請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/28092
標題: Photodegradation and Biodegradation of Polybrominated Diphenyl Ethers (PBDEs)
多溴聯苯醚之光降解與生物降解研究
作者: Wang, Chun-Kang
王淳剛
關鍵字: polybrominated Diphenyl Ethers
多溴聯苯醚
photodegradation
biodegradation
光降解
生物降解
出版社: 土壤環境科學系所
引用: 王淳剛,辜瀚平及胡慶祥,2004,土壤中MTBE生物降解及菌種篩選,第十六屆環工年會第二屆土壤與地下水研討會論文集。 王有盛,2003,促進厭氧生物處理四氯乙烯代謝方式之探討,國立中興大學環境工程系碩士論文。 公告毒性化學物質一覽表,1995,環保署網站http://www.epa.gov.tw/attachment_file/941230表一.doc 胡慶祥,王淳剛及辜瀚平,2005,未污染土壤原生菌群降解MTBE之探討,第十屆海峽兩岸環境保護學術研討會論文集。 洪世淇,2003,奈米科技通往商業化的捷徑光觸媒的應用,化工資訊月刊第16卷,277-281。 洪崇軒及洪佑良,2005,一溴二苯醚光催化氧化分解反應特性研究,中華民國環境工程學會第二十二屆空氣污染控制技術研討會。 楊茱芳,2003,五氯酚分解菌之分離與及其生理特性研究,國立中興大學環境工程系碩士論文。 Abraham, M. H., 1993. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical Processes. Chem. Soc. Rev. 22:73-83. Ahn, M. Y., T. R. Filley, C. T. Jafvert, L. H. I. Nies, and J. Bezares-Cruz, 2006. Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxide, and sediment, Environ. Sci. Technol. 40:215-220. Alan, F., and Q. Brid, 2002. The enhancement of 2-chlorophenol degradation by a mixed microbial community when augmented with Pseudomonas putida CP1. Water Research 36:2443-2450. Augugliaro, V., G. Marcí, and L. Palmisano, 1993. Kineics of heterogeneous photocatalytic decomposition of monuron over anatase titanium dioxide. Res. Chem. Intermed. 19:839-853. Baxter, R. A., P. E. Gilbert, R. A. Lidgett, J. H. Mainprize, and H. A. Vodden, 1975. The degradation of polychlorinated biphenyls by microorganisms. Sci. Total Environ. 4:53-61. Benvinakatti, B.G., and H.Z. Ninnebar, 1992. Degradation of biphenyl by a Micrococcus species. Appl. Microbiol Biotechnol 38:273-275. Bieniek, D., M. Bahadir, and F. Kortte, 1989. Formation of heterocyclic hazardous compounds by thermal degradation of organic compounds. Heterocyles 28:719-722. Bunge, M., L. Adrian, A. Kraus, M. Opel, W. G. Lorenz, J. R. Andreesen, H. Görlsch, and U. Lechner, 2003, Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium, Letters to nature 23:357-360. Benitez, F. J., J. L. Acero, F. J. Real, and J. García, 2003. Kinetics of photodegradation and ozonation of pentachlorophenol. Chemosphere 51:651–662 Bezares-Cruz, J., T. J. Chad, and I. Hua, 2004. Solar photodecomposition of decabromodiphenyl ether: Products and quantum yield. Environ. Sci. Technol. 38:4149-4156. Bruckman, P., K. Wackhe, M Ball, A. Lis, and O. Papke, 1998. Degassing of PBBDD PBDFs from a television set - PBBDD PBDF levels after a fire in a stock house - two case studies. In: Proceedings Workshop on Brominated flame retardants, Skoklester, Sweden. Chiang, K., T.M. Lim, T. Leslie, and C.C. Lee, 2004. Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2. Applied Catalysis A: General, 261:225-237. Czaplicka, M., and A. Czaplicki, 2006. Photodegradation of 2,3,4,5- tetrachlorophenol in water/methanol mixture. J. Photochem. Photobiol. A: Chem. 178:90-97. Darnerud, P. O., and S. Risberg, 2006. Tissue localisation of tetra-and pentabro-modiphenyl ether congeners (BDE-47,-85 and -99) in perinatal and adult C57BL mice. Chemosphere 62:485-493. De Boer, J., P. Wester, H. J. C. Klamer, W. E. Lewis, and J. P. Boon, 1998. Do flame retardants threaten ocean life? Nature 394:28-29. Daneshvar, N., D. Salari, and A.R. Khataee, 2003. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol. A: Chem. 157:111-116. Eriksson, J., N. Green, G. Marsh, and Å. Bergman, 2004. Photochemical decomposition of 15 polybrominated diphenyl ether congeners in methanol/water. Environ. Sci. Technol. 38:3119-3125. Fish, K. M., and J. M. Principe, 1994. Biotransformations of Arochlor 1242 in Hudson River test tube microcosms. Appl. Environ. Microbiol. 60:4289–96. Fu, Q. S., A. L. Barkovskii, and P. Adriaens, 1999. Reductive transformation of dioxins: an assessment of the contribution of dissolved organic matter to dechlorination reactions. Environ. Sci. Technol. 33:3837-3842. Gerecke, A. C., P. C. Hartmann, N. V. Heeb, H. E. Kohler, W. Giger, P. Schmid, M. Zennegg, and M. Kohler, 2005. Anaerobic degradation of decabromodiphenyl ether. Environ. Sci. Technol. 39:1078-1083. Gugumus, F., 2000. Thermolysis of polyethylene hydroperoxides in the melt 1. Experimental kinetics of hydroperoxide decomposition. Polym. Degra. Stab. 69:23-34. Hooper, K., and T. A. McDonald, 2000. The PBDEs: an emerging environmental challenge and another reason for breast milk monitoring programs. Environ. Health. Perspect. 108:387-392. Hakk, H., G. L. Larsen, and E. Klasson-Wehler, 2002. Tissue disposition, excretion, and metabolism of 2,2’,4,4’,5-pentabromodiphenyl ether (BDE-99) in male Sprague–Dawley rats. Xenobiotica 32:369-82. Hakk, H., and R. J. Letcher, 2003. Metabolism in the toxicokinetics and fate of brominated flame retardants—a review. Environ. Inter. 29:801- 828 Hua, I., N. Kang, T. J. Chad, and J. Fa´brega-Duque, 2003. Heterogeneous photochemical reactions of decabromodiphenyl ether. Environ. Toxicol. Chem. 22:798-804. Hoffmann, M. R., S. T. Martin, W. Choi, and D. W. Bahnemann, 1995. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 20: 69-95. Hale, R. C., M. Alaee, J.B. Manchester-Neesvig, H.M. Stapleton, and M.G. Ikonomou, 2003. Polybrominated diphenyl ether flame retardants in the North American environment. Environ. Inter. 29: 771-779. He, J. K. R. Robrock, and L. Alvarez-Cohen, 2006. Microbial Reductive Debromination of Polybrominated Diphenyl Ethers (PBDEs). Environ. Sci. Technol. 40:4429-4434. Hung, L. S. and L. L.Ingram, 1990. Effect of solvents on the photodegradation rates of octachlorodibenzo-p-dioxin. Bull. Environ. Contam. Toxicol. 44:380-386. Isabel, S., Valera J. L., M. L. Marina, and F. Laborda. 2003. Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium(Janibacter sp.). Chemosphere 53:609-618. Jansson, B., L. Asplund, and O. Olsson, 1987. Brominated fire retardants: ubiquitous environmental pollutants. Chemosphere 16:2343-2349. Jones, C., J. Silverman, and M. Al-Sheikhly, 2003. Dechlorination of polychlorinated biphenyls in industrial transformer oil by radiolytic and photolytic methods. Environ. Sci. Technol. 37:5773-5777. Komancová, M., I. Jurćová, L. Kochánková, and J. Burkhard. 2003. Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2. Chemosphere 50:537-543. Keum, Y., and Q. X.Li, 2005. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environ. Sci. Technol. 39:2280-2286 Lee, J. M., M. S. Kim, and B. W. Kim, 2004. Photodegradation of bisphenol-Awith TiO2 immobilized on the glass tubes including the UV light lamps. Water Research 38:3605-3613. Leahy, J. G., K. D. Tracy, and M. H. Eley, 2003. Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria FEMS Microbiol. Ecol. 43:271-276. Leahy, J. G., and R. H.Olsen, 1997. Kinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrate. FEMS Microbiol. Ecol. 23:23-30. Li, Y. S., 2005. Reductive debromination of polybrominated diphenyl ethers by zerovalent ironl. Environ. Sci. Technol. 39:2280-2286. Lide, D. R., 1995. CRC Hanbook of chemistry and physics, CRC press, Boca Raton, FL. Linsebigler, A L., G. Lu, and J. T. Yates, 1995. Photocatalysis on TiO2 surfaces: principles, Mechanisms, and selected results. Chem. Rev. 95:735-738 Lowry, G., and K. Johnson, 2004. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. 38:5208-5216. Macnaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White, 199l. Microbial population changes during bioremediationof an experimental oil spill. Appl. Environ. Microbiol. 65:3566-3574. Meerts, I. A. T. M., J. J. van Zanden, E. A. C. Luijks, I. van Leeuwen-Bol, G. Marsh, E. Jakobsson, A. A. Bergman, and A. Brouwer, 2000. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol. Sci. 56:95-104. Mörck, A., and E. Klasson-Wehler, 2001. Metabolism of decabromodiphenyl ether (BDE-209) in the rat. Organohalog. Compd. 52:9-12. Meironyte, G. D., 2002. Organohalogen contaminants in humans with emphasis on polybrominated diphenyl ethers. PhD Thesis. Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. Meironyte, D., K. Norén, and Å. Bergman, 1999. Analysis of polybrominated Diphenyl ethers in Swedish human milk. A time-related trend study, 1972- 1997. J. Toxicol. Environ. Health. 58:329-41. Moreels, D., L. Bastiaens, F. Ollevier, R. Merckx, L. Diels, and D. Springae, 2004. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. FEMS Microbiol. Ecol. 49:121-128. Moeini-Nombel, L., and S. Matsuzawa, 1998. Effect of solvents and a substituent group on photooxidation of fluorine. J. Photochem. Photobiol. A: Chem. 119:15-23. Noren, K. and D. Meironyte, 2000. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20-30 years. Chemosphere 40:1111-1123. Norris, J. M., R.J. Kociba, B.A. Schwetz, J.Q. Rose, C.G. Humiston, and G.L. Jewett, 1975. Toxicology of octabromobiphenyl and decabromodiphenyl oxide. Environ. Health Perspect. 11:153- 61. Nagaveni, K., G. Sivalingam, M. S. Hegde, and G. Madras. 2004. Photocatalytic degradation of organic compounds over combustion-synthesized Nano-TiO2. Environ. Sci. Technol. 38:1600-1604. Nováková, H., M. Vosahlková, J. Pazlarová, M. Macková, J. Burkhard, and K. Demnerová, 2002. PCB metabolism by Pseudomonas sp. P2. Int. Biodeterio. Biodegrad. 50:47-54. Nielsen, A. T., W. T. Liu, C. Filipe, L. Grady, S. Molin, and D. A. Stahl, 1999. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl. Environ. Microbiol. 65:1251-1258. Nomiyama, L., T. Tanizaki, H. Ishibashi, K. Arizono, and R. Shinohara, 2005. Production mechanism of hydroxylated PCBs by oxidative degradation of selected PCBs using TiO2 in water and estrogenic activity of their intermediates. Environ. Sci. Technol. 39:8762-8769. Ohko, Y., I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Y. Kunota, and A. Fujishima, 2001. Degradation of bisphenol A in water by TiO2 photocatalyst. Environ. Sci. Technol. 35, 2365-2368. Örn, U., and E. Klasson-Wehler, 1998. Metabolism of 2, 2, 4, 4’- tetrabromodiphenyl ether in rat and mouse. Xenobiotica 28:199-211. Park, S. E., H. Joo, and J. W. Kang, 2003. Photodegradation of methyl tertiary butyl ether (MTBE) vapor with immobilized titanium dioxide. Sol. Ener. Mater. Sol. Cel. 80:73-84. Pathirana, H. M. K. K., and R. A. Maithreepala, 1997. Photodegradation of 3,4-dichloropropionamide in aqueous TiO2 suspensions. J. Photochem. PhotoBiol. A: Chem. 102:273-277. Pijnenburg, A. M., J. W. Evert, J. de Boer, and J.P. Boon. 1995. Polybrominated biphenyl and biphenyl ether flame retardants: analysis toxicity and environmental occurrence. Rev. Environ. Contam. Toxical. 141:1-26. Rideh, L., A. Wehrer, D. Ronze, and A. Zoulalian, 1997. Photocatalytic degradation of 2-chlorophenol in TiO2 aqueous suspension: modeling of reaction rate. Ind. Eng. Chem. Res. 36:4712-4718. Rahman, F., K. H. Langford, M. D. Scrimshaw, and J. N. Lester, 2001. Polybrominated diphenyl ether PBDE flame Retardants. Sci. Total Environ. 275:1-17. Renner, R., 2000. Canada contemplates curbs on stain repellents. Environ. Sci. Technol. 34:1092-1093. Raquel, F., P. Nogueira, A. G. Trovó, and D. F. Modé, 2002. Solar photodegradation of dichloroacetic acid and 2, 4 -dichlorophenol using an enhanced photo-Fenton process. Chemosphere 48:385–391. Rayne, S., M. G. Ikonomou, and M. D. Whale, 2003. Anaerobic microbial and photochemical degradation of 4, 40 -dibromodiphenyl ether. Water Research 37:551-560 Sanchez-Prado, L., M. Llompart, M. Lores, C. Garcia-Jares, and R. Cela, 2005. Investigation of photodegradation products generated after UV-irradiation of five polybrominated diphenyl ethers using photo solid-phase microextraction, J. Chrom. A. 1071:85-92. Schmidt, S., R.. M. Wittich, D. Erdmann, H. Wilkes, W. Francke, and P. Fortnagel. 1992. Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl. Environ. Microbiol. 58:2744-2750. Schmidt, S., P. Fortnagel, and R. M. Witftichi, 1993. Biodegradation and Transformation of 4,4''- and 2,4-Dihalodiphenyl Ethers by Sphingomonas sp. Strain SS33, Appl. Environ. Microbiol. 59:3931-3933. Scherer, M. M., B. A. Balko, D. A. Gallagher, and P. G. Trantnyek, 1998. Correlation analysis of rate constants for dechlorination by zerovalent iron. Environ. Sci. Technol. 32:3026-3033. Sherman, W. V., 1966. Photosensitized chain reactions in alkaline solution of nitrous oxide in 2-propanol. Ame. Chem. Soci. 15:1302-1307. Sellström, U., G. Söderström, C. A. de Wit, and M. Tysklind, 1998. Photolytic debromination of decabromodiphenyl ether (DeBDE). Organohalogen Compd. 35:447-450. She, J., M. Petreas, J. Winkler, P. Visita, M. McKinney, and D. Kopec, 2001. PBDEs in the San Francisco bay area: measurements in harbor seal blubber and human breast adipose tissue. Chemosphere 46:697-707. Sivalingam, G., K. Nagaveni, M.S. Hegde, and G. Madras, 2003. Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2 Appl. Catal. Environ. 45:23-38. Sjodin, A., D. G. Patterson, and A. Bergman, 2003. A review on human exposure to brominated flame retardants – particularly polybrominated diphenyl ethers. Environ. Inter 29:829-839. Sjödin, A, L. Hagmar, E. Klasson-Wehler, J. Björk, and Å. Bergman, 2000. Influence of the consumption of fatty Baltic Sea fish on plasma levels of halogenated environmental contaminants in Latvian and Swedish men. Environ. Health Perspect. 108:1035-41. Sjödin, A., K. Hagmar, E. Klasson-Wehler, K. Kronholm-Diab, E. Jakobsson, and A. A. Bergman, 1999. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers. Environ. Health Perspect. 107:643-648. Söderström, G., U. Sellström, C. A. de Wit, and M. Tysklind, 2004. Photolytic debromination of decabromodiphenyl ether (BDE 209). Environ. Sci. Technol. 38:127-132. Sylvestre, M., and M. Sandossi, 1994. Selection of enhanced PCB-degrading bacterial strains for bioremediation: consideration of branching pathways. In: Chaudhry GR, editor. Biological degradation and remediation of toxic chemicals. New York: Chapman and Hall. Trojanowicz, M., A. Chudziak, and T. Bryl-Sandelewska, 1997. Use of reversed-phase HPLC with solid-phase extraction for monitoring of radiolytic degradation of chlorophenols for environmental protection. J. Radioan. Nucl. Chem. 224:131-136. Torniainen, K., S. Tammilehto, and V. Ulvi, 1996. The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin. Int. J. Pharm. 132:53-61. USEPA, 2001. A Citizen’s Guide to chemical dehalogenation. EPA http://www.clu-in.org/download/citizens/chem-dehalo.pdf Watanabe, I. and R. Tatsukawa, 1989. Anthropogenic brominated aromatics in the Japanese environment. Proceedings, workshop on brominated aromatic flame retardants. Solna, Sweden. Swedish National Chemicals Inspectorate. 63-71. WHO, 1994. Environmental Health Criteria 162. Brominated diphenyl ethers. Geneva, Switzerland: International Program on Chemical Safety. WHO. Yak, H. K., Q. Lang, and C. M. Wai, 2000. Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlorination by zerovalent iron in subcritical water. Environ. Sci. Technol. 34:2792-2798. Young, S. K., and Q. Li. 2005. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environ. Sci. Technol. 39:2280-2286.
摘要: Polybrominated diphenyl ethers (PBDEs) are widely used in polymers for a lot of plastic and electronic product to be flame retardant additives. In resent years, PBDEs have been found to bioaccumulate in both aquatic and terrestrial ecosystems. The large commercial PBDE product in use is decabrominated diphenyl ether (BDE-209). They have been detected frequently in waters, sediments, sludge, fish, and mammals. Reaction and degradation of PBDEs in the environment are not well known. The objectives of this study are to perform the solar and UV-lamp degradation experiments of PBDEs, to understand the photodegradation pathway and kinetics of PBDEs in solvents and aqueous phase, and to evaluate the biodegradation of PBDEs in aerobic and anaerobic conditions. The decay kinetics of BDE-209 was faster in UV-B range than that in UV-A range due to the absorption properties of BDE-209. Higher intensities will produce higher degradation rates of BDE-209. Photodegradation conversion of BDE-209 decreases with the increasing initial concentration of BDE-209. Photodegradation rates of high brominated BDEs are faster than low brominated BDE congeners. The reaction rate of BDE-209 was dependent on the solvent in such a way that the photodegradation rate in hexane > toluene > ethyl acetate > acetone and methanol. Nanoscale titanium dioxide particles enhanced the debromination rates of BDE-209 in aqueous phase and the increase of loading amount of nanoscale titanium dioxide particles increased the debromination efficiency. Sequential debromination was observed, suggesting BDE-209 stepwise loss bromine to form low brominated BDEs and diphenyl ether. Dibenzofuran was produced and identified by GC/MS to suggest another mechanism of the intramolecular cyclization from the hemolytic dissociation of the C-Br bond. The order of photodegradation of BDE-209 occurred at para > meta > ortho positions. In biodegradation study, debromination of 4-monobrominated diphenyl ether (4-BDE) is investigated with aerobic and anaerobic sludges. This also is the first report demonstrating microbaially mediated biodegradation of 4-BDE under aerobic conditions. 4-BDE biodegraded within 11 days by 68 % and 83 % with toluene and diphenyl ether, respectively, as second carbon sources to stimulate biodegradation. Anaerobic biodegradation of 4-BDE remove 35 % within 24 days by Taichung distillery's sludge and remove 82 % within 5 days by PCE domestication sludge. Ten pure culture bacteria in isolation from aerobic sludge, to further study their biodegradation capacity. Differences in the bacterial community composition between these aerobic and anaerobic samples were confirmed based on denaturing gradient gel electrophoresis (DGGE) patterns of PCR-amplified 16S rDNA gene fragments.
多溴聯苯醚 (Polybrominated diphenyl ethers, PBDEs)是常見的溴化阻燃劑,許多塑膠製品或電子產品都添加入PBDEs等阻燃劑,近年來發現PBDEs會在水生及陸生生態系統中造成生物累積,而大部分在工業上使用的PBDEs主要是十溴聯苯醚(decabrominated diphenyl ether, BDE-209),目前常在水體、底泥、魚體及哺乳動物中皆有檢測出PBDEs之案例。 環境中PBDEs之反應及代謝降解的機制尚未完全清楚。本研究光降解實驗是使用日光及UV燈光,以探討PBDEs在溶劑下與水溶液中的光降解速率與途徑,研究結果指出:十溴聯苯醚(BDE-209)在UV-B下其降解速率比UV-A還快,而BDE-209在低波長下有較大之吸光度,此現象亦反映降解速率結果;BDE-209隨著日光強度的增加其降解速率有提高的趨勢;BDE-209光降解速率隨著初始濃度的增加而衰減;高溴數PBDEs同類物其降解速率比低溴數同類物來得快;BDE-209在不同溶劑下之光降解速率比較為正己烷> 甲苯 > 乙酸乙酯 > 丙酮及甲醇;在水溶液中添加奈米二氧化鈦以間接性光降解BDE-209比直接光照降解還要迅速,並隨著二氧化鈦之濃度增加,其脫溴反應速率有明顯增加;降解途徑的探討中PBDEs的光降解是以逐步的脫溴反應形成低溴數的同類物,再進一步生成聯苯醚,而偵測到二苯駢夫喃可得知光降解過程C-Br分離後其分子內環化為另一個降解途徑,BDE-209其光降解脫溴的容易程度與其溴所在位置有關,主要是para > meta > ortho。 本研究之生物降解部分,以酒廠之好氧及厭氧活性污泥及經PCE馴化之厭氧活性污泥能有效降解一溴聯苯醚 (4-mono-BDE, 4-BDE),結果證實了在好氧情況下微生物降解PBDEs的可行性,而補助碳源的添加有助於提高降解速率,在甲苯或聯苯醚存在的情況下,11天內4-BDE分別降解了68 %及83 %。酒廠厭氧活性污泥於24天將4-BDE降解了35 %,而經PCE馴化之厭氧活性污泥在五天內即可將4-BDE降解了82 %。將降解過後之好氧污泥進行純菌的篩選,並進一步確認其降解能力,而污泥降解部分利用16S rDNA片段以PCR放大後使用變性梯度凝膠電泳(Denaturing Gradient Gel Electrophoresis, DGGE)了解好氧與厭氧生物降解過程中菌相之消長變化情形。
URI: http://hdl.handle.net/11455/28092
其他識別: U0005-2608200709531400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2608200709531400
顯示於類別:土壤環境科學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。