Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28129
標題: 應用製紙廢水及製味素廢水增加掩埋綠肥土壤的有機碳
Application of wastewater from paper and food seasoning industries with green manure to enhance soil organic carbon
作者: Lin, Chin-Ching
林晉卿
關鍵字: green manure
綠肥
wastewater
humic substance
organic carbon
廢水
腐植質
有機碳
出版社: 土壤環境科學系所
引用: 行政院農委會農糧署。2007。95年農業統計年報。 吳昭慧、連大進。1999。豆科綠肥作物新品種─綠肥大豆台南4號。台南區農業專訊第30期 1-3。 吳銘興。2007。濃縮糖蜜醱酵液在農業上的應用。96年度土壤肥料成果交流與展望研討會專刊 32-49。中華肥料協會 台中。 沈韶儀。1990。豬糞堆肥穩定化之探討。台灣大學農業化學研究所博士論文。 巫嘉昌、朱鈞。1994。綠肥栽培與利用。科學農業 42:259-265。 巫嘉昌、朱鈞。1996。茶園間植綠肥作物對土壤肥力之影響。Chinese Agro. J. 6:241-253。 林家棻、李子純、張愛華、陳卿英。1973。長期連用同樣肥料對於土壤化學性質與稻谷收量之影響。農業研究 22:241-262。 林晉卿、洪崑煌。1995。豬糞、雞糞堆肥施用於土壤時氮素礦化量之預測。中華生質能源學會會誌 14(3-4):160-173。 林晉卿、楊秋忠。2003。南部地區三種常用綠肥在浸水土壤中氮素的礦化。中華生質能源學會會誌 22(1-2):17-28。 林晉卿、楊秋忠、林宏鋕、黃山內。2006。三種綠肥在浸水土壤可溶性有機碳的變化。台南區農業改良場研究彙報 47:17-30。 邱垂豐、楊盛勳。1999。茶園綠肥作物-黃花羽扇豆(魯冰)。台灣農業 35(2):38-41。 陳仁炫。1982。環狀含氮化合物對用紅壤為氧化觸媒生成腐植質之影響。國科會研究報告 NSC71-0409-B005-006。 陳琦玲、連深。1996。台灣若干土壤有機質分解、聚積之模擬及有機質肥料施用基準之試定。有機質肥料合理施用技術研討會專刊。171-188。農試所 霧峰。 陳尊賢。1994。土壤環境品質與永續農業發展。自然農法 11:20-37。 連大進。1994。台灣綠肥作物之栽培與推廣展望。農藥世界 127:28-32. 黃惠娟、曹文隆、張愛華。1995。春作綠肥作物適合性之評估。中華農業研究44:413-419。 黃圓滿、林世欽。1997。各種綠肥作物掩埋之效益評估。台灣農業 35:33-35。 黃啟民。1996。蔗渣之資源利用。台灣糖業研究所研究彙報151:41-53。 莊作權、李英明、陳鴻基。1997。在水稻與玉米輪作中施用不同有機質材對土壤二氧化碳釋放與土壤肥力之影響。中華生質能源學會會誌 16:81-91。 曾景山、王敏昭、王銀波。1997。三種堆肥加入兩種土壤後其腐植化物質結構特性之轉變。中國農化會誌 35:385-400. 楊秀青。1966。蔗田綠肥成分與其分解之研究。糖試所研究彙報 39:91-109。 賴文龍、黃山內、王錦堂。1989。稻田掩埋滿江紅對水稻生育之影響。台中區農業改良場研究彙報 24:3-11。 蕭舜煌。1986。木質磺酸鹽的氧化及轉化為土壤腐植酸之研究。國立中興大學土壤系研究所碩士論文。 蔡養正、薛亦晴。作物有機栽培與永續生產。永續資源學成 135-168。 簡宣裕、林錫錦、李啟彰。1994。滿江紅與固氮藍綠藻之研究。微生物肥料之開發與利用研討會專刊。台灣省農業試驗所特刊第四十四號 71-85 。 謝森展。1996。稻田生態對環境保育之影響。稻作生產改進策略研討會專刊。農業試驗所專刊 59:39-45。 謝慶芳、白坤山。1993。草屯有機米栽培法。永續農業研討會專輯 157-159。 羅瑞生、蘇楠榮。1989。酸性土壤於水稻-水稻-大豆輪作下長期施用石灰與作物殘體對土壤肥力及作物產量影響。台灣省政府農林廳土壤肥料試驗成果報告。 蘇育萩、鍾仁賜、黃振增、郭華仁、林鴻淇。1999。早苗蓼在浸水土壤中的礦化作用。中國農化會誌 37:215-224. Aiken, G.R., D.M. McKnight, R.L. Wershaw, and P. MacCarthy. 1985. Humic Substances in Soil, Sediment and Water. Geochemistry, Isolation and Characterization. Wiley-Intersci., New York. Albers, C.N., G.T. Banta, O.S. Jacobsen, and P.E. Hansen. 2008. Characterization and structural modeling of humic substances in field soil displaying significant differences from previously proposed structures. European J. Soil Sci. 59(4):693-705. Albrecht, R., F. Ziarelli, E. Alarcon-Gutierrez, J. Lepetit, G. Terrom, and C. Perissol. 2008. 13C solid-state NMR assessment of decomposition pattern during co-composting of sewage sludge and green wastes. European J. Soil Sci. 59(3):445- 452. Anderson, H.A., W. Bick, A. Hepburn, and M. Stewart. 1989. Nitrogen in humic substances. p. 223-256. In Hayes et al. (ed.) Humic Surstances. Academic Press, West Sussex. Andersson, S., S.I. Nilsson, and P. Saetre. 2000. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DOC) in mor humus as affected by temperature and pH. Soil Biology & Biochemistry. 32:1-10. Aoyama, M. 1985. Properties of fine and water-soluble fractions of several composts.Soil Sci. Plant Nutr. 31(2):189-198. Aoyama, M. 1991. Properties of fine and water-soluble fractions of several composts. Ⅱ. Organic forms of nitrogen, neutral sugars, and muramic acid in fractions. Soil Sci. Plant Nutr. 37(4): 629-637. Ayuso, M., T. Hernandez, C. Garcia, and J.A. Pascual. 1996. Biochemical and chemical-structural characterization of different organic materials used as manures. Bioresour. Technol. 57:201-207. Baes, A.U., and P.R. Bloom. 1989. Diffuse reflectance and transmission Fourier transform infrared spectroscopy of humic and fulvic acids. Soil Sci. Soc. Am. J. 53:695-700. Balesdent, J., G.H. Wagner, and A. Mariotti. 1988. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance.Soil Sci. Soc. Am. J. 52:118-124. Benzing-Purdie, L., J.A. Ripmeester, and C.M. Preston. 1983. Elucidation of nitrogen forms in melanoidins and humic acid by nitrogen-15 cross polarization-magic angle spinning nuclear magnetic resonance spectroscopy. J. Agric. Food Chem. 1:913-915. Bernal, M.P., A.F. Navarro, A. Roig, J. Cegarra, and D. García. 1996. Carbon and nitrogen transformation during composting of sweet sorghum bagasse. Biol Fertil Soils 22:141-148. Bernal, M.P., C. Paredes, M.A. Sanchez-Monedero, and J. Cegarra. 1998. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol. 63:91-99. Bigham, J.M., and J.M. Bartels. (ed.). 1996. Methods of soil analysis, Part 3. Chemical methods. p. 1390. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, USA. Boquet, D.J., and S.M. Dabney. 1991. Reseeding, biomass, and nitrogen content of selected winter legumes in grain sorghum culture. Agron. J. 83:144-148. Ciavatta, C., M. Govi, L. Pasotti, and P. Sequi. 1993. Changes in organic matter during stabilization of compost from municipal solid wastes. Bioresour. Technol. 43:141-145. Charest, M.H., and C.J. Beauchamp. 2002. Composting of de-inking paper sludge with poultry manure at three nitrogen levels using mechanical turning; behavior of physicochemical parameters. Bioresour. Technol. 81:7-17. Chefetz B., P.G. Hatcher, Y. Hadar, and Y. Chen. 1996. Chemical and biological characterization of organic matter during composting of municipal solid waste. J. Environ. Qual. 25:776-785. Chefetz B., P.G. Hatcher, Y. Hadar, and Y. Chen. 1998. Division S-2-Soil chemistry characterization of dissolved organic matter extracted from composted municipal solid waste. Soil Sci. Soc. Am. J. 62:326-332. Chefetz, B., F. Adani, P. Genevini, F. Tambone, Y. Hadar, and Y. Chen. 1998. Humic- acid transformation composting of municipal solid waste. J. Environ. Qual. 27:794-800. Chefetz, B., A.P. Deshmukh, and P.G. Hatcher. 2000. Pyrene sorption by natural matter. Environ. Sci. Technol. 34:2925-2930. Chefetz, B., M.J. Salloum, A.P. Deshmukh, and P.G. Hatcher. 2002. Structural components of humic acids as determined by chemical modifications and carbon-13 NMR, pyrolysis-, and thermochemolysis-gas chromatography/mass spectrometry. Soil Sci. Soc. Am. J. 66(4):1159-1171. Chefetz, B., J. Tarchitzky, A.P. Deshmukh, P.G. Hatcher, and Y. Chen. 2002. Structural characterization of soil organic matter and humic acids in particle-size fractions of an agricultural soil . Soil Sci. Soc. Am. J. 66(1):129-141. Chen, N. J. Y., and J. M. Bollag. 1992. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am. J. 56:135-140. Chen, Y., E.J. Johnson, B. Chefetz, L. Zhu, and B. Xing. 2005. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility. Environ. Sci. Technol. 39:6138-6146. Chen,Y., N. Senesi, and M. Schnitzer. 1977. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 41:352-358. Chien, Y.H., C.C. Chen, and J.H. Chen. 2005. Substitution of defatted soybean meal with condensed molasses fermentation soluble in diets for fingerling Nile Tilapia (Oreochromis niloticus L.) . J. Fish. Soc. Taiwan, 32(4): 317-325. Chino, M., S. Kanazawa, T. Mori, M. Araragi, and B. Kanke. 1983. Biochemical studies on composting of municipal sewage sludge mixed with rice hull. Soil Sci. Plant Nutr. 29(2):159-173. Cortez, J., and M. Schnitzer. 1979. Nucleic acid bases in soils and their association with organic and inorganic soil components. Can. J. Soil Sci. 59:277-286. Curnoe, W.E., D.C. Irving, C.B. Dow, G. Velema, and A. Unc. 2006. Effect of spring application of a paper mill soil conditioner on corn yield. Agron. J. 98:423-429. Dai, J., W. Ran, B. Xing, M. Gu, and L. Wang. 2006. Characterization of fulvic acid fractions obtained by sequential extraction with pH bufferes, water and ethanol from paddy fields. Geoderma. 135:284-295. Deiana, S., C. Gessa, B. Manunza, R. Rausa, and R. Seeber. 1990. Analytical and spectroscopic characterization of humic acids extracted from sewage sludge, manure, and worm compost. July. Vol. 150, No.1. Printed in U.S.A. De Nobili, M., G. Bragato, J.M. Alcaniz, A. Puigbo, and L. Comellas. 1990. Characterization of electrophoretic fractions of humic substances with different electrofocusing behavior. Soil Sci. 150:763-770. Entry, J. A. 2000. Influence of nitrogen on cellulose and lignin mineralization in blackwater and redwater forested wetland soils. Biol. Fertil. Soils 31:436-440. Eriksson, C. 1981. Maillard reactions in food. Prog. Food Nutr. Sci. 5:1-6. Pergamon Press, Oxford. Flaig, W., H. Beutelspacher, and E. Reitz. 1975. Chemical composition and physical properties of humic substances. p.1-207. In J. E. Gieseking (ed.) Soil components. Vol. 1. Springerverlag, New York. Flavel, T.C., and D.V. Murphy. 2006. Carbon and Nitrogen mineralization rates after application of organic amendments to soil. J. Environ. Qual. 35:183-193. Foley, B.J., and L.R. Cooperband. 2002. Paper mill residuals and compost effects on soil carbon and physical properties. J. Environ. Qual. 31:2086-2095. Forster, J.C., W. Zech, and E. Wurdinger. 1993. Comparison of chemical and microbiological methods for the characterization of the maturity of composts from contrasting sources. Biol Fertil Soils 16:93-99. Franzluebbers, K., R.W. Weaver, A.S.R. Juo, and A.J. Franzluebbers. 1994. Carbon and nitrogen mineralization from cowpea plants part decomposing in moist and in repeatedly dried and wetted soil. Soil Biol. Biochem. 26(10): 1379- 1387. Gagnon, B., R. Robitaille, and R.R. Simard. 1998. Characterization of several on-farm and industrial composted materials. Can. J. Soil Sci. 201-210. Garcia, C., T. Hernandez, and F. Costa. 1991. Study on water extract of sewage sludge composts. Soil Sci. Plant Nutr. 37:399-408. Garcia, C., T. Hernandez, and F. Costa. 1992. Comparison of Humic Acids Derived from City Refuse with More Developed Humic Acids. Soil Sci. Plant Nutr. 38:339-346. Gea, T., A. Artola, and A. Sanchez. 2005. Composting of de-inking sludge from the recylced paper manufactruing industry. Biroesour. Technol. 96:1161-1167. Gerzabek, M.H., F. Pichlmayer, H. Kirchmann, and G. Haberhauer. 1997. The response of soil organic matter to manure amendments in a long-term experiment at Ultuna, Sweden. Eur. J. Soil Sci. 48:273-282. Goering, H.K., and P.J. van Soest. 1970. Forage fiber analyses (apparatus, reagents, procedures and some applications). Agric. Handb. 379. USDA-ARS, Washington, DC. Gonzalez-Prieto, S. J., and T. Carballas. 1991. Composition of organic n in temperate humid region soils (NW Spain). Soil Biol. Biochem. 23:887-895. Gonzalez-Prieto, S.J., M. Carballas, M.C. Villar, M.C. Beloso, A. Cabaneiro, and T. Carballas. 1993. Carbon- and nitrogen- containing compounds in composted urban refuses. Bioresour. Tech. 45:115-121. Gonzalez-Vila, F.J., G. Almendros, and F. Madrid. 1999. Molecular alterations of organic fractions from urban waste in the course of composting and their further transformation in amended soil. Sci. Total Environ. 236:215- 229. Grote, M., S. Klinnert, and W. Bechmann. 2000. Comparison of degradation state and stability of different humic acids by means of chemolysis with tetramethyl- ammonium hydroxide. J. Environ. Monit. 2:165-169. Griffith, S.M., F.J. Sowden, and M. Schnitzer. 1976. The alkaline hydrolysis of acid- resistant soil and humic acid residues. Soil Biol Biochem. 8:529-531. Hagin, J., and A. Amberger. 1981. Contribution of fertilizers and manures to the N- and P- load of waters. A Computer Simulation, p.123. Final Rept. The Deutsche Forschungs Gemeinschaft from Technion, Israel. Haider, K., and J.P. Martin. 1967. Synthesis and transformation of phenolic compounds by Epicoccum nigrum in relation to humic acid formation. Soil Sci. Soc. Am. Proc. 31:766-772. Haider, K., J.P. Martin, and Z. Filip. 1975. Humus chemistry. p.195-244. In Paul and McLaren. (ed.) Soil Biochemistry. Vol. 4, Harada, Y., and A. Inoko. 1980. The measurement of the cation-exchange capacity of composts for the estimation of the degree of maturity. Soil Sci. Plant Nutr. 26(1):127-134. Harada, Y., A. Inoko, M. Tadaki, and T. Izawa. 1981. Maturing process of city refuse compost during piling. Soil Sci. Plant Nutr. 27(3):357-364. Hargrove, W.L. 1986. Winter legumes as a Nitrogen Source for no-till grain sorghum. Agron. J. 78:70-74. Harvey, G. R., D.R. Boran, L.A. Chesal, and J.M. Tokar. 1983. The structure of marine humic substances from unsaturated lipids. Nature (London) 309:244-246. Hatcher, P.G., M. Schnitzer, L.W. Dennis, and G.E. Maciel. 1981. Aromaticity of humic substances in soils. Soil Sci. Soc. AM. J. 45:1098-1093. Hayes, M.H.B. 1985. Extraction of humic substances from soil. p. 329-361. In G.R. Aiken et al.(ed.) Humic substances in soil, sediment and water. Geochemistry, isolation and characterization. Wiley Intersci., New York. Hayes, M.H.B., and F.L. Himes. 1986. Nature and properties of humus-mineral complexes. p. 103-158. In P.M. Huang and M. Schnitzer (ed.) Interactions of soil minerals with nature organics and microbes. Soil Sci. Soc. Amer. Spec. Publ. No. 17, Soil Sci. Soc. Am., Madison, WI. Hayes, M.H.B. and C.E. Clapp. 2001. Humic substances: considerations of composition, aspects of structure and environmental influences. Soil Sci. 166:723-737. Higuchi, T. 1980. Lignin structure and morphological distribution in plant cell wall. p. 1-20. In T.K. Tirk et al. (ed.) Lignin biodegradation:microbiology, chemistry, and potential application. Vol. Ⅰ. CRC Press Inc. Florida. Houng, K.H. 1980. Mineralization of soil organic matter. ASPAC-FFTC Book Series. No.18. Taipei, Taiwan. Hoveland, C.S., R.G. Durham, and J.H. Bouton. 1995. Management effects on productivity of Alfagraze alfalfa-tall fescue mixtures. J. Prod. Agric. 8(2):244- 248. Hsu, J.H. and S.L. Lo. 1999. Recycling of separated pig manure: Characterization of maturity and chemical fractionation of elements during composting. Wat. Sci. Tech. 40:121-127. Inbar, Y., Y. Chen, and Y. Hadar. 1989. Soil-state carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Sci. Soc. Am. J. 53:1695-1701. Inbar, Y., Y. Chen, Y. Hadar, and H.A.J. Hoitink. 1990. New approaches to compost maturity. Biocycle. 31:64-69. Indian, J. 1984. Molecular sieve chromatography and infrared spectra of fulvic and humic acid ractions extracted from soil and poultry litter. Soc. Soil Sci. 32:364-365. Ivarson, K.C., and M. Schnitzer. 1979. The biodegradability of the "unknown" soil nitrogen. Can. J. Soil Sci. 59:59-67. Jezierski, A, F. Czechowski, M. Jerzykiewicz, Y. Chen, and J. Drozd. 2000. Electron paramagnetic resonance (EPR) studies on stsble and transient radicals in humic acids from compost, soil, peat and brown coal. Spectrochimica Acta Part A, 56:379-385. Joaquim, C.G., E.D. Silva, A.A.S.C. Machado, and M.A.B.A. Silva. 1998. Acid-base properties of fulvic acids extracted from an untreated sewage sludge and from composted sludge.Wat. Res.32:441-449. Jokela, J., J. Rintala, A. Oikari, O. Reinikainen, K. Mutka, and T. Nyronen. 1997. Aerobic composting and anaerobic digestion of pulp and paper mill sludges. Water Sci. Technol. 36:181-188. Kapkiyai, J.J., N.K. Karanja, J.N. Qureshi, P.C. Smithson, and P.L. Woomer. 1999. Soil organic matter and nutrient dynamics in a Kenyan nitisol under long-term fertilizer and organic input management. Soil Bio. Biochem. 31:1773-1782. Kostov, D., V. Rankov, G. Atanacova, and J.M. Lynch. 1991. Decomposition of sawdust and bark reated with cellulose-decomposing microorganisms. Biol. Fertile Soils 11:105-110. Kononova, M.R. 1966. Soil organic matter. Pergamon Press, Oxford, 400-404. Koyo, Y. and Tomoo, H. 1980. Improvements in the method for fractional determination of soil organic nitrogen. Soil Sci. Plant Nutr. 26:469-481. Kumada, K., O. Sato, Y. Ohsuma, and S. Ohta. 1967. Humus composition of mountain soil in central japan with special reference to the distribution of P type humus acid. Soil Sci. Plant Nutr. 13:151-159. Leenheer, J.A. 1985. Fractionation techniques for aquatic humic substances. p. 409-429. In G. R. Aiken et al. (ed.) Humic substances in soil, sedment, and water. Johu Wiley & Sons, New York. Ledgard, S.F. 2001. Nitrogen cycling in low legume-based agriculture, with emphasis on legume/grass pastures. Plant Soil 228:43-59. Leinweber, P., and H.R. Schulten. 1997. Nonhydrolyzable organic nitrogen in soil size separates from long-term agricultural experiments. Soil Sci. Am. J., 62(2):383- 393. Liang, B.C., E.G. Gregorich, M. Schnitzer, and H.R. Schulten. 1996. Characterization of water extracts of tow manures and their adsorption on soils. Soil Sci. Soc. Am. J. 60:1758-1763. Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O''Neill, J.O. Skjemstad, J. Thies, F.J. Luizao, J. Petersen, and E.J. Neves. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70:1719-1730. Lo, R.S., and N.J. Su. 1989. Impact of supplementing calc and crop wastes on soil quality and crop yield under changing plantation of rice-rice-bean terms. Report of soil fertilizer Testing. Taiwan Provincial Agriculture & Forest Bureau. Lobartini, J.C., and K.H. Tan. 1988. Differences in humic acid characteristics as determined by carbon-13 nuclear magnetic resonance,scanning electron microscopy, and infrared analysis. Soil Sci. Soc. AM. J. 52:125-130. Lopez, R., D. Gondar, A. Iglesias, S. Fiol, J. Antelo, and F. Arce. Acid properties of fulvic and humic acids isolated from two acid forest soils under different vegetation cover and soil depth. European J. Soil Sci. accepted 13 March 2008. Maie, N., A. Watanabe, and M. Kimura. 2004. Chemical characteristics and potential source of fulvic acids leached from the plow layer of paddy soil. Geoderma. 120:309-323. Maita, Y., S. Montani, and S. Fukase. 1982. The effect of humic substances on amino acid distribution in marine sediments. Chem. Abstr. 97, 214880. Malcolm, R. 1985. Geochemistry of stream fulvic and humic substances. p. 181-209. In Aiken et al.(eds). Humic substances in Soils, Sediment, and Water. Wiley- Interscience, New York, Marschner, B., and A.D. Noble. 2000. Chemical and biological processes leading to the neutralisation of acidity in soil incubated with litter materials. Soil Biol. Biolchem. 32:805-813. Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Guide, A., Grootes, P.M., Hamer, U., Heim, A., Jandl, G.., Ji, R., Kaiser, K., Kalbitz, K., Kramer, C., Leinweber, P., Rethemeyer, J., Schäffer, A., Schmidt, M.W.I., Schwark, L., and G.L.B. Wiesenberg. 2008. How relevant is recalcitrance for the stabilization of organic matter in soil ? J. Plant Nutr. Soil Sci. 171:91-110. Martens, D.A. 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol. Biochem. 32:361-369. Martin, J.P., and K. Haider. 1976. Decomposition of specifically carbon-14-labeled ferulic acid: free and linked into model humic acid-type polymers. Soil Sci. Soc. Am. J. 40:377-380. Martin, J.P., and K. Haider. 1980a. A comparison of the use of phenolase and peroxidase for synthesis of model humic acid-type polymers. Soil Sci. Soc. Am. J. 44:983-988. Martin, J.P., and K. Haider. 1980b. Microbial degradation and stabilization of 13C-labelled lignins, phenols, and phenolic polymers in relation to soil humus formation. p. 77-100. In T.K. Kirk et al. (ed.) Lignin biodegradation: microbiology, chemistry, and potential applicationa. Vol. Ⅰ. CRC Press, Boca Raton, Florida. Martin, J.P., K. Haider, W.J. Farmer, and E. Fuster-Mathon. 1974. Decomposition and distribution of residual activity of some carbon-14-microbial polysaccharides and cells, glucose, cellulose, and wheat straw in soil. Soil Biol. Biochem. 6:221-230. Miikki, V., N. Senesi, and K. Hanninen. 1997. Characterization of humic Material formed by composting of domestic and industrial biowastes. Chemosphere 34(8):1639-1651. Mitchell, H.J., S.A. Hall, R. Stratford, J.L. Hall, and M.S. Barber. 1999. Differential induction of cinnamyl alcohol dehydrogenase during defensive lignification in wheat (Triticum aestivum L.) : characterisation of the major inducible form. Planta 208:31-37. Mondini, C., R. Chiumenti, F. da Borso, L. Leita, and M. De Nobili. 1996. Changes during processing in the organic matter of composted and air-dried poultry manure. Bioresour. Technol. 55:243-249. Munn, K.J., J. Evans, and P.M. Chalk. 2001. Nitrogen fixation characteristics of Rhizobium surviving in soils ‘equilibrated’ with sewage biosolids. Aust. J. Agric. Resl. 52:963-972. Nardi, S., F. Marari, A. Berti, M. Tosoni, and L. Giardini. 2004. Soil organic matter properties after 40 years of different use of organic and mineral fertilizers. Eur. J. Agron. 21:357-367. Navarro, A.F., J. Cegarra, A. Roig, and D. Garcia. 1993. Relationships between organic matter and carbon contents of organic wastes. Bioresour. Technol. 44:203-207. Niemeyer, J., Y. Chen, and J.M. Bollag. 1992. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am. J. 56:135-140. Nkana, J.C.V., F.M.G. Tack, and M.G. Verloo. 2001. Availability and plant uptake of nutrients following the application of paper pulp and lime to tropical acid soils. J. plant Nutr. Soil Sci. 164:329-334. Nyberg, G., A. Ekblad, R. Buresh, and P. Hogberg. 2002. Short-term patterns of carbon and nitrogen mineralization in a fallow field amended with green manures from agroforestry trees. Biol. Fertil. Soils. 36:18-25. O’Brien, T.A., S.J. Herbert, and A.V. Barker. 2002. Growth of corn in varing mixtures of paper mill sludge soil. Commun. Soil Sci. Plant Anal. 33:635-646. Page, A.L., R.H. Miller, and D.R. Keeney. 1982. Chemical and microbiogical properties. p. 168-169, 200-208, 228-240, 314-321, 414-426, 561-576, 595-622, 627-641, 645-658. In Chief (ed.) Methods of Soil Analysis Part2, 2nd ed. ASA Pub., Dwayne R. Buxton. Palm, C.A., K.E. Giller, P.L. Mafongoya, and M.J. Swift. 2001. Management of organic matter in tropics: translating theory into practice. Nutr. Cycl. Agroecosys. 61:63-75. Pare, T., F.P. Chalifour, J. Bourassa, and H. Antoun. 1993. Forage-corn production and N-fertilizer replacement values following 1 or 2 years of legumes. Can. J. Plant Sci. 73:477-493. Paul, K.I., A.S. Black, and M.K. Conyers. 2001. Effect of plant residue return on the development of surface soil pH gradients. Biol. Fertil. Soils 33:75-82. Perrsson, J. and H. Kirchmann. 1994. Carbon and nitrogen in arable soils as affected by supply of N fertilizers and organic manures. Agric. Ecosyst. Environ. 51:249-255. Preston, C.M. 1996. Applications of NMR to soil organic matter analysis: history and prospects. Soil Sci. 161:144-166. Prudent, P., M. Domeizel, C. Massiani, and O. Thomas. 1995. Gel chromatography separation and U.V. spectroscopic characterization of humic-like substances in urban. Sci. Total Environ. 172:229-235. Puget, P., and L.E. Drinkwater. 2001. Short-term dynamics of root-and shoot-derived carbon from a leguminous green manure. Soil Sci. Soc. Am. J. 65:771-779. Rasiah, V. 1999. Nitrogen immobilization/remineralization in legume-amended soils as influenced by texure and compaction. Commun. Soil Sci. Plant Anal. 30:829-841. Reddy, D.R., T.C. Feijtel, and W.H. Patrick. 1986. Effect of soil redox conditions on microbial oxidation of organic matter. p. 117-156. In Chen and Avnimelech (ed.) The Role of Organic Matter in Modern Agriculture. Martinus Nijhoff Pub., The Netherlands. Roig, A., A. Lax., J. Cegarra, F. Costa, and M.T. Hernadez. 1988. Cation exchange capacity as a parameter for measuring the humification degree of manures. November. Vol. 146, No. 5. Printed in U.S.A. Roose, E., and B. Barthes. 2001. Organic matter management for soil conservation and productivity restoration in Africa; a contribution from Francophone research. Nutr. Cycl. Agroecosyst. 61:159-170. Salloum, M.J., B. Chefetz, and P.G. Hatcher. 2002. Phenanthrene sorption by aliphatic-rich natural organic matter. Environ. Sci. Tech. 36(9):1953-1958. Sanchez, J.E., T.C. Willson, K. Kizilkaya, E. Parker, and R.R. Harwood. 2001. Enchancing the mineralizable nitrogen pool through substrate diversity in long term cropping systems. Soil Sci. Soc. Am. J. 65:1442-1447. Saviozzi, A., R. Levi-Minzi, and R. Riffaldi. 1988. Maturity evaluation of organic waste. Researchers offer guidelines for determining end product value to crops. Biocycl. 54-56. Schulten, H.R., and M. Schnitzer. 1995. Three-dimensional models for humic acids and soil organic matter. Naturwissenschaften 82:487-498. Schulten, H.R., and M. Schnitzer. 1997. Chemical model structures for soil organic matter and soils. Soil Sci., 162:115-130. Schulten, H.R., and M. Schnitzer. 1998. The chemistry of soil organic nitrogen: a review. Biol. Fertil. Soils 26:1-15. Schnitzer, M., and D.A. Hindle. 1980. Effect of peracetic acid oxidation on soil humic and fulvic acid components rich in “unknown” nitrogen. Can. J. Soil Sci. 45:177-184. Schnitzer, M. 1984. Nature of nitrogen in humic substances. p. 303-325. In Aiken et al. (ed.) Humic Substances in Soils, Sediment, and Water. Wiley-Interscience, New York. Schweers, W.H.M., and W. Vorher.1977. Possibilities of an economic and non-polluting ultilization of lignin. p. 85-89. In Soil organic matter studies. Vol. Ⅱ. International Atomic Energy Agency, Vienna. Sharpley, A.N., and S.J. Smith. 1995. Nitrogen and phosphorus in soils receiving manure. Soil Sci. 159:253-258. Shechter, M., B. Xing, F.D. Kopinke, and B. Chefetz. 2006. Competitive sorption-desorption behavior of Triazine herbicides with plant cuticular fractions. J. Agri. Food Chem. 54(20):7761-7768. Shindo, H. 1991. Elementary composition, humus composition, and decomposition in soil of charred grassland plants. Soil Sci. Plant Nutr. 37(4): 651-657. Singh, S., N. Ghashal, and K.P. Singh. 2007. Synchronizing nitrogen availability through application of organic inputs of varing resource quality in a tropical dry land agroecosystem. Appl. Soil Ecol. 36:164-175. Skjemstad, J.O., L.J. Janik, and J.A. Taylor. 1998. Non-living soil organic matter: what do we know about it ?. Aust. J. Exp. Agric. 38:667-680. Sorensen, H. 1962. Decomposition of lignin by soil bacteria and complex formation between autooxidized lignin and organic nitrogen compounds. J. Gen. Microbiol. 27:21-34. Sowden, F.J., Y. Chen, and M. Schnitzer. 1977. The nitrogen distribution in soils formed under widely differing climatic conditions. Geochim. Cosmochim. Acta 41:1524-1526. Stat Soft, Inc. 1995. STATISTICA for windows (computer program manual). Tulsa, OK: Stat Soft, Inc. 2325 East 13th Street, Tulsa, OK 74 104. Stevenson, F.J. 1994. Humus Chemistry: Genesis, Composition, Reactions. (2 ed.) John Wiley, New York. Stott, D.E., and J.P. Martin. 1990. Synthesis and degradation of natural and synthetic material in soil. p. 37-58. In McCarthy.et al. (ed.) Humic Substances in Soil and Crop Sciences: Selected Readings. SSSA, Inc., Madison, WI. Suflita, J.M., and J.M. Bollag. 1981. Polymerization of phenolic compounds by a soil-enzyme complex. Soil Sci. Soc. Am. J. 45:297-302. Sugahara, K. and A. Inoko. 1981.Composition analysis of humus and characterization of humic acid obtained from city refuse compost.Soil Sci. Plant Nutr. 27(2):213- 224. Sulce, S., D. Palma-Lopez, F. Jacquin, P.C. Vong, and G. Guiraud. 1996. Study of immobilization and remobilization of nitrogen fertilizer in cultivated soils by hydrolytic fractionation. Eur. J. Soil Sci. 47:249-255. Suzuki, M., K. Harada, and K. Kumada. 1975. Analysis of the rotting process of rice straw- calcium cyanamide mixture by physical fractionation.Soil Sci. Plant Nutr. 21(2):173- 183 . Swift, R.S. 1985. Fractionation of soil humic substances. p. 387-408. In: Aiken et al. (ed.) Humic Substances in Soil, Sediment and Water. John Wiley & Sons, New York. Tadon, H., M.P. Cuescas, and E.H. Tyner. 1968. An acid-free vanadate molybdate reagent for the determination of total P in soils. Soil Sci. Soc. Am. Proc. 32:48-51. Tsutsuki, K., and S. Kuwatsuka. 1984. Molecular size distribution of humic acids as affected by the ionic strength and the degree of humification. Soil Sci. Plant Nutr. 30(2):151-162. Vance, E.D. 2000. Agricultural site productivity; principles derived from long term experiments and their implications for intensively managed forests. Forest Ecol. Manage. 138:369-396. Villar, M.C., M.C. Beloso, M.J. Acea, A. Cabaneiro, S.J. González-Prieto, M. Carballas, M. Díaz-Raviña, and T. Carballas. 1993. Physical and chemical characterization of four composted urban refuses. Bioresour. Technol. 45:105- 113. Visser, S.A. 1983. Comparative study on the elementary composition of fulvic and humic acids of aquatic origin and from soils and microbial substrates. Water Res. 17: 1393-1396. Wang, T.S.C., S.W. Li, and P.M. Huang. 1978. Catalytic polymerization of phenolic compounds by a latosol. Soil Sci. 126(2):15-21. Willson, G.B., and D. David. 1986.Measuring compost stability - microbial respiration rate provides way to monitor compost process and maintain quality control. Biocycl. 34-37. Witt, C., U. Biker, C.C. Galicia, and J.C.G. Ottow. 2000. Dynamics of soil microbial biomass and nitrogen availability in a flooded rice soil amended with different C and N sources. Biol. Fertil. Soils 30:520-527. Yonebayashi, K., and T. Hattori. 1988. Chemical and biological studies on environmental humic acids I.Composition of elemental and functional groups of humic acids. Soil Sci. Plant Nutr. 34:571-584. Yonebayashi, K., and T. Hattori. 1989. Chemical and biological studies on environmental humic acids Ⅱ 1H-NMR and IR spectra of humic acids. Soil Sci. Plant Nutr. 35:383-392. Yoo, G., Art L. Spomer, and M.M. Wander. 2006. Regulation of carbon mineralization rates by soil structure and water in an agriculture field and a prairie-like soil. Geoderma. 135:16-25. Zhuo, S., and Q. Wen. 1992. Nitrogen forms in humic substances. Pedosphere 3:307 -315. Zier, N., R. Schiene, H. Koch, and K. Fischer. 1999. Agricultural reclamation of disturbed soils in a lignite mining area using municipal and coal wastes:the humus situation at the beginning of reclamation. Plant Soil 213:241-250.
摘要: This laboratory scale experiment was designed to study the suitability of organic wastes from paper and food seasoning industries to resolve the problem of fast carbon mineralization of organic materials after supplement of green manure, in an eye to improve the soil organic carbon for rice rotation system. To figure out the proper time point of waste water supplement, this study first investigates the variation of dissoluble organic carbon and hydrolyzable amino acid in terms of amending three kinds of green manures, namely sesbania, cratalaria, and soybean Tainan no. 4, which are commonly used in southern Taiwan, in two types of submerged soil, namely sandy alluvial and red soil under an incubating temperature of 25C. Experimental results reveal that variation of soil dissoluble organic carbon and hydrolyzable amino acid were significantly influenced by addition of green manures (P < 0.05). Acceleration of cumulative dissoluble organic carbon in both treated soils exhibits the fastest speed in the earliest seven days after incubation. In general, the highest CO2 evolution rate appears in the second to the fifth weeks and generally reaches the peak in the second week and decreases significantly, i.e. less than 0.5 ug g-1 soil hr-1, after 35 days, revealing a similar tendency with the one of the cumulative dissoluble organic carbon concentration. Thus, monitoring the CO2 evolution rate in soil helps to identify the peak of cumulative dissoluble organic carbon concentration. The maximum amount of accumulative mineral nitrogen can be observed in non-manure amended soil within the initial 4 days incubation, where manure amended soil reaches the highest density before 28 days. However, the largest amount of accumulative mineral nitrogen was found in manure amended alluvial soil after 35 days of incubation, indicating that the mineralization of nitrogen in soil was accelerated by supplement of additive green manure. The concentration of hydrolyzable amino acid was almost constant during the incubation period in manure amended soil, but it rapidly decreased in non-manure amended soil. Experiment result reveals that cumulative dissoluble organic carbon concentration reaches the peak after 14 days of incubation. Thus, supplement of waste water is set on the 15th day of soil incubation. Lignin-rich wastewater from paper industry and nitrogen-rich effluent from a food industry at suitably lower concentrations were used at two levels of green manure to enhance the soil organic carbon fraction over time. Both the groups of soils with or without Sesbania were incubated under submerged condition at 25C for 15 days. Wastewaters from paper industry (WP), food industry (WS), and a combination of WP+WS were added separately to both the treatment groups in flasks. After 103 days of incubation, from all the three treatments and control, total organic carbon and alkali soluble organic carbon fractions were analyzed. Results indicated that in all the three treatments containing green manure amended with industrial wastewaters, the organic carbon content increased significantly. The alkali-soluble organic carbon fraction was increased by 59% in the soil amended with green manure containing WS and by 31% in the treatment without green manure compared to control. The paper mill waste water namely, WP, increased the organic carbon only in the soil containing green manure by 63%. The combined treatment of WP+WS with green manure increased alkali-soluble organic carbon fraction by 90% compared to control, while in the treatment without green manure, the organic carbon increase was 71%. Overall, the combined treatment WP+WS with green manure could increase the alkali-soluble organic carbon fraction more than all other treatments. Hence, wastewater rich in organics from paper and food industries can be efficiently used to temporarily increase the soil organic carbon conten and to decrease the mineralization of buried green manure.
本試驗主要目的為利用富含木質纖維素廢水及富含胺基酸的廢水,以克服綠肥掩埋入土壤後,有機質快速分解的難題,以提高土壤有機碳。為推測廢水加入的適當時機,首先探討兩種土壤(砂頁岩沖積土及紅壤)添加三種綠肥(田菁、太陽麻及綠肥大豆台南 4 號)在浸水、25°C 下,可溶性有機碳濃度及可水解胺基酸濃度的變化。實驗結果顯示,添加綠肥處理將造成土壤可溶有機碳濃度及可水解胺基酸濃度有顯著差異(P < 0.05)。添加綠肥處理土壤可溶有機碳濃度增加的速率,以孵育開始前 7 天最快,二氧化碳釋放速率的高峰期出現在孵育後第 2 週至第 5 週之間,且大多數在第 2 週達到最高,在第 35 天後快速減少,並且小於 0.5 ug g-1 hr-1。孵育期間,二氧化碳釋放速率與土壤可溶性有機碳的含量有近似的變化曲線。未加綠肥兩種土壤之最高氮釋放量於 4 天內到達,而添加綠肥的紅壤在 28 天之前可以到達最高,添加綠肥的沖積土則在 35 天才達到,且顯示添加綠肥可增加土壤的氮釋放量。由於實驗結果顯示土壤的可溶有機碳在孵育第 15 天幾乎可達最高濃度,故選擇第 15 天為加入工業廢水的時機。因為製紙廢水富含木質素,而製味素廢水富含胺基酸,本實驗繼而進行添加製紙廢水及製味素廢水來增加掩埋田菁土壤有機碳的研究,首先將紅壤分別以添加綠肥及未加綠肥處理,待浸水、25℃孵育15天後,再分別以不加廢水、添加製紙廢水、添加製味素廢水、添加製紙廢水及製味素廢水處理之。經繼續孵育103天後結果顯示,包含綠肥且添加廢水處理,有機碳濃度有明顯的增加,與對照處理相比,土壤中鹼可溶有機碳在綠肥添加製味素廢水處理增加 59%,在未加綠肥但添加製味素廢水處理增加 31%,製紙廢水只有在含有綠肥的土壤能增加鹼可溶有機碳 63%。未添加綠肥但以兩種廢水處理可增加 71%,添加綠肥且同時以兩種廢水處理,土壤鹼可溶有機碳可增加 90%,且其增加比例為全部處理最高。本實驗結果顯示利用製紙廢水或製味素廢水可以有效提高土壤的有機碳濃度,及減少綠肥之碳分解。
URI: http://hdl.handle.net/11455/28129
其他識別: U0005-2008200823331300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200823331300
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.