Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28124
標題: The effect of timing of application of fertilizers on the antioxidant potential of Pak-chio (Brassica Chinensis L.)grown in hydroponic
肥料施用時間對水耕小白菜抗氧化性的影響
作者: Chen, Po-Chun
陳柏均
關鍵字: 小白菜
Pak-chio
抗氧化
水耕
植物營養
肥料
antioxidant
hydroponic
plant nutrition
fertilizer
出版社: 土壤環境科學系所
引用: 丹羽韌負。1996。激增自由基會導致死亡(徐玉枝譯)。台北市青春出版社。 吳正宗、王銀波。1995。一些影響小白菜硝酸態氮含量的環境因子。中國農業化學會誌。33: 125-133。 洪聖傑。2004。小白菜低礦物養分含量之研究。中興大學土壤環境科學研究所碩士論文 翁仁憲。1999。日射量及溫度對水耕芥藍菜硝酸態氮含量之影響。中華農業氣象。6: 97-104。 徐善德、廖玉琬。2006。植物生理學。偉明圖書有限公司。 許創盛。2005。水耕結球萵苣養液經濟管理探討。中興大學土壤環境科學研究所碩士論文。 黃裕銘。2005。作物營養及肥料。國立中興大學土壤環境科學系。 黃裕銘、陳建中。2003。養液氯及鉀濃度對水耕小白菜生長、硝酸態氮及其他養分含量之影響。土壤與環境。6(2): 87-96。 黃裕銘、陳建中、吳正宗。2003。養液鉀氮比及夜間停止養液供應對小白菜(Brassica Chinensis L.)生長及養分吸收之影響。農林學報 52: 61-67 。 趙克然、楊毅軍、曹道俊。2003。氧自由基與臨床。台北市合記出版社。 趙保路。1999。氧自由基和天然抗氧化劑。北京科學出版社。 陳建中。2002。多種肥培管理措施對小白菜硝酸態氮含量之影響。中興大學土壤環境科學研究所碩士論文。 Addiscottls T.M. and N. Benjam. 2004. Nitriate and human health. Soil Use and Management. 20. 98-104. Babbs ,C.F., 1990. Free-radicals and the etiology of colon cancer. Free Rad Biol Med. 8: 191-200. Barceloux, D.G.. 1999. Nickel. J Toxicol Clin Toxicol. 37. 239-258. Berg, D., M. Gerlach, M.B.H. Youdim, K.L. Double, L. Zecca, P. Riederer and G. Becker. 2001. Brain iron pathways and their relevance to Parkinson’s disease. J. Neurochem. 79. 225-236. Blois, M.S., 1958. antioxidant determinations by the use of a sTable free radical. Nature. 181. 1199-1200. Boyer, R.F., C.J. McCleary. 1987. Superoxide ion as a primary reductant in ascorbate-mediated ferritin iron release. free radical bio. Med. 3. 389-395 Cadenas, E.. 1989. Biochemistry of oxygen toxicity. Ann Rev Biochem. 58. 79-110. Champe, P.C., R.A. Harvey and D.R. Ferrier. 2005. Lippincott''s illustrated reviews biochemistry. lippincott williams & wilkins. Cieslak-Golonka, M.. 1996. Toxic and mutagenic effects of chromium(VI). A review. Polyhedron. 15. 3667-3689. Crans, D.C., J.J. Smee, E. Gaidamauskas and L.Q. Yang. 2004. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev. 104. 849-902. Dayan, A.D. and A.J. Paine. 2001. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: reviewof the literature from 1985 to 2000. Human Exp Toxicol. 20. 439-451. Feron, V.J., J.H.E. Arts, C.F. Kuper, P.J. Slootweg and R.A. Woutersen. 2001. Health risks associated with inhaled nasal toxicants. Crit Rev Toxicol. 31. 313-347. Flower, T.R. and A.R. Yeo. 1992. Solution transport in plants. Blackie academic & professional. Galan, A., L. Garcia-Bermejo, A. Troyano, N.E. Vilaboa, C. Fernandez, E. de Blas and P. Aller. 2001. The role of intracellular oxidation in death induction (apoptosis and necrosis) in human promonocytic cells treated with stress inducers (cadmium, heat, X-rays). Eur J Cell Biol. 80. 312-320. Garcia-Chavez, E., A. Santamaria, F. Diaz-Barriga, P. Mandeville, B.I. Juarez and M.E. Jimenez-Capdeville. 2003. Arsenite-induced formation of hydroxyl radical in the striatum of awake rats. Brain Res. 976. 82-89. Halliwell, B. and J.M.C. Gutteridge. 1984. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet. 1. 1396-1397. Halliwell, B. and J.M.C. Gutteridge. 1990. The measurement and mechanism of lipid peroxidation in biological system. Tibs. 15. 129-135. Hell, R. 1997. Molecular physiology of plant sulfur metabolism. Planta. 202. 138-148. Kasprzak K.S.. 1995. Possible role of oxidative damage in metalinduced Carcinogenesis. Cancer Invest. 13. 411-430. Kilic, E., R. Saraymen, A. Demiroglu and E. Ok. 2004. Chromium and manganese levels in the scalp hair of normals and patients with breast cancer, Biol Trace Elem Res. 102. 19-25. Leonard, S., P.M. Gannett, Y. Rojanasakul, D. Schwegler-Berry, V. Castranova, V. Vallyathan and X.L. Shi. 1998. Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem. 70. 239-244. Lill, R., U. Mühlenhoff. 2006. Iron-Sulfur Protein Biogenesis in Eukaryotes: Components and Mechanisms. Annual Review of Cell and Developmental Biology. 22. 457-486. Liochev, S.I. and I. Fridovich. 1990. Vanadate-stimulated oxidation of NAD(P)H in the presence of biological-membranes and other sources of O2−. Arch Biochem Biophys. 279. 1-7. Meister, A.. 1983. Selective modification of glutathione metabolism. Science. 220. 472-480. Nackerdien, Z., K.S. Kasprzak, G. Rao, B. Halliwell and M. Dizdaroglu. 1991. Nickel(II)-dependent and cobalt(II)-dependent damage by hydrogen-peroxide to theDNAbases in isolated human chromatin. Cancer Res. 51. 5837-5842. Palmer, R.M.J., A.G. Ferrige and S. Moncada. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 327. 1987. 524-526. Poli, G., G. Leonarduzzi, F. Biasi and E. Chiarpotto. 2004. Oxidative stress and cell signaling. Curr Med Chem. 11. 1163-1182. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food. Chem. 40. 945-948. Siah, C.W., D. Trinder and J.K. Olynyk. 2005. Iron overload, Clin Chim Acta. 358. 24-36. Singh, J., D.L. Carlisle, D.E. Pritchard and S.R. Patierno. 1998. Chromium-induced genotoxicity and apoptosis: relationshipto chromium carcinogenesis (Review). Oncol Rep. 5. 1307-1318. Smith F.W., P.M. Ealing, M.J. Hawkesford and D.T. Clarkson . 1995. Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA. 92. 9373-9377 Stayner, L.T., D.A. Dankovic and R.A. Lemen. 1996. Occupational exposure to chrysotile asbestos and cancer risk: a review of the amphibole hypothesis. Am J Public Health. 86. 179-186. Taiz, L. and E. Zeiger. 1991. Plant physiology. Benjamin/Cummings publishing Co. Inc., New York. Valko, M., C.J. Rhodes, J. Moncol, M. Izakovic and M. Mazur. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem-Biol.Interact. 160. 1-40. Valko, M., H. Morris, M. Mazur, P. Rapta and R.F. Bilton. 2001.Oxygen free radical generating mechanisms in the colon: do the semiquinones of Vitamin K play a role in the aetiology of colon cancer? Biochim Biophys Acta. 1527. 161-166. Valko, M., M. Izakovic, M. Mazur, C.J. Rhodes and J. Telser. 2004. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 266. 37-56. Winterbourn, C.C.. 1995. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letters. 82-83. 969-974. Waalkes, M.P., J. Liu, J.M. Ward and L.A. Diwan. 2004. Mechanisms underlying arsenic carcinogenesis: hypersensitivity of mice exposed to inorganic arsenic during gestation. Toxicology. 198. 31-38. Waisberg, M., P. Joseph, B. Hale and D. Beyersmann. 2003. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology. 192. 95-117. Watanabe, M., K. Henmi, K. Ogawa and T. Suzuki. 2003. Cadmiumdependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis, Comp Biochem Physiol CToxicol Pharmacol. 134. 227-234. Zhang, Z., C.S. Huang, J.X. Li, S.S. Leonard, R. Lanciotti, L. Butterworth and X.L. Shi. 2001. Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys. 392. 311-320.
摘要: The concerns of healthy life and healthy environments have been increasing all over the world. People are looking for vegetables containing low nitrate. The hydroponic culture is a good system to produce the concentration of nitrate of vegetables under control. However, an efficient use of water in hydroponic system is also very concerned. The aims of this thesis were to develop a hydroponic system that supplies the daily required nutrient with the daily required water for evapotranspiration and to know the best nutrient supplying time for lowering the nitrate concentration of vegetables without the loss of vegetable production. The seedling of Pak-chio (Brassica Chinensis L.) was growing in a normal nutrient solution for three weeks then growing in different treatments for one week. There were 7 treatments (Ck, D1, D2, D3, DN1, DN2, and DN3) designed in this study and conducted twice, one in 2006 and other one in 2007, with 4 replications for each time. Plants were growing in a container with 24000 ml nutrient solution for CK treatment. The nutrient used for treatments of D1, D2, and D3 was prepared in the estimated consuming water and supplied only once in each morning. The consuming waster was divided into two parts one supplied in the morning and the other in the evening, with 30 % and 70 % for each, respectively. The nutrient used for DN1 was supplied in the morning water, for DN2 was evenly divided in the morning and in the evening water, and for DN3 was supplied in the evening water. The elemental concentration of plant shoot was digested with HCl and HNO3 solution then determined by ICP-AES. The concentration of anions was extracted with hot water and determined by IC instrument. The DPPH radical scavenging activity and ferrous ion chelating power as the indicator for antioxidant were also determined. The water consumption of the system developed in this study was less than 25% of the original system, and the production of Pak-chio was higher than those of control, even reached significant level in the experiment conducted in 2006 under fully sunshine days. The sunshine length in 2007 was low due to long rainy days, which causes the production among treatments did not reach significant level. The nitrate concentration of shoot was lowest for D1 and DN1 treatments, and significantly lower than those of CK and DN3 in 2006. The nitrate concentration of shoot of those in 2007, under low sunshine days, were 2 to 4 times of those in 2006, under fully sunshine days. Results showed that the DPPH radical scavenging activity and ferrous ion chelating power of the first culture and ferrous ion chelating power of the second culture are positively related to the dry weight of the Pak-chio. In addition, the DPPH radical scavenging activity in the second culture is negatively related to the ferrous ion chelating power. This may indicate that the ability of antioxidant was affected by the dry matter content, the dry matter content of the first crop was higher than those of the second crop, and other plant qualities may be also envolved. The results supported that the daily required nutrient supplied daily in the morning with low ratio of water, and remaining the high ratio of water supplied in the evening will make the Pak-choi in high production with low nitrate concentration in eatable part.
隨著健康概念之發達,消費者希望蔬菜硝酸態氮要能低。水耕控制可以控制蔬菜硝酸碳氮濃度,其操作要如何節水也是當今普遍受重視的重要課題。本論文之目的在以水耕研究養液濃度及每日生長所需養分量於早晨或傍晚添加在每天蒸發散量水對小白菜生長、硝酸鹽含量及抗氧化能力之影響。 於2006及2007年網室中各種一期作小白菜,幼苗先於水耕液培養三星期後進行試驗處理一星期。對照組(CK)以標準養液培養,置於24000 ml養液栽培;試驗組分為以濃度做處理的日間供水組(D1、D2、D3),分別由低至高,以不同倍數濃度之標準養液培養,於每日清晨隨小白菜當日所需水量一次加入;及以養分供應時間做處理的日夜供水組(DN1、DN2、DN3),分別為日間供給養分、日夜各供給一半養分、夜間供給養分。日夜供水組每日所需水量30%於清晨供應、70%於傍晚供應,而其養分則依不同組別,隨各組日夜供應之水分加入。試驗組水用量在第一及第二期作分別為5082 ml及6024 ml。植體採樣秤鮮及70 ℃下烘乾重,經消解後以ICP測磷含量及陽離子濃度;熱水抽出液以IC測陰離子濃度。並測定DPPH清除能力(DPPH radical scavenging activity)及亞鐵離子螯合能力(ferrous ion chelating power)作為總抗氧化能力指標。 試驗結果顯示水耕小白菜在以蒸發散量水分量及養分需要量下,可節水75%以上,且小白菜產量提高,尤其充分光照(2006年)下提高之產量達顯著水準。在低光照(2007年)下則養分濃度對小白菜產量影響不顯著,且反而以最低養分量處理乾物產量最高。光照充足時白天添加養分夜間添加水DN1處理和最低養分量D1處理植體硝酸態氮濃度最低且達顯著水準,對照組CK及夜間添加養分DN3處理硝酸態氮濃度最高。低光照下植體硝酸態氮濃度提高,2007年處理硝酸態氮濃度為2006年之2到4倍。小白菜植體第一作之DPPH清除能力、亞鐵螯合能力及第二作之DPPH清除能力皆與小白菜乾物重呈正相關。第二作中DPPH清除能力與亞鐵螯合能力呈負相關的現象,更是暗示了抗氧化物對於光合產物之需求。因此,如何提升小白菜乾物產量及如何保留小白菜之光合產物,將是提升抗氧化能力之重要目標。
URI: http://hdl.handle.net/11455/28124
其他識別: U0005-2001200900483500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2001200900483500
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.