Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28126
標題: Evaluation of the Disposal Model of Food Waste Composting and Its Maturity Indexes
廚餘堆肥化操作模式及腐熟度指標之評估
作者: Wu, Jeng-Tzung
吳正宗
關鍵字: compost
堆肥
food waste compost
maturity
廚餘堆肥
腐熟度
出版社: 土壤環境科學系所
引用: 王鐘和、林毓雯、丘麗蓉。2000。從作物營養需求特性談有機質肥料施用要領。有機質肥料應用技術研討會專刊。中華永續農業協會 中華土壤肥料學會 農業試驗所 編印。P. 44-64。 占新華、周立祥、沈其榮、黃煥忠。2001。污泥堆肥過程中水溶性有機物光譜學變化特徵。環境科學學報,21(4): 470-474。 行政院環境保護署。2007。中華民國環境保護統計年報。行政院環境保護署。臺北市。 吳三和、劉力學。2001。廚餘製作堆肥和其在有機農業上之應用。廚餘利用與有機栽培。2001年德國宏博基金會學術研討會。德國宏博學術交流基金會、臺灣宏博聯誼會。 邱梅玲。2007。三種不同製成的廚餘堆肥之成分與養分釋出特性研究。國立中興大學土壤環境科學系碩士論文。 李秀、賴滋漢。1992。食品分析與檢驗。精華出版社。P. 243。 林子傑。2001。廚餘堆肥控制策略之探討。國立臺灣大學生物產業機電工程學研究所碩士論文。 林子傑、周楚洋。2005。廚餘堆肥控制策略之探討。農業機械學刊,14(4): 37-53。 洪明龍。2000。家庭廚餘與下水污泥共同堆肥之資源化研究。國立臺灣大學環境工程學研究所碩士論文。 洪嘉謨。2005。廚餘養豬的適切性與發展潛力。廚餘資源化政策/法規與實務研討會論文集。臺灣資源再生協會 工業技術研究院環境與安全衛生技術發展中心。P. 52-66。 唐澤軍、左海萍、于鍵、I. Shainberg、雷廷武。2007。ESP值和黏粒含量對土壤表面封閉作用的影響。農業工程學報;23(5): 51-55。 袁紹英。1985。堆肥的品質管制。固體廢棄物處理技術研討會論文輯。行政院衛生署環境保護局編印。P. 3.1-28。 桂健智。2001。鈉添加量對萵苣、青梗白菜、菠菜生長與養分吸收的影響。國立臺灣大學農業化學研究所碩士論文。 徐培鈞。2002。利用農業廢棄物轉化液體肥料之研究與應用。屏東科技大學環境工程與科學系碩士論文。 陳仁炫。2001。禽畜糞堆肥檢測和成分分析結果及農地施用上常見問題。全省禽畜糞堆肥場經營管理及分析技術講習會專刊,中興大學土壤調查試驗中心。P. 55-68。 黃仁晞 廚餘回收再利用(http://www.twdep.gov.tw) 黃裕銘、吳正宗。1999。禽畜糞堆肥成分檢驗方法與實習操作。88年度全省禽畜糞堆肥場堆肥成分分析檢驗及處理技術手冊。中興大學土壤調查試驗中心。P. 5-15。 楊光盛。1991。肥料推薦量系統模式建立研究。臺灣大學農業化學研究所博士論文。 慈心有機農業發展基金會 商品資材審查手冊。2007。慈心有機農業發展基金會。 魯如坤。1998。土壤—植物營養學原理與施肥。化學工業出版社。北京。P. 259。 蔡宜峰。1995。有機質肥料製作及肥效評估之研究。國立中興大學土壤學研究所博士論文。 劉國忠。2005。國外廚餘資源化的政策、法規及對我國的借鏡。廚餘資源化政策/法規與實務研討會論文集。臺灣資源再生協會 工業技術研究院環境與安全衛生技術發展中心。P. 21-38。 簡宣裕。1999。製造堆肥時材料的碳氮比值及水分含量之調整。堆肥製造技術。中華永續農業協會編印。P. 59-64。 簡宣裕。2001。堆肥品質判定。肥料要覽。增訂三版。中華土壤肥料學會印行。P. 85-90。 趙震慶、王銀波。1992。永續性農耕法與慣行農耕法對土壤物理性質影響之比較。中華農學會報 新,160:120-127。 趙震慶、楊秋忠。1995。有機碳對土壤脫氮作用的增進作用。中國農葉化學會誌,33:468-481。 趙震慶、蘇楠榮、王銀波。1996。有機農耕法土壤肥力之變遷。中華農學會報 新,173:85-102。 謝慶芳。2000。有機農業使用之土壤改良資材。有機農產品驗證人員訓練班講義,中興大學農推中心編印。P. 42-56。 魏自民、席北斗、趙越、王世平、劉鴻亮、何連生、姜永海、霍守亮。2007。城市生活垃圾堆肥胡敏酸動態光譜特性研究。光譜學與光譜分析。27(11): 2275-2278。 Abdelmajid, J., S. Amir, M. Gharous, and J.C. Revel. 2005. Chemical and spectroscopic analysis of organic matter composting of sewage sludge and green plant waste. International Biodeterioration & Biodegradation, 56: 101-108. Adani, F., G. Gigliotti, F. Valentini, and R. Laraia. 2003. Respiration index determination: a comparative study of different methods. Compost Science and Utilization 11: 144-151. Ait Baddi, G.A., J.A. Alburquerque, J. Gonzalvez, J. Cegarra, and M. Hafidi. 2004. Chemical and spectroscopic analyses of organic matter transformations during composting of olive mill wastes. International Biodeterioration & Biodegradation, 54: 39-44. Alburquerque, J.A., J. Gonzalvez, D. Garcia, and J. Cegarra. 2006. Measuring detoxication and maturity in compost made from “alperujo”, the solid by product of extracting olive oil by the two-phase centrifuation system. Chemosphere 63: 470-477. Amir, S., M. Hafida, L. Lemee, J.R. Bailly, and G. Merlina. 2006. Structural characterization of fulvic acids, extracted from sewage sludge during composting, by thermochemolysis - gas chromatography - mass spectrometry. J. Anal. Pyrolysis 41: 410-422. Aoyama, M., and T. Nozawa. 1993. Microbial biomass nitrogen and mineralization –immobilization processes of nitrogen in soils incubated with various organic materials. Soil Sci. Plant Nutr. 39: 23-32. Aparna, C., P. Saritha, V. Himabindu, and Y. Anjaneyulu. 2007. Techniques for the evaluation of maturity for composts of industrially contaminated lake sediments. Waste Management, doi:10.1016/j.wasman.2007.07.008. APEX. (www.Apexcompost.co.uk/standards.asp) Aslam, D.N. W. Horwath, and J.S. VanderGheynst. 2008. Comparison of several maturity indicators for composting phytoxicity in compost- amended soil. Waste Management, doi:10.1016/j.wasman.2007.08.026. Baffi, C., M.T. Dell’Abate, A. Nassisi, S. Silva, and A. Benedetti. 2007. Determination of biological stability in compost: A comparision of methodology. Soil & Biochemistry 39: 1284-1293. Baes, A.U., and P.R. Bloom. 1990. Fulvic acid ultraviolet- visible spectra: Influence of solvent and pH. Soil Sci. Soc. Am. J. 54: 1248-1254. Benito, M., A. Masaguer, A. Moliner, N. Arrigo, R.M. Palma, and D. Effron. 2005. Evaluation of maturity and stability of pruning waste compost and their effect on carbon and nitrogen mineralization in soil. Soil Science, 170: 360-370. Ben-Dor, E., Y. Inbar, and Y. Chen. 1997. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400-2500 nm) during a controlled decomposition process. Remote Sens. Environ., 61: 1-15. Bernal, M.P., C. Paredes, M.A. Sanchez-Monedero, and J. Cegarra. 1998. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 63: 91-99. Bissala, Y.Y., and W. Payne. 2006. Effect of pit floor material on compost quality in semiarid west Africa. Soil Sci. Soc. Am. J. 70: 1140-1144. Boulter-Bitzer, J.I., J.T. Trevors, and G.J. Boland. 2006. A polyphasic approach for assessing maturity and stability in compost intended for suppression of plant pathogens. Applied Soil Ecology, 34: 65-81. Brady, N.C., and R.R. Weil. 2001. The Nature and Properties of Soils. 13th Ed. Prentice Hall, New Jersey. Brito, L.M. 2001. Lettuce (Lactuca sativa L.) and cabbage (Brassica oleracea L. var. capitata L.) growth in soil mixed with municipal solid waste compost and paper mill sludge composted with bark. Acta Horticulture 563: 131-135. Bulluck Ⅲ, L.R., M. Brosius, G..K. Evanylo, and J.B. Ristaino. 2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, 19: 147-160. California Compost Quality Council(CCQC). 2001. Compost Maturity Index. www.ccqc.org. Castaldi, P., G. Alberti, R. Merella, and P. Melis. 2005. Study of the organic matter evolution during solid waste composting aimed at identifying suitable parameters for the evatuation of compost maturity. Waste Management, 25: 209-213. Castillo, J.E., F. Herrera, R.J. Lopez-Bellido, F.J. Lopez-Bellido, L. Lopez-Bellido, and E.J. Fernandez. 2004. Municipal solid waste (MSW) compost as a tomato transplant medium. Compost Science & Utilization 12: 86-92. Cayuela, M.L., C. Mondini, M.A. Sanchez-Monedero, and A. Roig. 2008. Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting. Bioresource Technology 99: 4255-4262. Cayuela, M.L., M.A. Sanchez-Monedero, and A. Roig. 2006. Evaluation of two different aeration systems for composting two-phase olive mill wastes. Process Biochemistry 41: 616-623. Chang, J.I., J.J. Tsai, and K.H. Wu. 2006. Thermophilic composting of food waste. Bioresource Technology 97:116-122. Chanyasak, V, and H. Kubota. 1981. Carbon: nitrogen ratio in water extract as measure of composting degradation. J. Ferment. Technol. 59: 215-219. Chanyasak, V, M. Hirai, and H. Kubota. 1982. Changes of chemical components and nitrogen transformation in water extracts during composting of garbage. J. Ferment. Technol. 60: 439-446. Cekmecelioglu, D, A. Demirci, R.E. Graves, and N.H. Davitt. 2005. Applicability of optimised in-vessel food waste composting for windrow systems. Biosystems Engineering, 91(4): 479-486. Chefetz, B.P., G., Hatcher, Y. Hadar, Y. Chen. 1996. Chemical and biological characterization of organic matter during composting of municipal solid waste. J. Environ. Qual. 25: 776-785. Chen, Y., N. Senesi, and M. Schnitzer. 1977. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 41: 352-358. Chikae, M., R. Ikeda, K. Kerman, Y. Morita, and E. Tamiya. 2006. Estimation of maturity of compost from food waste and agro-residues by multiple regression analysis. Bioresource Technology 97: 1979-1985. Cooperband, L., G. Bollero, and F. Coale. 2002. Effect of poultry litter and composts on soil nitrogen and phosphorus availability and corn production. Nutrient Cycling in Agroecosystems 62: 185-194. Cooperband, L., A.G. Stoner, M.R. Fryda, and J.L. Ravet. 2003. Relating compost measures of stability and maturity to plant growth. Compost Sciences & Utilization 11: 113-124. Courtney, R.G., and G.J. Mullen. 2008a. Soil Quality and Barley growth as influenced by the land application of two compost type. Bioresource Technology 99: 2913-2918. Courtney, R., and G. Mullen. 2008b. Application of high copper and zinc compost and its effects on soil properties and growth of barley. Comunications in Soil Science Plant Analysis 39: 82-95. Dimambro, M.E., R.D. Lillywhite, and C.R. Rahn. 2007. The physical, chemical and microbial characteristics of biodegradable municipal waste derived composts. Compost Science & Utilization 15: 243-252. Dinel, H., M. Schnitzer, and S. Dumontet. 1996a. Compost maturity: extractable lipids as indicators of organic matter stability. Compost Science & Utilization 4: 6-12. Dinel, H., M. Schnitzer, and S. Dumontet. 1996b. Compost maturity: chemical characteristics of extractable lipids. Compost Science & Utilization 4: 16-25. Domeizel, M., A. Khalil, and P. Prudent. 2004. UV spectroscopy: a tool for monitoring humification and for proposing an index of the maturity of compost. Bioresource Technology 94: 177-184. Eghball, B., J.F. Power, J.E. Gilley and J.W. Doran. 1997. Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure. J. Environ. Oual. 26: 189-193. Eghball, B, and J.F. Power. 1999. Phosphorus- and nitrogen- based manure and compost application: corn production and soil phosphorus. Soil Sci. Soc. Am. J. 63: 895-901. Eghball, B., D. Ginting, and J.E. Gilley. 2004. Residual effects of manure and compost applications on corn production and soil properties. Agron. J. 96: 442-447. Eyheraguibel B., J. Silvestre, and P. Morard. 2007. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresource Technology 99: 4206-4219. Foth, H.D., and B.G. Ellis. 1997. Soil Fertility. CRC Press. P. 108, 257-261, 275. Gale, E.S., D.M. Suloivan, C.G. Cogger, and A.I. Bary. 2006. Estimating plant-available nitrogen release from manure, composts, and specialty products. J. Environ. Qual. 35: 2321-2332. Gardiner, D.T., and R.W. Miller. 2004. Soils In Our Environment. 10th ed. Prentice Hall. P. 240-242, 447. Garcia, C., T. Hernandez, and F. Costa. 1991. Study on water extract of sewage sludge composts. Soil Sci. Plant Nutr. 37: 399-408. Garcia, C., T. Hernandez, F. Costa, and M. Ayuso. 1992. Evaluation of the maturity of municipal waste compost using simple chemical parameter. Commun. Soil Sci. Plant Anal. 23: 1501-1512. Gomez-Brandon, M., C. Lazcano, and J. Dominguez. 2008. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 70: 436-444. Goyal, S., S.K. Dhull, and K.K. Kapoor. 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technology 96: 1584-1591. Griffin, T.S., and M. Hutchinson. 2007. Compost maturity effects on nitrogen and carbon mineralization and plant growth. Compost Sci. Util. 15: 228-236. Grube, M., J.G. Lin, P.H. Lee, and S. Kokorevicha. 2006. Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 130: 324-333. Harada, Y.A., A. Inoko, M. Tadaki, and T. Izawa. 1981. Maturing of city refuse compost during piling. Soil Sci. Plant Nutr. 27: 357-364. Herencia, J.F., J.C. Ruiz-Porras, S. Melero, P.A. Garcia-Galavis, E. Morillo, and Maqueda. 2007. Comparision between organic and mineral fertilization for soil fertility levels, crop macronutrient concentration, and yield. Agron. J. 99: 973-983. Huang, G.F., Q.T. Wu, J.W.C. Wong, and B.B. Nagar. 2006. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresource Technology 97: 1834-1842. Hue, N.V., and J. Liu. 1995. Predicting composting stability. Compost Science & Utilization 3: 8-15. Hwang, E.J., H.S. Shin, and J.H. Tay. 2002. Continuous feed, on-site composting of kitchen garbage. Water Management & Research 20: 119-126. Inbar, Y., Y. Chen, and Y. Harada. 1990. Humic substances formed during the composting of organic matter. Soil Sci. Soc. Am. J. 54: 1316-1323. Jakobsen, S.T. 1996. Leaching of nutrients from pots with and without applied compost. Resources, Conservation and Recycling 17: 1-11. Jimenez, E.I., and V.P. Garcia. 1989. Evaluation of city refuse compost maturity: a review. Biological wastes, 27: 115-142. Jimenez, E.I., and V.P. Garcia. 1992. Determination of maturity indices for city refuse compost. Agriculture, Ecosystem & Environment, 38: 331-343. Johnson, L.J. 1979. Introductory Soil Science. Macmillian Publishing Co., Inc. New York. Jones, J.B., Jr. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press. Jouraiphy, A., S. Amir, M.E. Gharous, J.C. Revel and M. Hafidi. 2005. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage waste and green plant waste. International Biodeterioration & Biodegradation 56: 101-108. Karaca, A. 2004. Effect of organic wastes on the extractability of cadium, copper, nickel, and zinc in soil. Geoderma 122: 297-303. Kavdir, Y., and D. Killi. 2008. Influence of olive oil solid waste applications on soil pH, electrical conductivity, soil nitrogen transfermations, carbon content and aggregates stability. Bioresource Technology 99: 2326-2332. Keeney, D.R., and D.W. Nelson. 1982. Nitrogen-inorganic form. In A.L. Page (ed.) Methods of Soil Analysis. Part 2. 2nd ed., ASA and SSSA, Wisconsin, USA. p. 643-698. Kim, P.J., D.Y. Chung, and D. Malo. 2001. Characteristics of phosphorus accumulation in soils under organic and conventional farming in plastic film houses in Korea. Soil Sci. Plant Nutr. 47: 281-289. Kissel, J.H., C.L. Herry, and R.B. Harrison. 1992. Potential emissions of volatile and odordous organic compounds from municipal solid waste composting facilities. Biomass and Bioenergy 3: 181-194. Ko, H.J., K.Y. Kim, H.T. Kim, C.N. Kim, and M. Umeda. 2008. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Management 28: 813-820. Komilis, D.P. 2006. A kinetic analysis of solid waste composting at optimal condition. Waste management 26: 82-91. Komilis, D.P. and R.K. Ham. 2006. Carbon dioxide and ammonia emmisions during composting of mixed paper, yard waste and food waste. Waste management 26: 62-70. Kopittke, P.M., and N.W. Menzies. 2007. A review of the use of basic cation saturation ratio and “ideal” soil. SSSAJ. 71: 259-265. Lanyon L.E., and W.R. Heald. 1982. Magnesium, calcium, strontium, and barium. In Page A.L., R.H. Miller, and D.R. Keeney. (eds). Method of Soil Analysis. 2nd ed. Part 2 Chemical and Biological Properties. Pp 247-271. Agron Monogr 9, ASA & SSSA, Madison, WI. Larre-Larrouy, M., and L. Thuries. 2006. Does the methoxyl group content of the humic acid-like fraction of composts provide a criterion to evaluate their maturity? Soil Biology and Biochemistry 38: 2976-2979. Lasaridi, K., I. Protopapa, M. Kotsou, G. Pilidis, T. Manios, and A. Kyriacou. 2006. Quality assessment of composts in Greek market: The need for standards and assurance. J. Environmental Management 80: 58-65. Lee, J.J., R.D. Park, Y.W. Kim, J.H. Shim, D.H. Chae, Y.S. Rim, B.K. Sohm, and T.H. Kim. 2004. Effect of food waste compost on microbial population, soil enzyme activity and lettuce growth. Bioresource Technology 93: 21-28. Levanon, D., and D. Pluda. 2002. Chemical, physical and biological criteria for maturity in composts for organic farming. Compost Science & Utilization 40: 339-346. Lguirati, A., G.A. Baddi, A.E. Mousadik, V. Gilard, J.C. Revel, and M. Hafidi. 2005. Analysis of humic acids from aerated and non-areated urban land fill composts. International Biodeterioration & Biodegradation 56: 8-16. Li, B.Y., D.M. Zhou, L. Cang, H.L. Zhang, X.H. Fan, and S.W. Qin. 2007. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer application. Soil & Tillage Research 96: 166-173. Lithourgidis, A.S., T. Matsi, N. Barbayiannis, and C.A. Dordas. 2007. Effect of liquid cattle manure on corn yield, composition, and soil properties. Agron. J. 99: 1041-1047. Mace, J.E., and C. Amrhein. 2001. Leaching and reclamation of soil irrigated with moderate SAR waters. SSSAJ. 65: 199-204. Madejon, E., R. Lopez, J.M. Murillo, and F. Cabrera. 2001. Agricultural use of three (sugar-beet) vinasse compost: effect on crops and chemical properties of a Cambisol soil in the Guadalquivir river valley (SW Spain). Agriculture, Ecosystems and Environment 84: 55-65. Madejon, E., P. Burgos, R. Lopez, and F. Cabrera. 2003. Agricultural use of three organic residues: effect on orange production and on properties of a soil of the “Comarca Costa de Huelva” (SW Spain). Nutrient Cycling in Agroecosystem 65: 281-288. Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press, London, UK. Mathur, S.P., G. Owen, H. Dinel, and M. Schnitzer.1993. Determination of compost biomaturity. I. Literature review. Biological Agriculture and Horticulture 10: 65-85. Matteson T.L., and D.M. Sullivan. 2006. Stability evaluation of mixed food waste composts. Compost Science & Utilization 14: 170-177. Mondini, C., M.T. Dell’Abate, L. Leita, and A. Benedetti. 2003. An integrated chemical, thermal, and microbiological aprproch to compost stability evaluation. J. Environ. Qual. 32: 2379-2386. Mondini, C., F. Fornasier, and T. Sinicco. 2004. Enzymatic activity as parameter for the characterization of the composting. Soil Biology & Biochemistry 36: 1587-1594. Mondini, C., M.A. Sanchez-Monedero, T. Sinicco, and L. Leita. 2006. Evaluation of extracted organic carbon and microbial biomass as stability parameters in lingo-cellulosic waste composts. J. Environ. Qual. 35: 2313-2320. Montemurro, F., and M. Maiorana. 2007. Nitrogen utilization, yield, quality and soil properties in a sugarbeet crop amended with municipal solid waste compost. Compost Science & Utilization 15: 84-92. Motavalli, P.P., and R.J. Miles. 2002. Soil phosphorus fractions after 111 years of animal manure and fertilizer applications. Biol. Fertil. Soils 36: 35-42. Murillo, J.M., F. Cabrera, R. Ropez, and P. Martin-Olmedo. 1995. Testing low-quality urban compost for agriculture: germination and seedling performance of plants. Agriculture, Ecosystem and Environment 54: 127-135. Murphy, J., and J.D. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta. 27: 31-36. Namkoong, W., E.Y. Hwang, J.G. Cheong, and J.Y. Choi. 1999. A comparative evaluation of maturity parameters of food waste composting. Compost Science & Utilization 7: 55-62. Nelson, D.W, and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In Page, A.L. (ed.) Methods of Soil Analysis. Part 2. 2nd ed., ASA and SSSA, Wisconsin, USA. p. 570-571. Nora, G. 1993. Odor control progress. Biocycle March: 56-58. Pare, T., E.G. Gregorich, and H. Dinel. 1997. Effects of stockpiled and composted manures on germination and initial growth of cress (Lepidium sativum). Biological Agriculture and Horticulture 14: 1-14. Pare, T., H. Dinel, M. Schnitzer, and S. Dumontet. 1998. Transformatiosn of carbon and nitrogen during composting of animal manure and shredded paper. Biol. Fertil. Soils 26: 173-178. Parham, J.A., S.P. Deng, W.R. Raun, and G.V. Johnson. 2002. Long-term cattle manure application in soil. 1. Effect on soil phosphorus levels, microbial biomass C, and dehydrogenase and phosphatase activities. Biol. Fertil. Soils 35: 328-337. Pedra, F., C. Plaza, J.M. Fernandez, J.C. Garcia-Gil, and A. Polo. 2007. Effects of municipal solid waste compost and sewage sludge on chemical and spectroscopic properties of humic acids from a sandy Haplic Podzol and a clay loam Calcic Vertisol in Portugal. Waste Management doi:10.1016/j.wasman.2007.09.031. Penn, C.J., and B. Bryant. 2008. Phosphorus solubility in response to acidificstion of dairy manure amended soils. SSSAJ. 72: 238-243. Petersen, S.O., K. Henriksen, G.K. Mortensen, P.H. Krogh, K.K. Brandt, J. Sorensen, T. Madsen, J. Petersen, and C. Gron. 2003. Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil & Tillage Research 72: 139-152. Plaster, E.J. 1997. Soil Science and Management. 3rd ed. Delmar Publisher p. 169-170, 182-185. Quatmane, A., V.D. Orazio, M. Hafidi, and N. Senesi. 2002. Chemical and physicochemical characterization of humic acid-like materials from composts. Compost Science & Utilization 10: 39-46. Rhoades, J.D., P.J. Shouse, and N.A. Alves. 1990. Determining soil salinity from soil electrical conductivity using different models and estimates. SSSAJ. 54: 46-54. Rhoades, J.D., F. Chanduvi, and S. Lesch. 1999. Soil Salinity Assessment. FAO Irrigation and Drainage Paper. 57: 3-7. Said-Pullicino, D., F.G. Erriquens, and G. Gigliotti. 2007. Changes in the chemical characteristic of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresource Technology 98: 1822-1831. Said-Pullicino, D., and G. Gigliotti. 2007. Oxidative biodegradation of dissolved organic matter during composting. Chemosphere 68: 1030-1040. Sanchez-Monedero, M.A., A.Roig, J. Cegarra, and M.P. Bernal. 1999. Relationships between water-soluble carbonhydrate and phenol fractions and humification indices of different organic wastes during composting. Bioresource Technology 70: 193-201. Schnitzer, M. 1982. Organic matter characterization. In A.L. Page (ed.) Methods of Soil Analysis. Part 2. 2nd ed., ASA and SSSA, Wisconsin, USA. P. 591-592. Schonbeck, M. 2000. Soil nutrient balancing in sustainable vegetable production. Organic Farming Research Fundation Project Report No. 99-05. Schroder, J.L., H. Zhou, N. Basta, W.R. Raun, M.E. Payton, and A. Zazulak. 2008. The effect of long-term annual application of biosolids on soil properties, phosphorus, and metals. SSSAJ. 72: 73-82. Sellami, F., R. Jarboui, S. Hachicha, M. Chtourou, K. Medhioub, and E. Ammar. 2008. Co-composting of oil exhausted olive-cake, poultry manure and industrial residues of agro-food activity for soil amendment. Bioresource Technology 99: 1177-1188. Sellami, F., S. Hachicha, M. Chtourou, K. Medhioub, and E. Ammar. 2008. Maturity assessment of composted olive mill wastes using UV spectra and humification parameters. Bioresource Technology doi:10.1016/j.biortech.2008.01.055. Singer, M.J. and D.N. Munns. 2002. Soils. 5th ed. Prentice Hall. P.234-241. Singh, Y.P., and C.P. Singr. 1986a. Effect of different carbonaceous compound on the transformation of soil nutrients. Ⅰ. Immobilization and mineralization of applied nitrogen. Biol. Agric. Horti. 4: 19-26. Singh, Y.P., and C.P. Singr. 1986b. Effect of different carbonaceous compound on the transformation of soil nutrients. Ⅱ. Immobilization and mineralization of applied phosphorus. Biol. Agric. Horti. 4: 301-307. Smidt, E., and K. Meissl. 2007. The applicability of Fourier infrared (FT-IR) spectroscopy in waste management. Waste management 27: 268-276. Smith, S.R., V. Voods, and T.D. Evan. 1998. Nitrate dynamics in biosolids-treated soil, I. Influence of biosolids type and soil type. Bioresource Technology 66: 139-149. Soumare, M., A. Demeyer, F.M.G. Tack, and M.G. Verloo. 2002. Chemical characteristics of Malian and Belgian solid waste composts. Bioresources Technology 81: 97-101. Sugahara, K., Y. Harada, and A. Inoko. 1979. Color change of city refuse during composting process. Soil Sci. Plant Nutri. 25: 197-208. Sullivan, D.M., A.I. Bary, D.R. Thomas, S.C. Fransen, and C.G. Cogger. 2002. Food waste compost effects on fertilizer nitrogen efficiency, available nitrogen, and Tall Fescue. SSSAJ. 66:154-161. Sullivan, D.M., A.I. Bary, T.J. Nartea, and E.A. Myrhe. 2003. Nitrogen availability seven years after a high-rate food waste compost application. Compost Science & Utilization 11: 265-275. Sundberg, C., S. Smars, and H. Jonsson. 2004. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting. Bioresource Technology 95: 145-150. Tambone, F., P. Genevini, and F. Adani. 2007. The effect of short-term compost application on soil chemical properties and on nutritional status of maize plant. Composting Science and Utilization 15: 176-183. Tang, J.C., N. Maie, Y. Tada, and A. Katayama. 2006. Characterization of maturing process of cattle manure compost. Process Biochemistry 41: 380-389. Thomas, G.W. 1982. Exchangeable cation. In Page, A.L. (ed.) Methods of Soil Analysis. Part 2. 2nd ed., ASA and SSSA, Wisconsin, USA. p. 159-165. Tiquia S.M., and N.Y.F. Tam. 1998. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresource Technology 65: 43-49. Tognetti, C., M.J. Mazzarino, and F. Laos. 2007. Improving the quality municipal organic waste compost. Bioresource Technology 98: 1067-1076. Tsai, S.H., C.P. Liu, and S.S. Yang. 2007. Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes. Renewable Energy 32: 904-915. Walker, D.J., and M.P. Bernal. 2008. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresource Technology 99: 396-403. Wang, P., C.M. Changa, M.E. Watson, W.A. Dick, Y. Chen, and H.A.J. Hoitink. 2004. Maturity indices for composted dairy and pig manures. Soil Biology & Biochemistry 36: 767-776. Wang, W.D., X.F. Wang, J.B. Liu, M. Ishii, Y. Igarashi, and Z.J. Cui. 2007. Effect of oxygen concentration on the composting process and maturity. Compost Science & Utilization 15: 184-190. Wen, G., T.E. Bates, R.P. Voroney, J.P. Winter, and M.P. Schellenberg. 1999. Influence of application of sewage sludges, and sludge and manure composts on plant Ca and Mg concentration and soil extractability in field experiments. Nutrient Cycling in Agrosystems 55: 51-61. Whalen, J.K., and C. Chang. 2001. Phosphorus accumulation in cultivated soils from long-term annual application of cattle feedlet manure. J. Environ. Qual. 30: 229-237. White, R.E. 1987. Introduction to the Principles and Practice of Soil Science. Blackwell Scientific Publications. p.104, 216. Wong, J.W.C., K.F. Mak, N.W. Chan, A. Lam, M. Fang, L.X. Zhou, Q.T. Wu, and X.D. Liao. 2001. Co-compost of soybean residues and leaves in Hong Kong. Bioresource Technol. 76: 77-106. Wu, L., L.Q. Ma, and G.A. Martinez. 2000. Comparison of methods for evaluating stability and maturity of biosolid compost. J. Environ. Qual. 29: 424-429. Yang, S.S. 1997. Preparation of compost and evaluating its maturity. Extension Bulletin No. 408, Food and Fertilizer Technology Center for the Asian and Pacific Region, Taipei, Taiwan, ROC. Yun, Y.S., J.I. Park, M.S. Sun, and J.M. Park. 2000. Treatment of food wastes using slurry-phase decomposition. Bioresource Technol. 73: 21-27. Zheljazkov V.D., and P.R. Warman. 2004. Phytoavailability and fractionation of copper, manganese and zinc in soil following application of two composts to four crops. Environmental Pollution 131: 187-195. Zmora-Nahum, S., O. Markovitch, J. Tarchitzky, and Y. Chen. 2005. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biology & Biochemistry 37: 2019-2116. Zubillaga, M.S., and R.S. Lavado. 2006. Phytotoxicity of biosolids compost at different degrees of maturity compared to biosolids and animal manures. Compost Science & Utilization 14(4): 267-270. Zucconi, F., M. Forte, A. Monaco, and M. deBertoldi. 1981a. Biological evaluation of compost maturity. Biocycle 22: 27-29. Zucconi, F., A. Pera, M. Forte, and M. deBertoldi. 1981b. Evaluating toxicity of immaturity compost. Biocycle 22: 54-57.
摘要: Food waste compost maturity is an important index for measurement of compost quality and for assessment of safety of land use because immature compost is detrimental to plant growth and the soil environmental. Current approaches assessing composts maturity are still not well documented. Hence, the main goals of this study are: 1. to conduct a survey on the characteristics of biodegradable food waste compost manufactured from three different disposal system, thus to identify their characteristics and to evaluate the safety and feasibility of using them as compost for crop production; 2. to evaluate the composting process of three disposal model of food waste compost and their characteristics; 3. to assess the adaptability of maturity indexes of food waste compost by chemical analysis; and 4. to study short-term effects on soil properties and nutrient uptake of Chinese cabbage (Pai-Choi) applying with a matured food waste compost. A comparison is made among three categories of food waste composts manufactured from anaerobic barrel system (7 samples), rapid-disposal machine system (28 samples), and conventional aerated piled system (40 samples). The results indicate the composts of anaerobic barrel system are observed with the highest moisture content (H2O), organic matter (OM), and crude lipid (CL), but the lowest pH and seed germination (SG) among all categories of food waste composts. While, the composts of rapid-disposal machine system show the highest EC, SG, content of Na, N, P, and Ca, but the lowest H2O. As to the composts of conventional aerated piled system, the highest pH, content of Mg and K, but the lowest EC and CL are presented. As with higher percentage of SG, consumers are prone to be misled to consider the rapid-disposal machine system as with best quality. It is need to notice that soil quality may be degraded further when applying composts of both systems of rapid-disposal machine and anaerobic barrel with very high content of CL and relatively low pH. However, the composts of conventional aerated piled system provide better balanced three major nutrients (N, P and K) benefiting the cultivation of vegetables and fruits. But, the other two systems may cause insufficient potassium supply when applying to vegetable fields and orchards. Therefore, conventional aerated piled food waste composts are very appropriate for recycling use as fertilizers incorporated back into fields. Food waste composts of rapid-disposal machine system and anaerobic barrel system can only serve as row materials for second composting, and should not directly broadcast to field lands. Food waste composted for 40-50 days by conventional aerated piled system conformed to the required regulation of SG. Seed germination (SG) and pH increase with composting time when aerated piled, while organic matter (OM), C/N ratio and CL decline with composting time. EC showed a trend of initial decrease followed by gradual increase during composting process. Crude lipid (CL) and pH presented a trend of gradual increase during composting with rapid-disposal machine system. As to OM, C/N ratio and EC, there was little change when composting with rapid-disposal machine system. The pH of leaching water from anaerobic barrel system lifted in the second week and slightly dropped in the third week. EC value increased with time of anaerobic barrel composting. Experiment of second aerobic composting of rapid-disposal system indicated adding 5% rice bran to composts had little influence on result or process of composting, while blending with 50% rice hull significantly raised the temperature and speeded earlier the purpose of raising the percentage of SG. A comparative study of chemical properties of 40 aerated piled composts of food waste sourced from communities, or commercial composting plants. The results showed CL, water soluble carbon (WSC), and WSC/total organic carbon (TOC) may be considered as the most adaptable parameters for assessing maturity of food waste compost. The absorption peak of UV-Vis spectra (190-280 nm) may be served as reference indexes of maturity, while pH, EC, OM, total nitrogen (TN), carbon to nitrogen ratio (C/N), cation exchange capacity (CEC), nutrients and contaminants may be considered solely as compost quality parameter, but not maturity indexes. The pot experiments of Chinese cabbage were conducted adding with a matured and aerated piled compost at 19.8, 27.8, 46.2 and 92.5 Mg/ha, respectively. The results indicated that food waste compost had short-term effects on soil with an increased EC, OM, available P, exchangeable K, Ca, Mg, Na, sodium adsorption ratio (SAR), sodium exchange percentage (ESP), and potassium exchange percentage (PEP). The degree of increase was significantly proportional to the amount of compost used. The 0.1 N HCl extractable Zn contents are significantly and proportionally increased with the amount of compost used. Whereas other heavy metals (Cd, Cr, Pb and Ni) contents in soil didn't increase. And copper content is decreased, in particular with the highest dose used. Plant analysis of Chinese cabbage (Pai-Choi) showed the increased uptake of sodium and nitrogen content were most significant, phosphorus also significant but that of magnesium were not significant. Plant calcium content was observed obviously reduced. Sodium content in both plant and soil were all increased with the amount of food waste composts but plant potassium was not increase with composts added.
廚餘堆肥腐熟度是評估堆肥品質和農地安全施用的重要指標,因為未腐熟的堆肥不利於植物生長和土壤環境。目前用於堆肥腐熟度評估的方法並不完備。本研究的主要目的有四:1.調查三種處理方式廚餘堆肥的特性,以確認廚餘堆肥產的安全性;2.三種廚餘堆肥化製程模式之評估及其特性分析;3.以化學分析評估廚餘堆肥腐熟度指標的適用性;以及4.腐熟廚餘堆肥施用對土壤性質與小白菜養分吸收的短期影響。 比較市面上廚餘桶(7樣品)、快速廚餘機(28樣品)和好氣堆積(40樣品)等三種廚餘處理方式之產品特性,結果顯示廚餘桶產品水分、有機質和粗脂肪含量最高,而pH值和發芽率最低;快速廚餘機產品電導度、發芽率、鈉含量、營養元素氮、磷和鈣含量最高,而含水量最低;好氣堆積方式產品pH值、營養元素鉀和鎂含量最高,而電導度和粗脂肪含量最低。快速廚餘機產品的高發芽率,易誤導消費者誤判堆肥品質。施用含高粗脂肪和低pH值的快速廚餘機和廚餘桶產品,可能導致土壤品質變差。以栽培蔬果為例,三要素以傳統好氣堆積者較為平衡,快速廚餘機和廚餘桶產品有鉀肥不足之慮。因此,廚餘堆肥要回歸農田當肥料使用,仍需以傳統好氣堆積方式為宜,廚餘桶及快速廚餘機產品只可當作堆肥原料,而不宜直接撒施於農田。 好氣堆積處理廚餘製成堆肥,約40-50天其產品發芽率可符合要求。傳統好氣處理方式的pH值和發芽率隨堆積時間增加而增加,有機質、碳氮比和粗脂肪則隨堆積時間而下降,電導度值呈先減後增趨勢;快速廚餘機在處理過程中pH值和粗脂肪有逐漸增加的趨勢,而有機質、碳氮比、發芽率和導電度則變化很少;廚餘桶收集之滲出水pH值在第二週增高,第三週則微幅降低,電導度隨時間的進程而增加。快速廚餘機產品無害化二次好氣醱酵試驗顯示,添加5%米糠對堆肥化過程或結果影響不大,稻殼添加至50%之增溫效果顯著,且較早達成發芽率提昇的目的。 採集社區或商業化堆肥場好氣堆積廚餘堆肥樣品40個,進行腐熟度化學分析評估。以含油分高的廚餘為堆肥原料,粗脂肪、水溶性碳、水溶性碳與有機態氮比值可作為廚餘堆肥腐熟度優選指標;水溶性碳之紫外光光譜(190-280 nm)吸收峰變化可作為腐熟度的參考指標。其他pH值、電導度值、有機質、全氮、碳氮比、陽離子交換容量、養分和污染物含量等是堆肥品質指標,而非腐熟度指標。 腐熟廚餘堆肥施用使土壤電導度值、有機質、有效磷、交換性鉀、鈣、鎂、鈉、鈉吸附比、交換性鈉百分比提高,尤其在最高用量(92.5公噸/公頃)時急遽增加;土壤0.1 N HCl抽出鋅,隨施用量增加而增加的趨勢,銅則降低,鉻、鎘、鉛和鎳含量不受影響或影響不大。隨著廚餘堆肥施用量的增加,小白菜植體中鈉和氮增加為極明顯,磷增加明顯,鎂影響不顯著,鈣顯著減少。小白菜植體鈉含量與土壤鈉含量隨廚餘堆肥施用量增加而顯著增加,植體鉀含量則否。
URI: http://hdl.handle.net/11455/28126
其他識別: U0005-2008200822113500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200822113500
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.