Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28046
標題: 奈米零價鐵還原降解十溴聯苯醚之研究
Reduction of Decabrominated Diphenyl Ether by Nanoscale Zero-valent Iron
作者: 戴侑宗
Tai, Yu-Tsung
關鍵字: nanoscale zero-valent iron
奈米零價鐵
decabrominated diphenyl ether
十溴聯苯醚
出版社: 土壤環境科學系所
引用: Agrawal, A. and P.G. Tratnyek. 1996. Reduction of nitro aromatic compounds by zero-valent iron metal. Environ. Sci. Technol. 30:153-160. Bezares-Cruz, J., C. Jafvert, and I. Hua. 2004. Solar photodecomposition of decabromodiphenyl ether: products and quantum yield. Environ. Sci. Technol. 38: 4149–4156. Butt, C.M., M.L. Diamond, J. Truong, M.G. Ikonomou, and A.F.H. ter Schure. 2004. Spatial distribution of polybrominated diphenyl ethers in southern Ontario as measured in indoor and outdoor window organic films. Environ. Sci. Technol. 38:724-731. Chen, L.G., B.-X. Mai, X.H. Bi, S.J. Chen, X.-M. Wang, Y. Ran, X.J. Luo, G.Y. Sheng, J.-M. Fu, and E.Y. Zeng. 2006. Concentration levels, compositional profiles, and gas-particle partitioning of polybrominated diphenyl ethers in the atmosphere of an Urban city in south China. Environ. Sci. Technol. 40:1190-1196. Choi, J., S. Fujimaki, K. Kitamura, S. Hashimoto, H. Ito, and N. Suzuki. 2003. Polybrominated dibenzo-p-dioxins, dibenzofurans, and diphenyl ethers in Japanese human adipose tissue. Environ Sci Technol 37:817-821. de Wit, C. 2002. An overview of brominated flame retardants in the environment. Chemosphere. 46:583-624. de Wit, C., M. Alaee, and D. Muir. 2004. Brominated flame retardants in the Arctic – an overview of spatial and temporal trends. Organohalogen Compd. 66:3811-3816. Darnerud, P.O., G.S. Eriksen, T. Johannesson, P.B. Larsen, and M. Viluksela. 2001. Polybrominated diphenyl ethers: occurrence, dietary exposure and toxicology. Environ. Health Perspect. 109:49–68. Elliott, D.W. and W.X. Zhang. 2001. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environ. Sci. Technol. 35:4922 – 4926. Easton, M.D., D. Luszniak, and G.E. Von der. 2002. Preliminary examination of contaminant loadings in farmed salmon, wild salmon and commercial salmon feed. Chemosphere 46:1053-1074 Eriksson, J., N. Green, G. Marsh, and A. Bergman. 2004. Photochemical decomposition of 15 polybrominated diphenyl ether congeners in methanol/water. Environ. Sci. Technol. 38:3119-3125. Farrell, J., M. Kason, N. Melitas, and T. Li. 2000. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ. Sci. Technol. 34:514-521. Glavee, G.N., K.J. Klabunde, C.M. Sorensen, and G.C. Hadjipanayisld. 1955. Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media. formation of nanoscale Fe, FeB, and Fe2B powders. Inorg. Chem. 34:28-35. Gu B., T.J. Phelps, L. Liang, M.J. Dickey, Y. Roh, B.L. Kinsall, A.V. Palumbo, and G.K. Jacobs. 1999. Biogeochemical dynamics in zero-valent iron columns: implications for permeable reactive barriers. Environ. Sci. Technol. 33:2170 – 2177. Hites, R.A. 2004. Polybrominated diphenyl ethers in the environment and in people: A meta-analysis of concentrations, Environ. Sci. and Technol. 38: 945-956. Hernandez, R., M. Zappi, and C.H. Kuo. 2004. Chloride Effect on TNT Degradation by Zerovalent Iron or Zinc during Water Treatment. Environ. Sci. Technol. 38:5157-5163. Helleday, T., K.L. Tuominen, Å. Bergman, and D. Jenssen. 1999. Brominated flame retardants induce intragenic recombination in mammalian cells. Mutat. Res. 439:137–147. Ikonomou, M.G., S. Rayne, and R.F. Addison. 2002. Exponential increases of the brominated flame retardants, polybrominated diphenyl ethers, in the Canadian Arctic from 1981 to 2000. Environ. Sci. Technol. 36:1886-1892. Ikonomou, M.G., S. Rayne, M. Fischer, M.P. Fernandez, and W. Cretney. 2002. Occurrence and congener profiles of polybrominated diphenyl ethers (PBDEs) in environmental samples from coastal British Columbia, Canada. Chemosphere. 46: 649-663. Johnson-Restrepo, B., K. Kannan, D.P. Rapaport, and B.D. Rodan. 2005. Polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York. Environ. Sci. Technol. 39:5177-51. Jaspers , V.L.B., A. Covaci, S. Voorspoels, T. Dauwe, M. Eens, and P. Schepens. 2006. Brominated flame retardants and organochlorine pollutants in aquatic and terrestrial predatory birds of Belgium: Levels, patterns, tissue distribution and condition factors. Environ. Pollution. 139:340-352. Keum, Y.S., and Q.X. Li. 2005. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environ. Sci. Technol. 39:2280-2286. Klausen, J., P.J. Vikesland, T. Kohn, D.R. Burris, W.P. Ball, and A.L. Roberts. 2003. Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds. Environ. Sci. Technol. 37:1208-1218. Lee, R.G.M., G.O. Thomas, and K.C. Jones. 2004. PBDEs in the atmosphere of three locations in western Europe. Environ. Sci. Technol. 38:699-706. Lien, H.L. and W.X. Zhang. 2001. Nanoscale iron particles for complete reduction of chlorinated ethenes. Coll. Sur. A 191:97-105. Liou, Y.H., S.L. Lo, C.J. Lin, C.Y. Hu, W.H. Kuan, and S.C. Weng. 2005. Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: effects of H2-reducing pretreatment and copper deposition. Environ. Sci. Technol. 39: 9643-9648. Liu, Y., S.A. Majetich, R.D Tilton, D.S. Sholl, and G.V. Lowry. 2005. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 39:1338-1345. Lowry, G.V., and K.M. Johnson. 2004. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. 38: 5208-5216. Leisewitz, A., H. Kruse, and E. Schramm. 2001. Substituting environmentally relevant flame retardants: assessment fundamentals: results and summary overview. German Federal Environmental Agency. MacDonald, T.A. 2002. A perspective on the potential health risks of PBDEs Chemosphere 46:745-755. Matheson, L.J. and P.G. Tratnyek, 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28:2045-2053. Meerts, I.A.T.M., E.A.C. Luijks, G. Marsh, E. Jakobsson, A. Bergman, and A. Brouwer. 1998. Interaction of polybrominated diphenyl ether metabolites (PBDE-OH) with human transthyretin in vitro. Organohalogen Compd. 37:147–150. Meerts I.A., J.J. van Zanden, E.A. Luijks, I. Leeuwen-Bol, G.Marsh, E. Jakobsson, and A. Bergman. 2000. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci 56:95-104. Masciangioli, T. and W.X. Zhang, 2003. Environmental technologies at the nanoscale. Environ. Sci. Tech. 102A-108A. Örn, U. and E. Klasson-Wehler. 1998. Metabolism of 2,2´,4,4´ -tetrabromodiphenyl ether in rat and mouse. Xenobiotica 28:199-211. Örn, U., L. Eriksson, E. Jakobsson, and Å Bergman. 1996. Synthesis and characterization of polybrominated diphenyl ethers–unlabelled and radiolabelled tetra-, penta- and hexabromodiphenyl ethers. Acta Chem. Scand. 50: 802–807. O''Loughlin, E.J., K.M. Kemner, and D.R. Burris. 2003. Effects of AgI, AuIII, and CuII on the reductive dechlorination of carbon tetrachloride by green rust. Environ. Sci. Technol. 37:2905-2912. Peele, C. 2004. Washington State PBDE chemical action plan: Interim Plan. December 31, 2004. Powell, R.M., R.W. Puls, S.K. Hightower, and D.A. Sabatini. 1995.Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ. Sci. Technol. 29:1913-1922. Phillips, D.H., B. Gu, D.B. Watson, Y. Roh, L. Liang, and S.Y. Lee. 2000. Performance evaluation of a zerovalent iron reactive barrier: mineralogical characterizations. Environ. Sci. Technol. 34:4169–4176. Rajagopal, V.K. and D.R. Burris. 1999. Reduction of 1,2-diomoethane in the presence of zero-valent iron. Enviro. Toxicol. Chem. 18:1779–1782. Strandberg, B. N.G. Dodder, I. Basu, and R.A. Hites. 2001. Concentrations and spatial variations of polybrominated diphenyl ethers and ther organohalogen compounds in Great Lakes air. Environ. Sci. Technol. 35:1078–1083. Sjodin, A., R.S. Jones, J.F. Focant, C. Lapeza, R.Y. Wang, E.E. McGahee, Y. Zhang, W.E. Turner, B. Slazyk, L.L. Needham, and D.G. Patterson. 2004. Retrospective time-trend study of polybrominated diphenyl ether and polybrominated and polychlorinated biphenyl levels in human serum from the United States. Environ. Health Perspect. 112: 654-658. Schecter, A., M. Pavuk, O. Papke, J.J. Ryan, L. Birnbaum, and R. Rosen. 2003. Polybrominated diphenyl ethers (PBDEs) in U.S. mothers'' milk. Environ. Health Perspect. 111: 1723-1729. Schecter, A., O. Päpke, K.C. Tung, D. Staskal, and L. Birnbaum. 2004. Polybrominated diphenyl ethers contamination of United States food. Environ. Sci. Technol. 38:5306-5311. Scherer, M.M., J.C. Westall, M. Ziomek-Moroz, and P.G. Tratnyek. 1997. Kinetics of carbon tetrachloride reduction at an oxide-free iron electrode . Environ. Sci. Technol. 31:2385 -2391 Stumm, W. and J.J. Morgan. 1981. Aquatic Chemistry. New York: Wiley. Su, C. and R.W. Puls. 2001 Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ. Sci. Technol. 35: 1487 -1492. Su, C. and R.W. Puls. 1999. Kinetics of trichloroethene reduction by zerovalent iron and tin: pretreatment effect, apparent activation energy, and intermediate products. Environ. Sci. Technol. 33:163-168. Su, C. and D.L. Suarez. 1997. In situ infrared speciation of adsorbed carbonate on aluminum and iron oxides. Clays and Clay Minerals. 45: 814-825. Söderström, G., U. Sellström, C.A. de Wit, and M. Tysklind. 2004. Photolytic debromination of decabromodiphenyl ether (BDE 209). Environ. Sci. Technol. 38:127-132. van Bavel, B., M. Dam, M. Tysklind and G. Lindström. 2001. Levels of polybrominated diphenyl ethers in marine mammals. Organohalogen Compounds, 52:99-103. Wang, C.B. and W.X. Zhang. 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31:2154-2156. Wilford, B.H., T. Harner, J. Zhu, M. Shoeib, and K.C. Jones. 2004. Passive sampling survey of polybrominated diphenyl ether flame retardants in indoor and outdoor air in Ottawa, Canada: implications for sources and exposure. Environ. Sci. Technol. 38:5312-5318. Zhang, W.X. 2003. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research 5: 323–332. Zhang, W.X., C.B. Wang, and H.L. Lien. 1998. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 40:387-395. 陳世裕,1996,土壤揮發性有機物質傳及吸附行為之研究,國立台灣大學環境工程學研究所博士論文。
摘要: Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in inflammables to ensure the life and property safety by decreasing the risk of fire accidents. PBDEs have been detected in human, wildlife, marine, and freshwater sediments. PBDEs become important environmental organic pollutants but the degradation studies of PBDEs in the environment are still limited. In this study, the chemical debromination of DBDE (Decabrominated diphenyl ether) by zero-valent iron (ZVI) was studied. A scanning electron microscopy and a photon correlation spectroscopy were performed to characterize the surface properties and particle size of nanoscale ZVI, respectively. The nanoscale ZVI existed as spherical particles averaging 20~50 nm in diameter and its surface area was 52.0 m2/g. Within 40 minutes over 80 % of DBDE was transformed into lower bromo congeners by nanoscale ZVI under ambient conditions. During the initial reaction period (< 20 minutes), nonabromo BDEs were the most abundant products but hexa to heptabromo congeners were dominant after 130 minutes. The effects of particle sizes of zero-valent iron, temperature (5, 25, and 45 ℃), pH value (5, 7, 8, and 10), and the existence of inorganic anions (Cl-, HCO3-, and H2PO4-) and cations (Na+, Cu2+, and Fe3+) in solutions on the dehalogenation were evaluated. For nanoscale ZVI, the pseudo-first-order DBDE debromination rate constant (0.0583 min-1) was significantly faster than that of microscale ZVI (0.0077 min-1) due to the higher surface area and reactivity of nanoscale iron particles. The debromination rate constants of DBDE increased with the decreasing of aqueous pH values and with the increase of temperature. For anions, a high concentration of chloride ions enhanced the debromination of DBDE, whereas phosphate and carbonate ions hindered the debromination process. The cation species also affected the reduction reaction by ZVI except Na+. The debromination rate constants of DBDE increased in the presence of Cu2+ and decreased in the presence of Fe3+. Lugang and Longgang soil solutions and Lugang and Longgang soils were chose as soil systems to evaluate the debromination rate of DBDE by nanoscale ZVI. The reduction rates of DBDE by nanoscale ZVI in soil solutions and soils were slower than those in pure water. Comparing the reaction rates between Longgang and Lugang soils, the reduction rate of DBDE in Longgang soil was faster than that in Lugang soil probably due to the lower pH of Loggang soil. The debromination pathway of DBDE by nanoscale ZVI was proposed via the analysis of byproducts. Nanoscale ZVI has the high potential values to remediate PBDEs in the environment.
多溴聯苯醚過去廣泛應用在易燃的工業製品上以降低其起火燃燒的可能性及保障人類生命財產的安全。過去已在人體,野生動物,自然水體以及底泥中檢測到多溴聯苯醚的存在,且其在環境中以及人類食物中的濃度都有隨時間上升的趨勢,而歐盟因此自2003年起就全面禁止了部份多溴聯苯醚物種的使用。 本研究以化學還原處理的方式來對十溴聯苯醚進行試驗。本實驗以化學還原法所自行合成之奈米零價鐵作為反應物,經掃描式電子顯微鏡(scanning electron microscopy)以及雷射粒徑分析儀(photon correlation spectroscopy)測定後得知其直徑介於20~50 nm。經BET比表面積分析得知其比表面積為52.0 m2/g。本實驗的結果顯示,DBDE經奈米零價鐵處理40分鐘後就超過80 % 的降解效率。反應初期(<20分鐘),含九溴的物種為主要的產物,而六溴以及七溴的產物在零價鐵反應130分鐘後已逐漸取代九溴的物種。本實驗亦探討零價鐵粒徑大小的影響、污染物濃度效應、溫渡(5、25、以及50℃)、以及pH值(pH 5、7、8以及pH 10)對奈米零價鐵還原處理DBDE之影響。結果顯示,由於奈米零價鐵的顆粒小且比表面積大,有助於還原反應的進行,因此其反應速率常數(0.0583 min-1)較為微米零價鐵(0.0077 min-1)來的大。結果亦指出奈米零價鐵的反應過程中會隨著系統pH值的下降其反應速率有上升的趨勢;對於溫度而言,提高系統反應溫度有助於加速反應。 本實驗選用各三種不同的陰離子(Cl-, HCO3-, and H2PO4-)以及陽離子(Na+, Cu2+, and Fe3+),藉以探討溶液中離子的效應。就陰離子部份,結果顯示高濃度的氯離子(10 mM)有助於加速奈米零價鐵還原降解DBDE的反應,反觀磷酸根以及碳酸氫根則使得反應過程受到阻礙。陽離子的部份除了鈉離子對於零價鐵的反應性沒有顯著的影響外,二價銅離子以及三價鐵離子分別對於奈米零價鐵有促進以及抑制的作用。本實驗亦以鹿港系與龍岡系之土壤溶液以及稀泥漿狀之土壤作為反應進行的系統。結果顯示不論是土壤溶液或是土壤,奈米零價鐵在其中的反應速率都較單純水溶液相來的差,且龍岡系土壤中奈米零價鐵對DBDE之降解反應速率較鹿港系土壤來的快。本實驗亦利用氣相層析儀分析產物並試圖推測出DBDE的降解反應的過程以釐清產物間彼此間的關係。
URI: http://hdl.handle.net/11455/28046
其他識別: U0005-3008200612434300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3008200612434300
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.