. Chiou, C.T., R.L. Malcolm, T.I. Brinton, and D.E. Kile. 1986. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol. 20:502-508. Chiou, C.T., D.E. Kile, T.I. Brinton, R.L. Malcolm, J.A. Leenheer, and P. MacCarthy. 1987. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids. Environ. Sci. Technol. 21:1231-1234. Christl, I., and R. Kretzschmar. 2001. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. Proton binding Environ. Sci. Technol. 35:2505-2511. Cook, R.L., and C.H. Langford. 1998. Structural characterization of a fulvic acid and a humic acid using solid-state ramp-CP-MAS 13C nuclear magnetic resonance. Environ. Sci. Technol. 32:719-725. Cuypers, C., T. Grotenhuis, K.G.J. Nierop, E.M. Franco, A.d. Jager, and W. Rulkens. 2002. Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere 48:919-931. Czaplicka, M. 2004. Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 322:21-39. D''Angelo, E.M., and K.R. Reddy. 2000. Aerobic and anaerobic transformations of pentachlorophenol in wetland soils. Soil Sci. Soc. Am. J. 64:933-943. D''Angelo, E.M., and K.R. Reddy. 2003. Effect of aerobic and anaerobic conditions on chlorophenol sorption in wetland soils. Soil Sci. Soc. Am. J. 67:787-794. Delle, A. 2001. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A Review. J. Phys. Chem. Ref. Data 30:187-439. EPA. Abstracts of remediation case studies, Vol. 2, Federal remediation technologies roundtable, www.frtr.gov EPA 542-R-97-010, July 1997. EPA. Ambient water quality criteria for chlorinated phenols. www.epa.gov/ost/pc/ambientwqc/chlorinatedphenols80.pdf EPA, 1980. Exon, J.H. 1984. A review of chlorinated phenols. Vet. Hum. Toxicol. 26:508-516. Gauthier, T.D., W.R. Seitz, and C.L. Grant. 1987. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ. Sci. Technol. 21:243-248. Golding, C.J., R.J. Smernik, and G.F. Birch. 2005. Investigation of the role of structural domains identified in sedimentary organic matter in the sorption of hydrophobic organic compounds. Environ. Sci. Technol. 39:3925-3932. Gribble, G. 1995. Natural production of organochlorine compounds, p. 89-107, In T. V, ed. Chlorine and chlorine compounds in the paper industry. Chelsea Michigan: Ann Arbor Press. Griffith, S.M., and M. Schnitzer. 1989. Oxidative degradation of soil humic substances., p. 69-98, In M. H. B. Hayes, ed. Humic substances Ⅱ. In search of structure. John Wiley & Sons, New York. Grimvall, A. 1995. Evidence of naturally-produced and man-made organohalogens in water and sediments., In d. L. EWB, ed. Naturally-produced organohalogens. Kluwer Academic Publishers. Grimvall, A., K. Laniewski, H. Boren, S. Jonsson, and S. Kaugare. 1994. Organohalogens of natural or unknown origin in surface water and precipitation. Toxicol. Environ. Chem. 46:183-190. Gunasekara, A.S., M.J. Simpson, and B. Xing. 2003. Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids. Environ. Sci. Technol. 37:852-858. Hatcher, P.G., M. Schnitzer, L.W. Dennis, and G.E. Maciel. 1981. Aromaticity of humic substances in soils. Soil Sci. Soc. Am. J. 45:1089-1094. Hayes, M.H.B. 1985. Extraction of humic substances from soil, p. 329-361, In G. R. Aiken, ed. Humic substances in soil, sediment and water. Geochemistry, isolation and characterization. Wiley Intersci., New York. Hodin, F., H. Boren, and A. Grimvall. 1991. Formation of chlorophenols and related compounds in natural and technical chlorination processes. Water Sci. Technol. 24:403-410. Hoekstra, E., H. De Weerd, E. De Leer, and U. Brinkman. 1999. Natural formation of chlorinated phenols, debenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environ. Sci. Technol. 33:2543-2549. Hu, W.G., J.D. Mao, B. Xing, and K. Schmidt-Rohr. 2000. Poly(methylene) crystallites in humic substances detected by nuclear magnetic resonance. Environ. Sci. Technol. 34:530-534. Huang, W., T.M. Young, M.A. Schlautman, H. Yu, and J. Walter J. Weber. 1997. A distributed reactivity model for sorption by soils and sediments. 9. General isotherm nonlinearity and applicability of the dual reactive domain model. Environ. Sci. Technol. 31:1703-1710. Ilani, T., E. Schulz, and B. Chefetz. 2005. Interactions of organic compounds with wastewater dissolved organic matter: Role of hydrophobic fractions. J. Environ. Qual. 34:552-562. Ju, D., and T.M. Young. 2004. Effects of competitor and natural organic matter characteristics on the equilibrium sorption of 1,2-dichlorobenzene in soil and shale. Environ. Sci. Technol. 38:5863-5870. Kang, S., and B. Xing. 2005. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environ. Sci. Technol. 39:134-140. Kang, S., D. Amarasirwardena, P. Veneman, and B. Xing. 2003. Characterization of ten sequentially extraed humic acids and a humin from a soil in western massachusetts. Soil Science 168:880-887. Karickhoff, S.W., D.S. Brown, and T.A. Scott. 1979. A sorption of hydrophobic pollutants on natural sediments. Water Res. 13:241-248. Kile, D.E. 1999. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds. Environ. Sci. Technol. 33:2053-2056. Kogel-Knabner, I., P.G. Hatcher, E.W. Tegelaar, and J.W.d. Leeuw. 1992. Aliphatic components of forest soil organic matter as determined by solid-state 13C NMR and analytical pyrolysis. Sci. Total Environ. 113:89-106. Kolattukudy, P.E. 1980. Biopolyester membranes of plants: Cutin and suberin. Science 208:990-1000. Kopinke, F.-D., A. Georgi, and K. Mackenzie. 2001. Sorption of pyrene to dissolved humic Substances and related model polymers. 1. Structure-property correlation. Environ. Sci. Technol. 35:2536-2542. Kringstad, K.P., and K. Lindstrom. 1984. Spent liquors from pulp bleaching. Environ. Sci. Technol. 18:236A-248A. Kulikova, N.A., and I.V. Perminova. 2002. Binding of atrazine to humic substances from soil, peat, and coal related to their structure. Environ. Sci. Technol. 36:3720-3724. Leboeuf, E.J., and J. Walter J. Weber. 1997. A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: discovery of a humic acid glass transition and an argument for a polymer-based model. Environ. Sci. Technol. 31:1697-1702. Leboeuf, E.J., and J. Walter J. Weber. 2000a. Macromolecular characteristics of natural organic matter. 2. Sorption and desorption behavior Environ. Sci. Technol. 34:3632-3640. Leboeuf, E.J., and J. Walter J. Weber. 2000b. Macromolecular characteristics of natural organic matter. 1. Insights from glass transition and Enthalpic Relaxation Behavior Environ. Sci. Technol. 34:3623-3631. Li, K., W. Liu, D. Xu, and S. Lee. 2003a. Influence of organic matter and pH on bentazone sorption in soils. J. Agric. Food Chem. 51:5362-5366. Li, L., W. Huang, P.a. Peng, G. Sheng, and J. Fu. 2003b. Chemical and molecular heterogeneity of humic acids repetitively extracted from a peat. Soil Sci. Soc. Am. J. 67:740-746. Liu, D., K. Thompson, and K. Kaiser. 1982. Quantitative structure–toxicity relationship of halogenated phenols on bacteria. Bull Environ Contam Toxicol 24:130-136. Mader, B.T., K.U. Goss, and S.J. Eisenreich. 1997. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces. Environ. Sci. Technol. 31:1079-1086. Mao, J.D., B. Xing, and K. Schmidt-Rohr. 2001. New structural information on a humic acid from two-dimensional 1H-13C correlation solid-state nuclear magnetic resonance. Environ. Sci. Technol. 35:1928-1934. Niemeyer, J., J. Chen, and J.M. Bollag. 1992. Characterization of humic acids, composts, and peat by Disffuse reflectance and transmission Fourier transform infrared spectroscopy. Soil Sci. Soc. Am. J. 56:135-140. Oikari, A., B. Holmbom, E. Aanaes, M. Miilunpalo, G. Kruzynski, and G. Castren. 1985. Ecotoxicological aspects of pulp and paper mill effluents discharged to an inland water system: distribution in water and toxicant residues and physiological effects in caged fish (Salmo gairdneri). Aquat. Toxicol. 6:219-239. Onken, B.M., and S.J. Traina. 1997. The sorption of pyrene and anthracene to humic acid-mineral complexes: effect of fractional organic carbon content. J. Environ. Qual. 26:126-132. Oren, A., and B. Chefetz. 2005. Sorption-desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sedimants. Chemosphere 61:19-29. Passo, N., J. Peuravuori, T. Lehtonen, and K. Pihlaja. 2002. Sediment-dissolved organic matter equilibrium partitioning of pentachlorophenol: The role of humic matter. Environ. Int. 28:173-183. Perminova, I.V., N.Y. Grechishcheva, and V.S. Petrosyan. 1999. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: relevance of molecular descriptors. Environ. Sci. Technol. 33:3781-3787. Pignatello, J.J. 1998. Soil organic matter as a nanoporous sorbent of organic pollutants. Adv. Colloid. Interfac. 76-77:445-467. Pignatello, J.J., and B. Xing. 1996. Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30:1-11. Preston, C.M. 1996. Application of NMR to soil organic matter analysis: History and prospects. Soil Sci. 161:144-166. Round, A.N., B. Yan, S. Dang, R. Estephan, R.E. Stark, and J.D. Batteas. 2000. The influence of water on the nanomechanical behavior of the plant biopolyester cutin as studies by AFM and solid-state NMR. Biophys. J. 79:2761-2767. Saito, H., M. Sudo, T. Shigeoka, and F. Yamauchi. 1991. In vitro cytotoxicity of chlorophenols to goldfish GF-scale (GSF) cells and quantitative structure-activity relationships. Environ. Toxic. Chem. 10:235-241. Salloum, M.J., M.J. Dudas, and W.B. McGill. 2001. Variation of 1-naphthol sorption with organic matter fractionation: the role of physical conformation. Org. Geochem. 32:709-719. Salloum, M.J., B. Chefetz, and P.G. Hatcher. 2002. Phenanthrene sorption by aliphatic-rich natural organic matter Environ. Sci. Technol. 36:1953-1958. Schnitzer, M. 1991. Soil organic matter-the next 75 years. Soil Sci. 151:41-58. Schwarzenbach, R.P., P.M. Gschwend, and D.M. Imboden. 2002. Envrionmental organic chemistry. 2 ed. John Wiley & Sons, New York. Simpson, M.J., B. Chefetz, and P.G. Hatcher. 2003. Phenanthrene sorption to structurally modified humic acids. J. Environ. Qual. 32:1750-1758. Stevenson, F.J. 1994. Humus chemistry: Genesis, composition, reactions. 2nd ed. John Wiley & Sons, New York. Swift, R.S. 1985. Fractionation of soil humic substances, p. 387-408, In G. R. Aiken, ed. Humic substances in soil, sediment and water. Wiley-Intersci., New York. Wang, K., and B. Xing. 2005. Chemical extractions affect the structure and phenanthrene sorption of soil humin. Environ. Sci. Technol. 39:8333-8340. Wang, X.P., X.Q. Shan, L. Luo, S.Z. Zhang, and B. Wen. 2005a. Sorption of 2,4,6-trichlorophenol in model humic acid-clay systems J. Agric. Food Chem. 53:3548-3555. Wang, X., T. Sato, and B. Xing. 2005b. Sorption and displacement of pyrene in soils and sediments Environ. Sci. Technol. 39:8712-8718. Weber, W.J., and W. Huang. 1996. A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions. Environ. Sci. Technol. 30:881-888. Weber, W.J., P.M.J. McGinley, and L.E. Katz. 1992. A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments. Environ. Sci. Technol. 26:1955-1962. Wershaw, R.L. 1986. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems. J. Contamin. Hydro. 1:29-45. Wershaw, R.L. 1993. Model for humics in soils and sediments. Environ. Sci. Technol. 27:814-816. WHO. Chlorophenols other than pentachlorophenol, Environmental Health Criteria 93, WHO, Geneva, 1989. WHO. Pentachlorophenol, Environmental Health Criteria 71, WHO, Geneva, 1987. WHO. Guidelines for drinking water quality, Recommendations, Vol. 1, WHO, Geneva, 1993. Williams, C.F., J. Letey, W.J. Farmer, S.D. Nelson, M. Anderson, and M. Ben-Hur. 1999. Efficiency of hexane extraction of napropamide from aldrich humic acid and soil solutions. J. Environ. Qual. 28:1751-1757. Wilson, M.A. 1987. NMR techniques and applications in geochemistry and soil chemistry. Pergamon, Oxford, UK. Wise, L.E., E. Murphy, and A.A. D''Addico. 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. TAPPI 22:11-19. Xia, G., and J.J. Pignatello. 2001. Detailed sorption isotherms of polar and apolar compounds in a high-organic soil. Environ. Sci. Technol. 35:84-94. Xing, B. 2001. Sorption of naphthalene and phenanthrene by soil humic acids. Environ. Pollut. 111:303-309. Xing, B., and J.J. Pignatello. 1997. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ. Sci. Technol. 31:792-799. Xing, B., and Z. Chen. 1999. Spectroscopic evidence for condensed domains in soil organic matter. Soil Sci. 164:40-47. Xing, B., J.J. Pignatello, and B. Gigliotti. 1996. Competitive sorption between atrazine and other organic compounds in soils and model sorbents Environ. Sci. Technol. 30:2432-2440.
摘要: 腐植物質(humic substances)是土壤或是水體中主要的有機物質之一。目前已有許多研究指出,不同來源的腐植酸其分子特性不盡相同,另外亦有學者發現經由重複萃取同一來源之腐植酸,其分子的特性亦有所差異,由此可知腐植酸的分子特性會因來源及萃取的方式不同而改變。腐植物質與環境中有機污染物的交互作用一直是土壤及環境科學家研究及討論的焦點。然而,目前有關腐植物質構造與環境中有機污染物的相關文獻大多侷限於非極性、非解離型的污染物(例如PAHs),對於極性、解離型的化合物與腐植物質構造之間相關性的暸解甚少。因此,本研究利用重複萃取所得的腐植酸(陽明山地區和彰化快官地區),分成冷凍乾燥及溶解沈澱的腐植酸樣品,並以化學處理作為佐證,探討腐植酸的結構及其對2,4,6-三氯酚之間的吸附行為與關連性。結果顯示,由元素分析及光譜分析(FTIR和13C NMR)可知,腐植酸結構會隨著萃取次數增加而趨向於脂肪性結構。以冷凍乾燥之腐植酸樣品進行吸附實驗,結果顯示,反應24小時後,腐植酸仍以極緩慢的速率吸附2,4,6-三氯酚,而其對2,4,6-三氯酚的吸附能力,主要由腐植酸中的脂肪族碳構造所貢獻。但是,冷凍乾燥的過程可能會影響腐植酸對2,4,6-三氯酚的Koc值,因此,以冷凍乾燥的腐植酸樣品進行吸附實驗,並不能真實地呈現腐植酸對2,4,6-三氯酚的吸附能力。然而,由溶解沈澱的腐植酸樣品所進行之吸附實驗結果顯示,2,4,6-三氯酚可迅速且大量地進入腐植酸內部,並與位於內層的芳香性構造形成鍵結,能真實地反應腐植酸的吸附行為及其對2,4,6-三氯酚的吸附能力。而實驗結果發現,腐植酸中具極性碳結構亦為影響2,4,6-三氯酚吸附的因子之一。此外,化學處理腐植酸的實驗更進一步證明,芳香族碳與具極性碳構造為影響腐植酸對2,4,6-三氯酚的重要因子。由此可和,腐植酸中的芳香族碳與極性碳結構,在其對2,4,6-三氯酚吸附上,均扮演著相當重要的角色。
Humic substances are one of the major components in soil or aqueous systems. They strongly affect the sorption behavior and fate of organic pollutants in the environment. Recent investigations have revealed that the chemical and structural heterogeneity of humic acids (HAs) obtained by various treatments, e.g. repetitive extraction and chemical treatments, significantly influenced their sorption capacity of organic contaminants. However, previous studies mainly focused on sorption of nonpolar organic aromatic compounds, the relationships between polar organic compounds and structures of HAs are poorly understood. In this study, the sorption of 2,4,6-trichlorophenol, a polar pollutant, in HAs treated by repetitive extraction and chemical treatments (NaClO2 oxidation and acid hydrolysis) was examined using freeze-dried and non-freeze-dried HAs. The objectives of this study are to evaluate the influences of sample preparations and chemical treatments on HA structures and subsequent 2,4,6-trichlorophenol sorption. The compositions and structures of HAs were characterized by elemental analysis, Fourier transform infrared spectroscopy, and solid-state 13C NMR. The results exhibited significantly structural differences among the repetitively extracted HAs. The later extracted HAs had relatively higher aliphaticity as compared with that of former extracted HA samples. The kinetics sorption of 2,4,6-trichlorophenol by freeze-dried HAs showed relatively slow, and a positive trend was observed between Koc and the aliphaticity. Conversely, the sorption of 2,4,6-trichlorophenol in non-freeze-dried HAs was comparatively rapid, and a positive correlation between Koc and aromaticity was observed. The results were probably from the exposure of inner aromatic domain due to the treatment of freeze-dried HAs by a base/acid cycle to loose the condensed structures of HAs. In addition, the polar carbon contents in HAs also contributed greatly to the sorption of 2,4,6-trichlorophenol. Chemical treated HAs showed a low sorption of 2,4,6-trichlorophenol due to the decrease in aromaticity and polarity of HAs through the treatments. The result is consistent with previous sorptive experiments. This study demonstrates that aromatic structures and polar carbon contents of HAs apparently play important roles in the sorption of 2,4,6-trichlorophenol only when the HA adsorbents are not freeze-dried.
URI: http://hdl.handle.net/11455/28026
其他識別: U0005-2206200617171200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2206200617171200
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.