Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28040
標題: 有機質材的施用對銅和鎳污染土壤之改良效果研究
Research of the application of organic amendment on the amelioration of copper and nickel polluted soils
作者: 蔡妮珊
蔡妮珊, Ni-Shan Tsai
關鍵字: Organic amendments
有機質材
Copper
Nickel
Bioavailability
Movement


生物有效性
移動性
出版社: 土壤環境科學系所
引用: 參考文獻 王銀波、劉黔蘭、吳論、林宴夙。1986。銅、鋅、鎘及鉻對土壤微生物與作物生長的影響。農林學報。35:97-109. 王雲、魏復盛。1995。土壤環境元素化學。中國環境科學出版社。p. 8、101-128、180-192。 王裕民、陳庭堅、葉桂君、詹益村、王鈞宗、林絮玉。1997。IDC-7重金屬污染場址整治計畫。第二屆地下水資源及水質保護研討會。p. 681-689。 朱海鵬、章莉菁、吳文娟。1992。台灣地區土壤重金屬含量現況之分析及探討。p. 1-14。第三屆土壤污染防治研討會論文集。國立中興大學土壤系編印。 行政院環境保護署。2000。土壤及地下水污染整治法。行政院環境保護署。總統華總一義字第8900023580號。 行政院環境保護署。1991。0.1 N鹽酸部分萃取火焰式原子吸收光譜法。行政院環境保護署。NIEA S320.60T。 行政院環境保護署。2001。土壤污染管制基準。行政院環境保護署。環署水字第0073684號。 行政院環境保護署。2002。農地土壤重金屬調查與場址列管計畫。行政院環境保護署。 行政院環境保護署。2003。土壤中重金屬檢測方法-王水消化法。行政院環境保護署。NIEA S321.63B。 行政院環境保護署。2004。土壤及地下水污染整治雙年報。行政院環境保護署。 李秀、賴滋漢。1976。食品分析與檢驗。精華出版社。p. 233-238。 李耿肇、陳尊賢、劉禎祺。1997。化學復育處理對污染土壤中鎘鉛型態轉變之影響。第五屆土壤污染防治研討會論文集。p. 375-398. 李建樺。1998。鉗合劑移除水田重金屬之研究。國立中興大學土壤環境科學系碩士論文。 初建。1994。台灣數種污染土類土壤之重金屬型態及其釋放趨勢。國立中興大學土壤環境科學系碩士論文。 林滄澤。1991。不同有機物在土壤中養分釋放之研究。中興大學土壤環境科學系碩士論文。 林霧霆、吳青芳、林春輝、蘇育俊、張時獻、郭崇義。2002。以螯合劑及界面活性劑淋洗受重金屬及PAHs污染土壤之研究。第17屆廢棄物處理技術研討會論文集。sf-p01。 洪肇嘉、廖光裕、何佳祥、賴俊成。2002。重金屬污染場址整治方案之選擇原則及實例探討。84期工業污染防治季刊。21:96-113. 莊佩祺。2003。土壤重金屬污染物化合物型態分佈之影響因子探討。逢甲大學環境工程與科學學系碩士論文。 張愛華。1981。本省現行土壤測定法。作物需肥診斷技術。p. 9-26。台灣省農業試驗所編印。 張仁福。1998。土壤污染防治學。高雄復文圖書出版社。p. 313-353、390-409。 郭魁士。1990。土壤學。中國書局。p. 127-164。 陳仁炫。2001。有機栽培的施用策略。有機農業土壤肥料管理研習班講義。。財團法人慈心有機發展委員會編印。p. 77-90 陳尊賢、陸瑩、黃東亮、吳芳娥。1992。台灣地區主要農業土壤中重金屬之鹽酸抽出量與全量之相關性。第三屆土壤污染防治研討會論文集。p. 125-139. 陳仁炫。1995。有機質肥料的添加對土壤磷有效性及礦化作用之影響。中國農業化學會誌。33:533-549。 陳尊賢。2003。受重金屬污染農地土壤之整治技術與相關問題分析。第9期台灣土壤及地下水環境保護簡訊。p. 2-9. 陳冠博。2004。受污染農地重金屬存在型態與 環境因子之相關性研究。逢甲大學環境工程與科學學系碩士論文。 許振宏。1999。豬糞堆肥之重金屬及有機物化學特性與其於土壤之應用研究。國立台灣大學環境工程學系博士論文。 黃舒瑜。2003。土壤重金屬0.1 N HCl 萃取量與全量濃度之相關性研究。逢甲大學環境工程與科學學系碩士論文。 廖自基。1992。微量元素的環境化學及生物效應。中國環境科學出版社。p. 210-240。 歐淑蒖。2003。評估四種有機質材在不同性質土壤的氮與磷之釋出效應。國立中興大學土壤環境科學系碩士論文。 Alloway, B. J. 1995. Heavy metal in soils. 2nd edition, Blackie Academic and Professional, London. Al-Turki, A. I., and M. I. D. Helal. 2004. Mobilization of Pb, Zn, Cu and Cd, in polluted soil. Pakistan Journal of Biological Sciences 7:1972-1980. Anderson, P. R., and T. H. Christensen. 1988. Distribution coefficients of Cd, Co, Ni and Zn in soils. J. Soil Sci. 39:15-22. Asghar, M. and Y. Kanehiro. 1980. Effects of sugarcane trash and pineapple residue on soil pH, redox potential, extractable Al, Fe, and Mn. Trop. Agric. 57:245-258. Ashworth, D. J., and B. J. Alloway. 2004. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut. 127:137-144. Baran, A., G. Cayci, C. Kutuk, and R. Hartmann. 2001. The effect of grape marc as growing medium on growth of hypostases plant. Bioresour. Technol. 78:103-106. Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-total. In A. L. Page(ed.) Methods of soil analysis. Part II. 2nd edtion Agronomy. p.595-624. ASA. Madison. WI. Camobreco, V. J., B. K. Richards, T. S. Steenhuis, and J. H. Peverly. 1996. Movement of heavy metals through undisturbed and homogenized soil columns. Soil Sci. 16:740-750. Cao, X. R., L. Q. Ma, M. Chen, S. P. Singh, and W. G. Harris. 2003. Phosphate-induced metal immobilization in a contaminated site. Environ. Pollut. 122:19-28. Cassell, D. K., and A. Klute. 1986. Water potential. In A. Klute et al.,(ed.) Methods of soil analysis. Part I. 2nd edtion Agronomy. p.563-596. ASA. Madison. WI. Chaudhuri D., S. Tripathy, H. Veeresh, M. A. Powell, and B. R. Hart. 2003. Mobility and bioavailability of selected heavy metals in coal ash- and sewage sludge-amended acid soil. Environ. Geol. 44:419-432. Chirenje, T., and L. Q. Ma, 1999. Effects of acidification on trace metal mobility in a papermill ash amended soil. J. Environ. Qual. 28:760- 766. Chubin, R. G., and J. J. Street. 1981. Adsorption of cadmium on soil constituents in the presence of complexing ligands. J. Environ. Qual. 10:225-228. Collins, H. P., L. F. Elliott, R. W. Rickman, D. F. Bezdicek, and R. I. Papendick. 1990. Decomposition and interactions among wheat residue components. Soil Sci. Soc. Am. J. 54:780-785. Düring, R. A., T. Hoβ, and S. Gäth. 2003. Sorption and bioavailability of heavy metals in long-term differently tilled soils amended with organic wastes. The Science of the Total Environment 313:227-234. Elliott, H.A., M. R. Liberati, and C. P. Huang. 1986. Competitive adsorption of heavy metals by soils. J. Environ. Qual. 15:214-219. Elliott, H. A., B. A. Dempsey, and P. J. Maille. 1990. Content and fractionation of heavy metals in water treatment sludge. J. Environ. Qual. 19:330-334. Ephraim, J., and J. A. Marinsky. 1986. A unified physicochemical description of protonation and organic acids. Environ. Sci. Tech. 20:367- 376. Gamble, D. S., M. Schnitzer, and I. Hoffman. 1970. Cu2+-fulvic acid chelating equilibrium in 0.1M KCl at 25℃. Can. J. Chem. 48:3197- 3204. Gee, G. W., and J. W. Bauder. 1986. Particle size analysis. In A. Klute et al.,(ed.) Methods of soil analysis. Part I. 2nd edtion Agronomy. p.404-408. ASA. Madison. WI. Gerhardt, A. 1993. Review of impact of heavy metals on stream invertebrates with special emphasis on acid conditions. Water, Air, and Soil Pollution 17:23-35. Ghosh, K., and M. Schnitzer. 1980. Macromolecular structures of humic substances. Soil Sci. 129:266-276. Han, F. X., and A. Banin. 1999. Long-term transformation and redistribution of potentially toxic heavy metals in arid-zone soils: II. incubation at the field capacity moisture content. Water, Air, and Soil Pollution 114:221-250. Harter, R.D. 1983. Effect of soil pH on adsorption of lead, copper, zinc, and nickel. Soil Sci. Soc.Am. J. 47:47-51. Hickey, M. G., and J. A. Kittrick. 1984. Chemical partitioning of cadmium, copper, nickel and zinc in soils and sediments containing high levels of heavy metals. J. Environ. Qual. 13:372-376. Hsu, J. H., and S. L. Lo. 2001. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environ. Pollut. 114:119-127. Inglezakis, V. J., A. A. Zorpas, M. D. Loizidou. 2003. Simultaneous removal of metals Cu2+, Fe3+ and Cr3+with anions SO42- and HPO42- using clinoptilolite. Microporous and Mesoporous Materials 61:167-171. Inglezakis, V. J., A. A. Zorpas, M. D. Loizidou, and H. P. Grigoropoulou. 2005. The effect of competitive cations and anions on ion exchange of heavy metals. Separation and Purification Technology 46:202-207. Jones, D. L. 1998. Organic acids in the rhizosphere-a critical review. Plant Soil 205:25-44. Jung, G. B., W. I. Kim, K. H. Moon, and I. S. Ryu. 2000. Fractionation and availability of heavy metals in paddy soils near abandoned mining areas. Kor. J. Environ. Agric. 19:319-323. Jung, H. B., S. T. Yun, B. Mayer,S. O. Kim, S. S. Park, and P. K. Lee. 2005. Transport and sediment–water partitioning of trace metals in acid mine drainage:an example from the abandoned Kwangyang Au–Ag mine area, South Korea. Environ. Geol. 48:437-449. Karaca, A. 2004. Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma 122:297-303. Kaschl, A., V. Römheld, and Y. Chen. 2002. The influence of soluble organic matter from municipal solid waste compost on trace metal leaching in calcareous soils. The Science of the Total Environment 291:45-57. Keeney, D. R., and D. W. Nelson. 1982. Nitrogen-Inorganic Form. In A. Klute et al., (ed.) Methods of soil analysis. Part I. 2nd edition. Agronomy. 9:643-693. ASA. SSA. Madison, WI. Knudsen , O, G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. In A. L. Page(ed.) Methods of soil analysis. Part II. 2nd edtion Agronomy. p.225-246. ASA. Madison. WI. Kuo, S., and B. L. Mcneal. 1984. Effect of pH and phosphate on cadmium sorptionby a hydrous ferric oxide. Soil Sci. Soc.Am. J. 48: 1040-1044. Li, Z., and L. M. Shuman. 1996. Extractability of zinc, cadmium and nickel in soils amended with EDTA. Soil Sci. 161:226-232. Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc.Am. J. 42:421-428. Ma, L. Q., and G. N. Rao. 1997. Chemical fractionation of Cd, Cu, Ni, and Zn in contaminated soils. J. Environ. Qual. 26:259-264. McBride, M. B. 1989. Reactions controlling heavy metal solubility in soils. Adv. Soil Sci. 10:1-56. Mellis, E. V., M. C. P. D. Cruz, and J. C. Casagrande. 2004. Nickel adsorption by soils in relation to pH, organic matter, and iron oxides. Sci. Agric. 61:190-195. Mench M., V. L. Didier, M. Loffler, A. Gomez, and P. Masson. 1994. A mimicked in-situremediation study of metal-contaminated soils with emphasis on cadmium and lead. J. Environ. Qual. 23: 58-63. Müller, M. M., V. Sundman, O. Soininvaara, and A. Meriläineu. 1988. Effect of composition on the release of nitrogen from agricultural plant materials decomposition in soil under field conditions. Biol. Fertil. Soils. 6:78-83. Murphy, J., and J. D. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta. 27:31-36. Murphy, E. M., J. M. Zachara, S. C. Smith, J. L. Phillips, and T. W. Wietsma. 1994. Interaction of hydrophobic organic compounds with mineral-bound humic acid. Environ. Sci. Technol. 28:1291-1299. Narwal, R. P., and B. R. Singh. 1998. Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water, Air, and Soil Pollution 103:405-421. Nelson, J. L., L. C. Boawn, and F. G. Viets. 1959. A method for assessing zinc status of soils using acid-extractable zinc and “titratable alkalinity” values. Soil Sci. 88:275-283. Nelson, D. W., and L. E. Sommers. 1982, Total carbon, organic carbon, and organic matter In A. L. Page(ed.) Methods of soil analysis. Part II. 2nd edtion Agronomy. p.539-579. ASA. Madison. WI. Nigam, R., S. Srivastava, S. Parkash, and M. M. Srivastava. 2001. Cadmium mobilisation and plant availability-the impact of organic acids commonly exuded from roots. Plant Soil 230:107-113. Petruzzelli, G., G. Guidi, and L. Lubrano. 1978. Organic matter as an influencing factor on copper and cadmium adsorption by soils. Water, Air, and Soil Pollution 9:263-269. Pocknee, S. and M. E. Summer. 1997. Cation and nitrogen contents of organic matter determine its soil liming potential. Soil. Sci. Soc. Am. J. 61:86-92. Rautaray, S. K., B. C. Ghosh, and B. N. Mittra. 2003. Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils. Bioresour. Technol. 90:275-283. Rhoades, J. D. 1982. Cation exchange capacity. In Page et al., (ed.) Methods of soil analysis. Part II. 2nd editon. p.149-157. Rivero, C., N. Senesi, J. Paolini, and V. D’Orazio. 1998. Characteristics of humic acids of some Venezuelan soils. Geoderma 81:227-239. Romkens, P. F., J. Bril, and W. Salomons. 1996. Interaction between Ca2+ and dissolved organic carbon: implications for metal mobilization. Applied Geochemistry 11:109-115. Römkens, P. F. A. M., and J. Dolfing. 1998. Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in soil solution samples. Environ. Sci. Technol. 32:363-369. Römkens, P. F. A. M., L. A. Bouwman, and G. T. Boon. 1999. Effect of plant growth on copper solubility and speciation in soil solution samples. Environ. Pollut. 106:315-321. Ross, S. M. 1994. Retention, transformation and mobility of toxic metals in soils. In: Ross, S.M. (ed.), Toxic Metals in Soil–Plant Systems. John Wiley and Sons Ltd., Chichester, p.63–152. Saeed, M., and R. L. Fox. 1979. Influence of phosphate fertilization on zinc adsorptionby tropical soils. Soil Sci. Soc. Am. J. 43: 683-686. Saeed, A., M. W. Akhter, and M. Iqbal. 2005. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology 45:25-31. Salomons, W., and U. Forstner. 1980. Trace metal analysis on polluted sediments. Part 2. Evaluation of environmental impact. Environ. Technol. Lett. 1:506-517. Sanders, J. R., S. P. McGrath, and T. M. Adams. 1986. Zinc, copper and nickel concentrations in ryegrass grown on sewage sludge-contaminated soils of different pH. J. Sci. Food Agr. 37:961-968. Schnitzer, M., and C. M. Preston. 1986. Analysis of humic acid by solution and solid-state carbon-13 nuclear magnetic resonance. Soil Sci. Soc. Am. J. 50:326-331. Smith, S. I., L. B. Young, and G. E. Miller. 1977. Evaluation of soil nitrogen mineralization potentials under modified field condition. Soil Sci. Soc. Am. J. 41:74-76. Stevenson, F. J. 1965. Gross chemical fractionation of organic matter. In black et al.,(eds). The analysis of soil part II. Chemical and microbiological properties. Amerian Society of Agronomy. p.1409-1421. Stevenson, F. J. 1986. Cycle of soil. Carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, Inc., New York. Stevenson, F.J., 1994. Humus chemistry, genesis, composition and reactions. John Wiley & Sons, Inc., New York. Stover, R. C., L. E. Sommer, and D. J. Silviera. 1976. Evaluation of metals in wastes water sludge. J. Water Pollution Control Fed. 48:2165-2175. Tessier, A., P. G. C. Campbell, and M. Bission. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844-851. Temminghof, E. J. M., S. E. A. T. M. Zee, and F. A. M. de Haan. 1997. Copper mobility in a copper contaminated sandy soil as affected by pH, and solid and dissolved organic matter. Environmental Science and Technology 31:1109-1115. Usman, A. R. A., Y. Kuzyakov, and K. Stahr. 2004. Dynamics of organic C mineralization and the mobile fraction of heavy metals in a calcareous soil incubated with organic wastes. Water, Air, and Soil Pollution 158: 401-418. Voroney, R. P., E. A. Paul, and D. W. Anderson. 1989. Decomposition of wheat straw and stabilization of microbial products. Can. J. Soil Sci. 69:63-77. Walker, D. J., R. Clemente, and M. P. Bernal. 2004. Contrasting effects of manure and compost on soil pH,heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215-224. Wang, Y. M., T. C. Chen, K. J. Yeh, and M. F. Shue. 2001. Stabilization of an elevated heavy metal contaminated site. J. Hazard. Mat. 88:63-74. Wasay, S. A., S. Barrington, and S. Tokunaga. 2001. Organic acids for the in situ remediation of soils polluted by heavy metals soil flushing in columns. Water, Air, and Soil Pollution 127:301-314. Yu, S., Z. L. He, C. Y. Huang, G. C. Chen, and D. V. Calvert. 2004. Copper fractionation and extractability in two contaminated variable charge soils. Geoderma 123:163-175. Yun, S. T., B. Y. Choi, and P. K. Lee. 2000. Distribution of heavy metals (Cr, Cu, Zn, Pb, Cd, As) in roadside sediments, Seoul metropolitan city, Korea. Environ. Technol. 21:989-1000.
摘要: 土壤酸洗法和翻土稀釋法為臺灣重金屬污染土壤的兩種主要整治方式,惟此兩種方式,均可能導致土壤肥力的降低,而影響後續作物生長。有機質材的施用已知除可增進土壤肥力外,亦具有降低重金屬生物有效性的功效,因此若欲改善土壤之重金屬污染程度及補充土壤肥力,施用有機質材或許為可行之策。惟有機質材在降低土壤中重金屬之生物有效性的能力可能因質材特性而異,誠有待評估之,此即為本研究之目的所在。 四種不同特性之有機質材(豆粕、泥炭、廢棄菇類太空包和禽畜糞堆肥)及有機鉗合劑(diethylene triamine pentaacetate, DTPA),以2%(W/W)等量及1%(W/W)碳量兩種添加量施入人為之銅和鎳污染土壤中,經培育1天、4和12週後,評估不同質材對土壤中銅或鎳生物有效性之影響。另進行管柱淋洗試驗,藉以瞭解質材之組成分對土壤剖面中銅或鎳移動性之影響,並評估對地下水污染的風險。試驗結果顯示,DTPA之施用會使土壤中銅或鎳生物有效性含量增加,促進其從土壤剖面之淋失,故明顯造成地下水源之污染。在銅污染土壤試驗中,施用禽畜糞堆肥可提升土壤pH值,並明顯增加土壤中有機物鍵結態銅含量,致使降低銅生物有效性的效果較顯著。在鎳污染土壤試驗中,大豆粕處理於培育4週時可顯著降低土壤中生物有效性鎳含量,但培育12週後顯見回升效應,致使改良效果較不穩定,因此以禽畜糞堆肥為改良質材較佳。在本試驗條件下,四種有機質材處理之淋出液中的銅或鎳含量並未超出地下水污染管制值,故造成污染地下水之風險不大,禽畜糞堆肥之施用對於降低土壤剖面中生物有效性銅或鎳含量的效果亦為最佳。藉由上述整體結果之評估,禽畜糞堆肥之施用較其他改良劑在改良土壤銅和鎳污染之改良效果較佳,且可增進土壤肥力。由此推知,品質佳且重金屬和鹽度低的禽畜糞堆肥實為改良重金屬污染土壤的最佳改良劑。
Acid washing and soil turnover and attenuation are two main means to remediate the heavy metal polluted soils in Taiwan, but both of them may reduce soil fertility status and effect the growth of the sequent crop. Organic amendments have been known to improve the fertility of soil as well as to reduce the bioavailability of heavy metal. Therefore, it is perhaps a feasible way to ameliorate the pollution of heavy metal and increase soil fertility by using organic amendments. However, the availability to reduce heavy metal bioavailability in the soil may vary with the characteristics of organic amendments, the evaluation should be done, and it is what the purpose of this study. Four kinds of organic amendments with different characteristics (soybean meal, peat, wasted mushroom culture medium and composted animal manure) and a organic chelator (diethylene triamine pentaacetate, DTPA) were selected in the study and were added into the artificial copper and nickel polluted soils at the rates of 2% dose (W/W) and 1% C (W/W). Samples incubated for 1 day, 4 and 12 weeks were evaluated for the effects of different amendments application on the bioavailability of copper or nickel in the soil. In addition, a column leaching experiment was conducted to investigate the influence of amendment composition on copper or nickel movement in the soil profile and evaluate the risk of groundwater pollution. Result showed that the application of DTPA increased the bioavailability of copper or nickel in the soil and induced the leaching out from the soil profile, hence might significantly cause the pollution of groundwater. In the experiment of copper polluted soil, the addition of composted animal manure increased soil pH and significantly increased the content of organic-bound copper, therefore, resulted in reducing copper bioavailability. In the experiment of nickel polluted soil, the application of soybean meal reduced the bioavailability of nickel in the soil significantly at 4 week incubation but rose again after 12 weeks incubation, and resulted in ameliorating unstable, therefore, composted animal manure had proved to be a better ameliorative amendment. Under the study condition, the copper or nickel content in leachate were below the allowable value of copper or nickel in groundwater with four organic amendments application, hence the risk of groundwater pollution was less, and the application of composted animal manure had the best result in reducing the bioavailability of copper or nickel in the soil profile. By the results of whole evaluation above, it is suggested that the application of composted animal manure has better capacity in ameliorating copper and nickel pollution and promoting soil fertility than other amendments. It is concluded that a high quality composted animal manure with low contents of salt and heavy metals is the best choose amendment for the amelioration of heavy metal polluted soils.
URI: http://hdl.handle.net/11455/28040
其他識別: U0005-2908200616351400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908200616351400
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.