Please use this identifier to cite or link to this item:
標題: 運動前補充碳水化合物及咖啡因對於急性低氧環境下耐力運動表現之影響
The Effect of Carbohydrate and Caffeine Supplementation on Endurance Exercise Performance in Hypoxia Environment
作者: 陳忠志
Chen, Chung-Chih
關鍵字: 咖啡因
Exercise performanc
出版社: 運動與健康管理研究所
引用: 黃鴻鈞 (2009)。急性低氧環境下攝取咖啡因對脂肪氧化的影響(未出版之碩士論文)。國立台灣體育學院,台中市。 Arkinstall, M. J., Bruce, C. R., Nikolopoulos, V., Garnham, A. P., & Hawley, J. A. (2001). Effect of carbohydrate ingestion on metabolism during running and cycling. Journal of Applied Physiology, 91(5), 2125-2134. Backhouse, S. H., Biddle, S. J. H., Bishop, N. C., & Williams, C. (2011). Caffeine ingestion, affect and perceived exertion during prolonged cycling. Appetite. Bell, D. G., & McLellan, T. M. (2002). Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. Journal of Applied Physiology, 93(4), 1227-1234. Brooks, G., Butterfield, G., Wolfe, R., Groves, B., Mazzeo, R., Sutton, J., et al.(1991). Increased dependence on blood glucose after acclimatization to 4,300 m. Journal of Applied Physiology,70(2) , 919-927. Buskirk, E., Kollias, J., Akers, R., Prokop, E., & Reategui, E. (1967) . Maximal performance at altitude and on return from altitude in conditioned runners. Journal of Applied Physiology, 23 (2) , 259-266. Carrillo, J. A., & Benitez, J.(2000). Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clinical Pharmacokinetics, 39(2) , 127-153. Chryssanthopoulos, C., Williams, C., & Nowitz, A. (2002). Influence of a carbohydrate-electrolyte solution ingested during running on muscle glycogen utilisation in fed humans. International Journal of Sports Medicine, 23 (4) , 279-284. Costill, D., Dalsky, G., & Fink, W. (1978). Effects of caffeine ingestion on metabolism and exercise performance. Medicine and Science Sports and Exercise, 10 (3) , 155-158. Coyle, E. F., Coggan, A. R., Hemmert, M. K., & Ivy, J. L. (1986) . Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. Journal of Applied Physiology, 61(1) , 165-172. De Bock, K., Derave, W., Ramaekers, M., Richter, E. A., & Hespel, P. (2007). Fiber type-specific muscle glycogen sparing due to carbohydrate intake before and during exercise. Journal of Applied Physiology, 102(1) , 183-188. de Glisezinski, I., Crampes, F., Harant, I., Havlik, P., Gardette, B., Jammes, Y., et al. (1999). Decrease of subcutaneous adipose tissue lipolysis after exposure to hypoxia during a simulated ascent of Mt Everest. Pflugers Archiv European Journal of Physiology, 439 (1), 134-140. Desbrow, B., Biddulph, C., Devlin, B., Grant, G. D., Anoopkumar-Dukie, S., & Leveritt, M. D. (2012). The effects of different doses of caffeine on endurance cycling time trial performance. Journal of Sports Sciences, 30(2), 115-120. Dill, D., & Adams, W. C. (1971). Maximal oxygen uptake at sea level and at 3,090-m altitude in high school champion runners. Journal of Applied Physiology, 30 (6) , 854. Foskett, A., Williams, C., Boobis, L.& Tsintzas, K. (2008). Carbohydrate availability and muscle energy metabolism during intermittent running. Medicine & Science in Sports & Exercise, 40 (1) , 96. Fredholm, B. B. (1995). Adenosine, Adenosine Receptors and the Actions of Caffeine. Pharmacology & Toxicology, 76 (2), 93-101. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews, 51 (1), 83-1 Fulco, C. S., Zupan, M., Muza. S. R., Rock. P.B., Kambis, K., Payn, T., Hannon, M., Glickman, E., & Cymerman, A. (2006). Carbohydrate Supplementation and Endurance Performance of Moderate Altitude Residents at 4300 m. International Journal of Sports Medicine, 27, 1-7. Fulco, C. S., Kambis, K. W., Friedlander, A. L., Rock, P. B., Muza, S. R., & Cymerman, A. (2005). Carbohydrate supplementation improves time-trial cycle performance during energy deficit at 4,300-m altitude. Journal of Applied Physiology, 99, 867-876. Frisancho, A., Martinez, C., Velasquez, T., Sanchez, J., & Montoye, H. (1973). Influence of developmental adaptation on aerobic capacity at high altitude. Journal of Applied Physiology, 34 (2) , 176-180. Gollnick, P., Piehl, K., & Saltin, B. (1974) . Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. The Journal of Physiology, 241 (1), 45-57. Graham, T., & Spriet, L. (1995) . Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. Journal of Applied Physiology, 78 (3) , 867-874. Graham, T. E. G. T. E., Battram, D. S. B. D. S., Dela, F. D. F., El-Sohemy, A. E. S. A., & Thong, F. S. L. T. F. S. L. (2008). Does caffeine alter muscle carbohydrate and fat metabolism during exercise? Applied Physiology, Nutrition, and Metabolism, 33 (6) , 1311-1318. Harland, B. F. (2000). Caffeine and nutrition. Nutrition, 16 (7-8) , 522-526. Hughson, R., Yamamoto, Y., McCullough, R., Sutton, J., & Reeves, J. (1994). Sympathetic and parasympathetic indicators of heart rate control at altitude studied by spectral analysis. Journal of Applied Physiology, 77 (6) , 2537-2542. Hulston, C. J., & Jeukendrup, A. E. (2008). Substrate metabolism and exercise performance with caffeine and carbohydrate intake. Medicine & Science in Sports & Exercise, 40 (12) , 2096-2104. Ivy, J., Costill, D., Fink, W., & Lower, R. (1979). Influence of caffeine and carbohydrate feedings on endurance performance. Medicine & Science in Sports & Exercise, 11 (1) , 6-11. Jacobson, T. L., Febbraio, M. A., Arkinstall, M. J., & Hawley, J. A. (2001). Effect of caffeine co-ingested with carbohydrate or fat on metabolism and performance in endurance-trained men. Experimental physiology, 86(01), 137-144. Jentjens, R. L. P. G., Underwood, K., Achten, J., Currell, K., Mann, C. H., & Jeukendrup, A. E. (2006) . Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. Journal of Applied Physiology, 100 (3) , 807-816. Jeukendrup, A. E., & Jentjens, R. (2000). Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Medicine, 29 (6), 407-424. Karelis, A. D., Smith, J. E. W., Passe, D. H., & Peronnet, F. (2010) . Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Medicine, 40 (9), 747-763. Kelly, K. R., Williamson, D. L., Fealy, C. E., Kriz, D. A., Krishnan, R. K., Huang, H., et al. (2010). Acute altitude-induced hypoxia suppresses plasma glucose and leptin in healthy humans. Metabolism, 59 (2) , 200-205. Mc Naughton, L., Lovell, R., Siegler, J., Midgley, A., Sandstrom, M., & Bentley, D. (2008). The effects of caffeine ingestion on time trial cycling performance. Journal of Sports Medicine and Physical Fitness, 48 (3) , 320-325. Roberts, A., Butterfield, G., Cymerman, A., Reeves, J., Wolfel, E., & Brooks, G. (1996). Acclimatization to 4,300-m altitude decreases reliance on fat as a substrate. Journal of Applied Physiology, 81 (4) , 1762. Romijn, J., Coyle, E., Sidossis, L., Gastaldelli, A., Horowitz, J., Endert, E., et al. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology-Endocrinology and Metabolism, 265 (3), E380-E391. Sokmen, B., Armstrong, L. E., Kraemer, W. J., Casa, D. J., Dias, J. C., Judelson, D. A., et al. (2008). Caffeine use in sports: Considerations for the athlete. The Journal of Strength & Conditioning Research, 22 (3) , 978. Spriet, L. L., & Gibala, M. J. (2004). Nutritional strategies to influence adaptations to training. Journal of Sports Sciences, 22 (1) , 127-141. Temesi, J., Johnson, N. A., Raymond, J., Burdon, C. A., & O’Connor, H. T. (2011). Carbohydrate ingestion during endurance exercise improves performance in adults. The Journal of Nutrition, 141 (5), 890-897. Vandenbogaerde, T. J., & Hopkins, W. G. (2011). Effects of acute carbohydrate supplementation on endurance performance: a Meta-analysis. Sports Medicine, 41 (9) , 773-792. Yeo, S. E., Jentjens, R. L. P. G., Wallis, G. A., & Jeukendrup, A. E. (2005). Caffeine increases exogenous carbohydrate oxidation during exercise. Journal of Applied Physiology, 99 (3), 844-850.
摘要: 補充碳水化合物可顯著增加運動過程中的外源性碳水化合物的氧化率,並延緩肝醣耗竭。補充咖啡因能提升運動中脂肪的氧化率,可能會使耐力運動中對肌肝醣的依賴減少,進而維持較高的肌肝醣濃度,延緩疲勞產生。而在低氧環境下,會降低運動中脂肪的氧化速率。因此本研究目的為探討在急性低氧環境下補充碳水化合物及咖啡因,對耐力運動表現的影響。以8名健康男性大學生為研究對象,受試者平時有規律運動習慣,但不是受過專業訓練的運動員。採用交叉雙盲隨機實驗的方式進行。實驗共四個測試,分別為咖啡因(6 mg/kg)、葡萄糖(1g/kg)、咖啡因(6 mg/kg)+葡萄糖(1g/kg)及安慰劑,每位受試者皆以隨機方式完成四個測試,於運動前60分鐘攝取增補劑或安慰劑。實驗以50%最大負荷功率進行90分鐘的腳踏車運動,緊接著進行85%最大負荷功率腳踏車運動直到衰竭。且在空腹、耐力運動測試開始前,以及隨後的每30分鐘,與85%VO2 max直到衰竭等時間點採集血液樣本。結果顯示補充咖啡因、葡萄糖及咖啡因+葡萄糖的三個試驗的運動表現皆顯著高於安慰劑組(運動衰竭時間:咖啡因組433.8±85.1秒;葡萄糖組377.9±100.0秒;咖啡因+葡萄糖組479±110.3秒;安慰劑組245.5±60.4秒)。血漿胰島素濃度顯示時間×處置效應(p= 0.029)、組間效應達顯著差異 (p=0.017),葡萄糖組及咖啡因+葡萄糖組顯著高於其他兩組(p<0.05)。血漿游離脂肪酸濃度顯示時間×處置效應(p< 0.001)、組間效應達顯著差異(p< 0.001),咖啡因組與安慰劑組顯著高於其他兩組(p<0.05)。血漿甘油濃度顯示時間×處置效應(p=0.007)、組間效應達顯著差異(p< 0.001)。血漿乳酸濃度顯示時間×處置效應有顯著性的差異(p=0.026)、組間效應也有顯著差異(p< 0.001)。運動中脂肪氧化率咖啡因組與安慰劑組顯著高於其他兩組(p,0.05)。血漿葡萄糖濃度、碳水化合物氧化率及運動自覺量表變化,四組間則是沒有顯著的差異。本研究結果顯示,急性低氧環境下,在運動前一小時補充咖啡因、葡萄糖或咖啡因+葡萄糖,能顯著的提升長時間運動後的高強度耐力運動表現。
Ingestion of carbohydrate may significantly increase the exogenous carbohydrate oxidation rate and delay muscle glycogen depletion during exercise. Intake of caffeine, on the other hand, increases the rate of fat oxidation during exercise, and which may reduce the demand of muscle glycogen during endurance exercise, thus to delay the onset fatigue. Hypoxic environment, however, may lower the rate of fat oxidation. Purpose: The current study was to examine the effect of carbohydrate and caffeine supplementation on endurance exercise performance in hypoxic environment. Methods: Eight healthy young males completed 4 experimental trials using a double-blind, within-subjects cross-over design. The protocol consisted of a 90-minute 50% Wmax cycling exercise on an ergometer, followed by 85% Wmax cycling exercise to exhaustion. Subjects were randomly assigned to caffeine (6mg/kg), glucose (1g/kg), caffeine (6mg/kg) + glucose (1g/kg) and placebo trials. The blood samples were collected during fasting, pre-exercise, every 30 minute throughout the experiment, and immediately after exhaustion. Results: caffeine, glucose, and caffeine + glucose trials showed significantly better endurance performance (caffeine: 433.8±85.1sec; glucose: 377.9±100.0 sec;caffeine + glucose: 479±110.3sec) than placebo group (245.5±60.4秒) (p<0.05). Plasma insulin concentrations were significantly higher in glucose and caffeine + glucose trials than caffeine and placebo trials (p<0.05). Plasma free fatty acid and plasma glycerol concentrations were higher in caffeine and placebo trials than in glucose and caffeine + glucose trials (p<0.05).. Estimated fat oxidation were higher in caffeine and placebo trials than in glucose and caffeine + glucose trials (p<0.05). There were no significant differences in plasma glucose concentration, and rating of perceived exertion between trials. Conclusion: ingestion of caffeine, glucose, or caffeine + glucose one hour before exercise significantly improved 85% Wmax exercise performance after a prolonged exercise.
其他識別: U0005-3007201212125400
Appears in Collections:運動與健康管理研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.