Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28030
標題: 多壁奈米碳管吸附揮發性有機氣體之現象與機制
Properties and Mechanisms of Volatile Organic Vapors Adsorption on Multiple Wall Carbon Nanotubes
作者: 李美雪
Li, Mei-syue
關鍵字: multiple wall carbon nanotubes
多壁奈米碳管
adsorption
volatile organic vapors
吸附
揮發性有機氣體
出版社: 土壤環境科學系所
引用: 參考文獻 Abraham, M.H. 1993. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22: 73-83. Abraham, M.H., J. Andonian-Haftvan, C.M. Du, V. Diart, G. Whiting, J.W. Grate, and R.A. McGill. 1995. Hydrogen bonding. Part 29. Characterization of 14 sorbent coatings for chemical microsensors using a new solvation equation. J Chem. Soc. Perkin Trans. 2: 369-378. Abraham, M.H., J. Andonian-Haftvan, G.S. Whiting, A. Leo, and R.S. Taft. 1994. Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a new method for its determination. J. Chem. Soc. Perkin Trans. 2: 1777-1791. Abraham, M.H., P.L. Grellier, D.V. Prior, J.J. Morris, and P.J. Taylor. 1990. Hydrogen bonding. Part 10. A Scale of solute hydrogen-bond basicity using log K values for complexation in tetrachloromethane. J. Chem. Soc. Perkin Trans.2: 521-529. Abraham, M.H., P.L. Grellier, and R.A. McGill. 1987. Determination of olive oil-gas and hexadecane-gas partition coefficients, and calculation of the corresponding olive oil-water and hexadecane-water partition coefficients. J. Chem. Soc. Perkin Trans. 2: 797-803. Abraham, M.H., G.S. Whiting, R.M. Doherty, and W.J. Shuely. 1990. Hydrogen bonding. Part 13. A new method for the characterisation of GLC stationary phases-the Laffort Data Set. J. Chem. Soc. Perkin Trans. 2: 1451-1460. Agnihotri, S., M.J. Rood, M. Rostam-Abadi. 2005. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon. 43: 2379-2388. Aochi, Y., and W.J. Farmer. 1995. Spectroscopic evidence for the rate-limited accumulation of a persistent fraction of 1,2-dichloroethane sorbed onto clay minerals. Environ. Sci. Technol. 29: 1760-1765. Atkinson, R. 1990. Gas-phase tropospheric chemistry of organic compounds : A Review. Atmospheric Environ. 24A: 1-41. Aubin, D.G. and J.P. Abbatt. 2006. Laboratory measurements of thermodynamics of adsorption of small aromatic gases to n-hexane soot surfaces. Environ. Sci. Technol. 40, 179-187. Bansal, R.C. 1988. p. 3-4. In Active Carbon. Marcel-Dekker, New York and Basel. Boehm, H.P. 1966. Chemical identification of surface groups. Advances in Catalysis. 16: 179-274. Boehm, H.P. 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon. 32: 759-769. Brunauer, S., L.S. Deming, W.S. Deming, and E. Teller. 1940. On a theory of the van der Waals adsorption of gases. J. AM. Chem. Soc. 62: 1723-1732. Brunauer, S., P.H. Emmett, E. Teller. 1938. Adsorption of gas in multimolecular layers. J. Am. Chem. Soc. 60: 309-319. Burg, P., P. Fydrych, J. Bimer, P.D. Salbut, and A. Jankowska. 2002. Comparison of three active carbons using LSER modeling: prediction of their selectivity pairs of volatile organic compounds (VOCs). Carbon. 40: 73-80. Burg, P., P. Fydrych, M.H. Abraham, M. Matt, R. Gruber. 2000. The characterization of an activated carbon in terms of selectivity towards volatile organic compounds using and LSER approach. Fuel. 79: 1041-1045. Byl, O., P. Kondratyuk, S.T. Forth, S.A. FitzGerald, L. Chen, J.K. Johnson, and J.T. Yates Jr. 2003. Adsorption of CF4 on the internal and external surfaces of opened single-walled carbon nanotubes: A vibrational spectroscopy study J. Am. Chem. Soc. 125: 5889-5896. Chakrapani, N., Y.M. Zhang, S.K. Nayak, J.A. Moore, D.L. Carroll, Y.Y. Choi, P.M. Ajayan. 2003. Chemisorption of acetone on carbon nanotubes. J. Phys. Chem. B. 107: 9308-9311. Chen, P., X. Wu., and J. Lin. 1999. High H2 uptake by alkali doped carbon nanotubes under ambient pressure and moderate temperature. Science. 285: 91-93. Chun, Y., G. Sheng, C.T. Chiou, and B. Xing. 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 38: 4649-4655. Cossarutto, L., C. Vagner, G. Finqueneisel, J.V. Webwer, and T. Zimny. 2001. Surface free energy (γds) of active carbons determined by inverse gas chromatography: influences of the origin precursors, the burn off level and the chemical modification. Appl. Surf. Sci. 177: 207-211. Crespo, D. and R.T. Yang. 2006. Adsorption of organic vapors on single-walled carbon nanotubes. Ind. Eng. Chem. Res. ASAP article. Dai, H., E.W. Wong, and C.M. Lieber. 1996. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science. 272: 523-526. Dillon, A.C., K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben. 1997. Storage of hydrogen in single-walled carbon nanotubes. Nature. 386: 377-379. Dubinin, M.M. 1989 Fundamentals of the theory of adsorption in micropores of carbon adsorbents: characteristics of their adsorption properties and microporous structures. Carbon. 27: 457-467. Dubinin, M.M. 1987. Adsorption properties and microporous structure of carbonaceous adsorbents. Carbon. 25: 593-589. Díaz, E., S. Ordóñez, A. Vega, and J. Coca. 2005. Comparison of adsorption properties of a chemically activated and a steam-activated carbon, using inverse gas chromatography. Microporous and Mesoporous Materials. 82: 173-181. Ebbesen, T.W. 1996. Wetting filling and decorating carbon nanotubes. J. Phys. Chem. Solids. 57: 951-995. Ebbesen, T.W., H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, and T. Thio. 1996. Electrical conductivity of individual carbon nanotubes. Nature. 382: 54-56. Flood, E.A. 1967. In The solid-gas interface. Marcel Dekker, New York. Fujiwara, A., K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, A. Yohji. 2001. Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem. Phys. Let. 336: 205-211. Eklund, P.C., J.M. Holden, and R.A. Jishi. 1995. Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon. 33: 959-972. Goss, K.-U., J. Buschmann, R.P. Schwarzenbach. 2003. Determination of the surface sorption properties of talc, different salts and clay minerals at various humidities using adsorption data of a diverse set of organic vapors. Environ. Toxicol. Chem. 22: 2667-2672. Goss, K.-U., and R.P. Schwarzenbach. 2002. Adsorption of a diverse set of organic vapors on Quartz, CaCO3 and alpha-Al2O3 at different relative humidities. J. Colloid Interface Sci. 252: 31-41. Graham, D. P. 1965. Physical adsorption on low-energy solids. III. Adsorption of ethane, n-butane, and n-octane on poly(tetrafluoroethylene). J. Phys. Chem. 69: 4387-4391. Grate, J.W., M.H. Abraham, C.M. Du, R.A. McGill, W.J. Shuely. 1995. Examination of vapor sorption by fullerene, fullerene-coated surface acoustic wave sensors, graphite, and low-polarity polymers using linear solvation energy relationships. Langmuir. 11: 2125-2130. Grate, J.W., S.J. Patrash, S.N. Kaganove, M.H. Abraham, B.M. Wise, and N.B. Gallagher. 2001. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses. Anal.Chem. 73: 5247-5259. Gregg, S.J., and K.S.W. Sing. 1982. In Adsorption, surface area and porosity. Academic Press, New York. Herry, C., M. Baudu, and D. Raveau. 2001. Estimation of the influence of structural elements of activated carbons on the energetic components of adsorption.Carbon. 39: 1879-1889. Hilding, J.M., and E.A. Grulke. 2004. Heat of adsorption of butane on multiwalled carbon nanotubes. J. Phys. Chem. B. 108: 13688-13695. Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature. 354: 56-58. Irving, D.L., S.B. Sinnott, and A.S. Lindner. 2004. Interaction of functionalized benzene molecules with carbon nanopores. Chem. Phys. Let. 389: 96-100. Jaroniec, M., and J. Choma. 1997. Comparative studies of gas-phase and liquid-phase adsorption processes on active carbons. http://acs.omnibooksonline.com/papers/1997_i148.pdf Kim, C., Y.S. Chio, S.M. Lee, J.T. Park, B. Kim and Y.H. Lee. 2002. The effect of gas adsorption on the field emission mechanism of carbon nanotubes. J. Am. Chem. Soc. 124: 9906-9911. Kondratyuk, P., and J.T. Yates Jr. 2005. Desorption kinetic detection of defferent adsorption sites on opened carbon single walled nanotubes: The adsorption of n-nonane and CCl4. Chem. Phys. Let. 410: 324-329. Laine, J., and S. Yunes. 1992. Effect of preparation method on the pore size distribution of activated carbon from coconut shel. Carbon. 30: 601-604. Langmuir, I. 1918. Adsorption of gases on glass, mica and platinum. Am. Chem. Soc. 40: 1361-1403. Lebrón-Aguilar, R., J.E. Quintanilla-López, and J.A. Garcóa-Dominguez. 1997. Hold-up time in gas chromatography I. New approach to its estimation. J. Chromatogr. A. 760: 219-226. Lee, J.W., H.C. Kang, W.G. Shim, C. Kim, and H. Moon. 2006. Methane adsorption on multi-walled carbon nanotube at (303.15, 313.15, and 323.15) K. J. Chem. Eng. Data. 51: 963-967. Lewis, I.C. 1982. Chemistry of carbonization. Carbon. 20: 519-529. Li, Y., J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu, B. Wei. 2003. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes .Carbon. 41: 2787-2792. Li, Y., S. Wang, A. Cao, D. Zhao, X. Zhang, C. Xu, Z. Luan, D. Ruan, J. Liang, D. Wu, and B. Wei. 2001. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem. Phys. Let. 350: 412-416. Li, Y., S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, and D. Wu. 2003. Adsorption of fluoride from water by aligned carbon nanotubes. Materials Research Bulletin. 38: 469-476. Li, Y., S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, and B. Wei. 2002. Lead adsorption on carbon nanotubes. Chem. Phys. Let. 357: 263-266. Long, R.Q., and R.T. Yang. 2001. Carbon nanotubes as superior sorbent for dioxin remoal. J. Am. Chem.Soc. 123: 2058-2059. Lu, G.Q. 1994. Evolution of pore structure of high-ash char during activation. Fuel. 73: 145-147. M. Terrones, W. K. Hsu, H. W. Kroto, and D. R. M. Walton. 1999. Nanotubes: A revolution in materials science and electronics. p. 189-234 In Topics in Current Chemistry. Springer, New York. McEnaney, B. 1987. Estimation of the dimensions of micropores in active carbons using the Dubinin-Radushkevich equation. Carbon. 25: 69-75. Monthlioux, M., B.W. Smith, B. Burteaux, A. Claye, J.E. Fischer, and D.E. Luzzi. 2001. Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon. 39: 1251-1272. Mukhopadhyay, P., and H.P. Schreiber. 1993. Inverse gas chromatography for polymer surface characterization above and below Tg. Macromolecules. 26: 6391-6396. Mukhopadhyay, P., and H.P. Schreiber. 1995. Aspects of acid-base interactions and use of inverse gas chromatography.Colloids Surf. A. 100: 47-71. Odom, Teri Wang, Jin-Lin Huang, Philip Kim, Charles M. Lieber. 1998. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature. 391: 62-64 Papirer, E., E. Brendle, F. Ozil, H. Balard. 1999. Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography. Carbon. 37: 1265-1274. Papirer, E., S. Li, H. Balard, and J. Jagiello. 1991. Surface energy and adsorption energy distribution measurement on some carbon black. Carbon. 29: 1135-1143. Patrick, J.W. 1995. In Porosity in carbon. Halsted Press, New York. Peigney, A., Ch.Laurent, E. Flahaut, R.R. Bacsa, and A. Rousset. 2001. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. 39: 507-514. Peng, X., Y. Li., Z. Luan, Z. Di, H. Wang, B. Tian, and Z. Jia. 2003. Adsorption of 1,2- dichlorobenzene from water to carbon nanotubes. Chem. Phys.Let. 376: 154-158. Pennell, Kurt D., R. Dean Rhue, P. Suresh C. Rao, and Cliff T. Johnston. 1992. Vapor-phase sorption of p-xylene and water on soils and clay minerals. Environ. Sci. Technol. 26: 756-763. Pignatello, J.J. 1990. Slowly reversible sorption aliphatic halocarbons in soils.Ⅱ. Mechanistic aspects. Environ. Sci. Technol. 9: 1117-1126. Pignatello, J.J., and B. Xing. 1996. Mechanisms of slow sorption organic chemicals to nature particles. Environ. Sci. Technol. 30: 1-11. Puhl, M.J. 1993. Recover VOCs via adsorption on activated carbon. Chem. Eng. Process. Jul.: 37-41. Quin, R.-Y., and H.P. Schreiber. 1994. Application of inverse gas chromatography to molecular diffusion in polymers. Langmuir. 10: 4153-4156. Quintanilla-López, J.E., R. Lebrón-Aguilar, and J.A. García-Domínguez. 1997. The hold-up time in gas chromatography II. Validation of the estimation based on the concept of a zero carbon atoms alkane. J. Chromatogr. A. 767: 127-136. Richard, Q.L., and T.Y. Ralph. 2001. Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc. 123: 2058-2059. Roth, C.M., K.-U. Goss, and R. P. Schwarzenbach. 2002. Adsorption of a diverse set of organic vapors on the bulk water surface. J. Colloid Interface Sci. 252: 21-30. Roth, C.M., K.-U. Goss, and R.P. Schwarzenbach. 2004. Sorption of diverse organic vapors to snow. Environ. Sci. Technol. 38: 4078-4084. Sharman, J. D. 1991. p. 493-573. In Adsorption. Encyclopedia of Chemical Technology. Magraw-Hill, New York. Seidell, A. 1941. In Solubilities of organic compounds. 3dr Edn., D. Van Nostrand Company, New York. Shelimov, K.B., R.O. Esenaliev, and A.G. Rinzler. 1998. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Let. 282: 429-434. Singh, G.S., Darshan Lal, and V.S. Tripathi. 2004. Study of microporosity of active carbon spheres using inverse gas chromatographic and static adsorption techniques. J. Chromatogr. A. 1036: 189-195. Steinberg, S.M., J.J. Pignatello, and B.L. Sawney. 1987. Persistence of 1,2-dibromoethane in soils: Entrapment in intraparticle micropores. Environ. Sci. Technol. 21: 1201-1208. Schwarzenbach, Ren P., Philip M. Gschwend, and Dieter M. Imboden. 2003. Appendix. p.1198-1205. In Envronmental organic chemistry. John Wiely & Son, New Jersey. Tang, D., L. Ci, W. Zhou, and S. Xie. 2006. Effect of H2O adsorption on the electrical transport properties of double-walled carbon nanotubes. Carbon. 44: 2155-2159. Tsang, S.C, Y.K Chen, P.J.F. 1994. Harris. A sample chemical method of opening and filling carbon nanotubes. Nature. 372: 159-162. Tsai, W.T, C.W Lai, and K.J Hsien. 2004. Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth. Chemosphere.55: 829-837. Vega, A., F.V. Díez, P. Hurtado, and J. Coca. 2002. Characterization of polyarylamide fibers by inverse gas chromatography. J. Chromatogr. A. 962: 153-160. Wilder, J.W.G., L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker. 1998. Electronic structure of atomically resolved carbon nanotubes. Nature. 391: 59-62. Wu, X.B., P. Chen, K.L. Tan. 2000. Hydrogen uptake by carbon nanotubes. International Journal of Hydrogen Energy. 25: 261-265. Xie, J., M. Bousmina, G. Xu, and S. Kaliaguine. 1998. Inverse gas chromatography studies of alkali cation exchanged X-zeolites. J. Mol. Catal. A: Chem. 135: 187-197. Yang, R.T., R.Q. Long, J. Padin, A. Takahashi, and T. Takahashi. 1999. Adsorbents for dioxins: A New technique for sorbent screening for low-volatile organics. Ind. Eng. Chem. Res. 38: 2726-2731. Yang, K., L. Zhu, and B. Xing. 2006. Adsorption of polycyclic aromatic hydrobarbon by carbon nanomaterials. Environ. Sci. Technol. 40: 1885-1861. 王志欽。2003。一維奈米碳材結構分析與模擬之研究。國立成功大學 材料科學及工程學研究所碩士論文。9-9頁。 成會明。2004。奈米碳管。五南圖書出版股份有限公司。 李元堯。2003。21 世紀的尖端材料-奈米碳管。化工技術。11: 140-159。 鍾耀磊。2003。奈米碳管吸附自來水中三鹵甲烷之研究。國立中興大學環境工程學研究所碩士論文。62-64頁。
摘要: Abstract Two multiwall carbon nanotubes (MWNTs), CNT1 and CNT2, with the nanostructures and the uniform properties that may provide novel and excellent absorption properties of gases were studied. A diverse volatile organic compounds (VOCs) was used as chemical probes to investigate the adsorption mechanisms of MWNTs at room temperature (303K). The adsorption experiments of a variety of VOCs on MWNTs under various relative humidity were performed to get better understanding of the effect of humidity on sorption processes. The photographs of SEM (scanning electron microscopy) and TEM (transmission electron microscopy) showed that both MWNTs were aggregated and had no metal catalysts on the surface. The spectroscopic analysis of these two MWNTs mostly indicated they were similar. CNT2 had a little more diamond-like carbon than CNT1 examined with Raman spectra. 13C NMR (13C nuclear magnetic resonance) and XPS (X-ray photoelectron spectroscopy) measurements detected CNT1 having a tiny more C=C than CNT2. However, the amorphous carbon on the exterior layers of CNT2 was observed by electron microscopies. The adsorption coefficients of VOCs on CNT2 were larger than those on CNT1. It may result from that the impurity of MWNTs provided more sorption capacity to organic chemicals. Under two different humid conditions (55 % and 90 %), adsorption equilibrium coefficients of VOCs on the MWNTs decreased with the increasing of water content. Some adsorption sites for VOCs previously on the MWNTs were occupied by water molecules under humid conditions. The adsorption equilibrium coefficients of trichloroethylene, benzene, n-hexane, and acetone decreased with increasing temperature between 303 K and 363 K. It is an exothermic process. The adsorption heats (ΔH) of trichloroethylene, benzene, and n-hexane on the MWNTs were smaller than 40 kJ/mol. Consequently, the VOCs molecules performed physicosorption on the MWNTs surface. Adsorption equilibrium coefficients of n-alkanes and alcohols on the MWNTs became larger with more carbon atoms on the molecular structures of n-alkane and alcohol and larger with more chloro atoms on the chlorinated compounds. Several LSER (linear solvation energy relationship) equations were obtained by the regression of the sorption coefficients of VOCs on MWNTs. The analysis of the interactions based on these LSERs indicated that the London dispersion force was the major adsorption interaction in the adsorption process on MWNTs. LSERs of MWNTs at high and ambient relative humid were large different at abilities of hydrogen bond donor and acceptor. The ability of hydrogen bond donor was decreased with humidities but the ability of hydrogen bond acceptor was increased with humidity. Several LSERs equations were developed to facilitate the prediction of different organic chemicals on MWNTs which could be potential adsorbents for organic traps, chemical sensors, and gas treatment.
摘要 奈米碳管可作為吸持有機物,化學感測器和處理廢氣或廢水中有機污染物之移除材料。然其吸附有機化合物之機制仍未完全了解。本研究利用具有奈米級的結構尺寸,微觀結構規則完整之二種奈米碳管(CNT1和CNT2)來探討在室溫(303K)下奈米碳管對有機化合物之吸附作用。藉由不同有機化合物特性作為分子碳針,用以探討有機氣體和奈米碳管之間的吸附機制。由於環境中水分是影響吸附之重要因子之ㄧ,本研究也探討不同相對溼度環境下,奈米碳管對有機氣體的吸附行為。另一方面,藉由數個數個LSER方程式了解奈米碳管與不同有機化合物之間的吸附行為。 奈米碳管藉由顯微鏡影像圖觀察到CNT1和CNT2均為有中空管狀且相互糾纏聚集纏繞在一起。從氮氣吸脫附曲線圖可得知奈米碳管的吸附形曲線為S型等溫線的多層吸附型態。從拉曼光譜圖發現CNT2比CNT1含有多一些不規則的石墨結構。13C NMR和XPS顯示 CNT1比CNT2有較多一些之未飽和之碳鍵結且能提供較多之電子。 另外,在不同相對溼度55 % 和90 % 環境下,隨著水份的增加,奈米碳管對於有機化合物的吸附平衡常數有減少的趨勢,這可能是由於水分子也會吸附在奈米碳管上而佔據了有機化合物在奈米碳管上之吸附位置。在溫度方面,303 K與363 K之間,奈米碳管對於三氯乙烯,苯,正己烷和丙酮的吸附平衡常數是隨著溫度的升高而下降,說明吸附過程屬於放熱反應。三氯乙烯,苯和正己烷在奈米碳管上的吸附熱ΔH之絕對值小於40 kJ/mol,並顯示其吸附的過程主要為物理吸附。 在中與高相對溼度,溫度303K環境下之吸附實驗中,LSER(linear solvation energy relationship)結果顯示奈米碳管對於烷類和醇類之化合物的吸附平衡常數皆有隨著含碳數增加而增加的趨勢。而對於氯烷類之化合物的吸附平衡常數皆有隨著含氯數增加而增加的趨勢。以及奈米碳管和有機化合物之間的主要作用力為倫敦分散力。在中與高相對溼度環境下,奈米碳管的LSER參數之比較中可以發現其中碳管隨著水份增加而有明顯改變的性質參數有接受(a)和提供(b)氫鍵的能力。CNT1和CNT2隨著水份增加有接受氫鍵的能力(a)會增加而提供(b)氫鍵的能力會減少。實驗結果所得之數個LSER方程式可預測奈米碳管與不同有機化合物之間的吸附行為。
URI: http://hdl.handle.net/11455/28030
其他識別: U0005-2508200617220700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200617220700
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.