Please use this identifier to cite or link to this item:
標題: 有機黏粒對揮發性有機氣體之吸脫附動力學與吸附機制之探討
Sorption kinetics and sorption mechanisms of volatile organic vapors on organoclays
作者: 周士閔
Chou, Shih-min
關鍵字: Organoclay
volatile organic vapor
出版社: 土壤環境科學系所
引用: Abraham, M.H. 1993. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22:73-83. Bartelt-Hunt, S.L., S.E. Burns, and J.A. Smith. 2003. Nonionic organic solute sorption onto two organobentonites as a function of organic-carbon content. J. Colloid Interface Sci. 266:251-258. Boyd, S.A., M.M. Mortland, and C.T. Chiou. 1988. Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite. Soil Sci. Soc. Am. J. 52:652-657. Brady, N.C., and R.R. Weil. 2004. The colloidal fraction: seat of soil chemical and physical activity. p. 235- 265. In N.C. Brady and R.R. Weil. (ed.) Elements of the nature and properties of soils. Pearson, New Jersey. Brady, N.C., and R.R. Weil. 2004. Elements of the nature and properties of soils. Brunauer, S.L., S. Deming, W.S. Deming, and E. Teller. 1940. On a theory of the van der Waals adsorption of gases. J. Amer. Chem. Soc. 62:1723-1732. Brixie, J.M., and S.A. Boyd. 1994. Treatment of contaminated soils with organoclays to reduce leachable pentachlorophenol. J. Environ. Qual. 23:1283- 1290. Cabbar, H.C. 1999. Effects of humidity and soil organic matter on the sorption of chlorinated methanes in synthetic humic-clay complexes. J. Hazard. Mater. 68:217-266. Campagnolo, J. F., and A. Akgerman. 1996. A prediction method for gas-phase VOC isotherms onto soils and soil constituents. J. Hazard. Mater. 49:231-245. Chiou, C.T., and T.D. Shoup. 1985. Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity. Environ. Sci. Technol. 19:1196- 1200. Chun, Y., Sheng, G., and S.A. Boyd. 2003. Sorptive characteristics of tetraalkylammonium-exchanged smectite clays. Clays and Clay Minerals. 51:415-420. Chang, M., S. Wu, and C. Chen. 1997. Diffusion of volatile organic compounds in pressed humic acid disks. Environ. Sci. Technol. 31:2307-2312. Conder, J. R., and C.L. Young. Physicochemical Measurements by Gas Chromatography. Wiley: New York, 1979; pp 387-395. Cornelissen, G., P.C.M. van Noort, J.R. Parsons, and H.A.J. Govers. 1997. Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments. Environ. Sci. Technol. 31:454- 460. Crank, J. 1975. The methematics of diffusion, 2nd ed. Clarendon press, Oxford. Dural, N. H., and C.H. Chen. 1997. Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils. J. Harzard. Mater. 53:75-92. Goss, K.-U. 1992. Effects of temperature and relative humidity on the sorption of organic vapors on quartz snad. Environ. Sci. Tehnol. 26:2287-2294. Goss, K.-U. 1993. Effects of temperature and relative humidity on the sorption of organic vapors on clay minerals. Environ. Sci. Technol. 27:2127-2132. Goss, K.-U., and S.J. Eisenreich. 1996. Adsorption of VOCs from the gas phase to different minerals and a minerals mixture. Environ. Sci. Technol. 30:2135-2142. Goss, K.-U., and R.P. Schwarzenbach. 1998. Gas/solid and gas/liquid partitioning of organic compounds: critical evaluation of the interpretation of equilibrium constants. Environ. Sci. Technol. 32:2025-2032. Goss, K.-U., and R.P. Schwarzenbach. 2001. Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environ. Sci. Technol. 35:1-9. Gregg, S.J., and K.S.W. Sing. 1967. Adsorption, surface area and porosity. Academi press. London and New York. Gullick, R.W., and W.J. Weber. 2001. Evaluation of shale and organoclays as sorbent additives for low- permeability soil containment barriers. Environ. Sci. Technol. 35: 1523-1530. Heller-Kallai, L., S. Yariv, and S. Cross. 1975. Hydroxyl stretching frequencies of serpentine minerals. Mineral. Mdg. 40:197-201. Jaynes, W.F., and S.A. Boyd. 1991. Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays. Soil Sci. Soc. Am. J. 55:43-48. Jaynes, W.F., and G.F. Vance. 1996. BTEX sorption by organo-clays: cosorptive enhancement and equivalence of interlayer complexes. Soil Sci. Soc. Am. J. 60:1742- 1749. Johnston C. T., T. Tipton, S.L. Trabus, C. Erickson, and D.A. Stone. 1992. Vapor-phase sorption of p-xylene on Co- and Cu-exchanded SAz-1 montmorillonite. Environ. Sci. Technol. 26:382-390. Lee, J.-F., M.M. Mortland, and C.T. Chiou. 1990. Adsorption of benzene, toluene, and xylene by two tetramethylammonium-smectites having different charge densities. Clays and Clay Minerals. 38:113-120. Li, H., G. Sheng, B.J. Teppen, C.T. Johnston, and S.A. Boyd. 2003. Sorption and desorption of pesticides by clay minerals and humic acid-clay complexes. Soil Sci. Soc. Am. J. 67:122-131. Li, J., and C.J. Werth. 2004. Slow desorption mechanisms of volatile organic chemical mixtures in soil and sediment micropores. Environ. Sci. Technol. 38:440-448. Nir, S., T. Undabeytia, D. Yaron-Marcovich, Y. El-Nahhal, T. Polubesova, C. Serban, G. Rytwo, G. Lagaly, and B. Rubin. 2000. Optimization of adsorption of hydrophobic herbicides on montmorillonite preadsorbed by monovalent organic cations: interaction between phenyl rings. Environ. Sci. Technol. 34:1269-1274. Norrish, K. 1954. The swelling of montmorillonite. Discuss. Faraday Soc. 18:120-134. Pignatello, J.J., and B. Xing. 1996. Mehanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30:1-11. Rounds, S. A., B.A. Tiffany, and J.F. Pankow. 1993. Description of gas/particle sorption kinetics with an intraparticle diffusion model: description experiments. Environ. Sci. Technol. 27:366-377. Ruiz, J., R. Bilbao, and M.B. Murillo. 1998. Adsorption of different VOC onto soil minerals from gas phase: influence of mineral, type of VOC, and air humidity. Environ. Sci. Technol. 32:1079-1084. Schwarzenbach, R.P., P.M. Gschwend, and D.M. Imboden. 2003. Sorption I: generally introduction and sorption process involving organic matter. p. 275-330. In Schwarzenbach et al. (ed.) Environmental organic chemistry. John Wiley & Sons, New Jersey. Shih, Y.-H. 2002. The effect of soil heterogeneity on the sorption and desorption of organic contaminants in soil. Dissertation, National Taiwan University, Taipei, Taiwan. Shih, Y.-H., and S.-C. Wu. 2005. Distinctive sorption mechanisms of soil organic matter and mineral components as elucidated by organic vapor uptake kinetics. Environ. Toxicol. Chem. 24:2827-2832. Sheng, G., S. Xu, and S.A. Boyd. 1996. Mechanism(s) controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter. Environ. Sci. Technol. 30:1553-1557. Sing, K.S.W., D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska. 1985. IUPAC recommendations, 1984, Reporting physical adsorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57:603-619. Steinberg, S.M., and D.K. Kreamer. 1993. Evaluation of the sorption of volatile organic compounds by unsatured calcareous soil from southern Nevada using inverse gas chromatography. Environ. Sci. Technol. 27:883-888. Taylor, H.S. 1931. The activation energy of adsorption processes. J. Am. Chem. Soc. 53:578-597. Thlbaud, C., C. Erkey, and A. Akgerman. 1992. Investigation of adsorption equilibria of volatile organics on soil by frontal analysis chromatography. Environ. Sci. Technol. 26:1159-1164. Tian, S., L. Zhu, and Y. Shi. 2004. Characterization of sorption mechanisms of VOCs with organobentonites using a LSER approach. Environ. Sci. Technol. 38: 489- 495. Van Olphen, H., and J.J. Fripiat. 1979. Data handbook for clay minerals and other non-metallic minerals: providing those involved in clay research and industrial application with sets of authoritative data describing the physical and chemical properties and mineralogical composition of the available reference materials. Pergamon Press, New York. Yariv, S., and K.H. Michaelian. 2002. Structure and surface acidity of clay minerals. p. 1-38. In S. Yariv and H. Cross (ed.) Organo-clay complexes and interactions. Marcel Dekker, New York. Yariv, S., and S. Shoval. 1975. The nature of the interaction between water molecules and kaolin-like layers in hydrated halloysite. Clays Clay Miner. 23:473-479. Yariv, S., and S. Shoval. 1976. Interactions between alkali halides and halloysite: I.R. study of the interaction between alkali-halides and hydrated halloysite. Clays Clay Miner. 24:253-261. Yaron-Marcovich, D., S. Nir, and Y. Chen. 2004. Fluridone adsorption-desorption on organo-clays. Appl. Clay Sci. 24:167-175. Zhu, L., and Y. Su. 2002. Benzene vapor sorption by organobentonites from ambient air. Clays Clay Miner. 50:421-427. 王明光,2000,土壤環境礦物學,藝軒圖書出版社,臺北。 王明光,王敏昭,2003,實用儀器分析,合記圖書出版社,臺北。 李益民,朱利中,王玨,1997,有機膨潤土的吸附性能研究,高等 學校化學學報。 18: 723-725。 沈鐘,王果庭,1997,膠體與表面化學,化學工業出版社,北京。 金相燦,環境毒性有機污染化學,淑馨出版社,1988,pp. 116- 150. 張美玲,揮發性有機氣體在土壤中之吸脫附動力,博士論文,國立 台灣大學環境工程學研究所,臺北,1998。 許員豪,蒙特石及蛭石之十六烷基三甲基銨有機黏粒複合物及其對 農藥2,4-DP吸附現象之探討,碩士論文,國立台灣大學農業化 學研究所,臺北,1996。 梁瑜玲,甲苯在三種黏土礦物下長時間吸附機制,碩士論文,國立 台灣大學環境工程學研究所,臺北,2002。 陳寶梁,朱利中。2002。陰、陽離子有機膨潤土吸附水中對硝基苯 酚的性能及機理研究。浙江大學學報。29: 317-323。 曾文妮,土壤無機相結構對揮發性有機污染物吸/脫附行為之影響, 碩士論文,國立中央大學環境工程學研究所,中壢,2001。 楊迪光,相對溼度對土壤吸附揮發性有機物機制之影響,碩士論 文,國立台灣大學環境工程學研究所,臺北,1997。 漆宗能,尚文宇。2004。聚合物/層狀矽酸鹽奈米複合材料。五南圖 書出版股份有限公司。 潘秋金,以陽離子型介面活性劑合成有機黏土吸附有機化合物之研 究,碩士論文,國立成功大學資源工程學研究所,台南, 2001。 劉慧玲,台東樟原黏土資源之有機黏土備製研究,碩士論文,國立 成功大學資源工程學研究所,台南,2000。
摘要: 污染場址復育過程與掩埋場之建構經常利用黏粒及有機黏粒來阻絕污染物的散佈,並且藉由其吸附作用來清除這些污染物。有機-無機複合物對於有機污染物的吸附行為能夠透過不同的作用機制。本研究探討在純黏粒和以十六烷基三甲基銨修飾的有機黏粒吸附揮發性有機化合物之行為中,黏粒碳含量以及環境相對濕度之高低對於吸附作用的影響,並且探討可能的吸脫附機制。利用重量法來探測甲苯氣體在黏粒及有機黏粒的吸脫附動力;利用逆相氣相層析法來求得多種揮發性有機化合物在黏粒及有機黏粒的吸附平衡常數,並以線性溶合能量關係來探討吸附劑性質以及吸附質與吸附劑間的交互作用力。 動力實驗結果顯示,在低相對濕度(~0% RH)時,純黏粒對於甲苯氣體的吸附平衡常數大於有機黏粒,而有機黏粒隨著比表面積的降低,對於甲苯的吸附平衡常數愈小。此結果說明乾燥情況下,純黏粒及有機黏粒對於甲苯氣體的吸附能力主要決定於吸附劑的比表面積之大小。甲苯氣體的吸脫附擴散速率常數皆隨著黏粒碳含量的增加而逐漸增加,這是由於有機黏粒的有機部分造成黏粒的膨脹,加速了甲苯分子進出有機黏粒的擴散過程。純黏粒與有機黏粒對於甲苯的脫附動力,皆表現出較吸附為慢的慢脫附現象,這是因為進入層間的甲苯難以脫附出來所致;另外純黏粒所具有的微孔隙更是使得達脫附平衡後的黏粒具有大量甲苯殘留的原因。 在平衡實驗部分,揮發性有機化合物在黏粒或有機黏粒的吸附平衡常數皆隨著相對濕度的增加而減小,證實水分的存在及多寡確實會抑制黏粒及有機黏粒對於有機化合物的吸附能力。在低相對濕度(~0% RH)時,純黏粒對於揮發性有機化合物的吸附能力大致上仍然是較有機黏粒大,此結果與重量法之結果相符。在中相對濕度(~55% RH)與高相對濕度(~90% RH)時,揮發性有機化合物的吸附平衡常數一般而言是隨著吸附劑碳含量的增加而增加,說明水分存在時,有機黏粒中的有機成分所構成之分配介質扮演主要的吸附角色。利用線性溶合能量關係來分析揮發性有機化合物氣體在純黏粒或有機黏粒的可能吸附機制,顯示大部分的揮發性有機化合物氣體是以倫敦分散作用力與黏粒及有機黏粒作用;而揮發性有機化合物與純黏粒或有機黏粒間藉由π電子或未共用電子對產生的作用力則是對吸附作用表現出負面貢獻。
Clay and organoclay are usually used to prevent the spread of organic contaminants in landfills and remediation sites and to clean the organic pollutants by sorption processes. Sorption of organic pollutants by organo-inorganic complexes can occur via different mechanisms. The aims of this thesis were to evaluate the effects of carbon contents of clays and relative humidity (RH) on the sorption of volatile organic compounds (VOCs) on pure clay, montmorillonite, and organoclays, montmorillonite modified with hexadecyltrimethyl ammonium (HDTMA), and to elucidate the sorption and desorption mechanisms. The sorption and desorption kinetics of toluene on clay and organoclays was investigated by a gravimetric method. The inverse gas chromatography was used to obtain the equilibrium sorption coefficients of a diverse of VOCs on clay and organoclays. The interactions between VOCs and clays were characterized via linear solvation energy relationships (LSERs). The results of kinetics experiments showed that, at low relative humidity (~0% RH), the equilibrium sorption coefficients for toluene vapor sorbed on clay were larger than those on organoclays, and the sorption coefficients for toluene sorbed on organoclays decreased with decreasing surface area. The results indicated that the sorption capacities of clay and organoclays were determined by the specific surface areas of the sorbents under dry conditions. The apparent diffusivities for toluene sorption and desorption on clay and organoclays increased with increasing carbon contents of sorbents. The organic fraction of organoclays resulted in the expansion of clay and accelerated the diffusion process of toluene molecules into organoclay particles. The rates for toluene desorpion from clay and organoclays were smaller than the rates for toluene sorption, respectively, which were attributed to the difficulties for toluene to desorb from the interlayers of clay and organoclays. In addition, a great quantity of toluene residual, after the equilibrium for toluene desorption was reached, was observed in the pure clay. It was further attributed to the micropores the pure clay had only. In the sorption equilibrium experiments, the results showed that the equilibrium sorption coefficients for VOCs sorption on clay and organoclays decreased with increasing relative humidity, which proved that the existence and amount of water indeed suppressed the sorption capacities for clay and organoclays to sorb VOCs. At low relative humidity (~0% RH), the capacities for pure clay were usually greater than those for organoclays, which consisted with the kinetics experimental results. Under ambient (~55% RH) and high relative humidity (~90% RH), the equilibrium sorption coefficients of VOCs on clay and organoclays generally increased with increasing carbon contents of sorbents, indicating that the organic moieties of organoclays may behave as a partition medium and play the predominant role for the sorption. Characterization of sorption mechanisms of VOCs on clay and organoclays using LSERs revealed the main interaction force for VOCs vapors sorption on clay and organoclays was London dispersion force. At the same time, VOCs interacting with clay and organoclays through π-/n-electron pairs always displayed a negative contribution to VOCs sorption.
其他識別: U0005-2508200617373200
Appears in Collections:土壤環境科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.