Please use this identifier to cite or link to this item:
標題: 經由不完全燃燒所產生之碳微粒吸附有機化合物之研究
Sorption study of organic compounds on pyrogenic carbon particles
作者: 蘇博信
Su, Po-Hsin
關鍵字: 黑碳,吸附,有機化合物
black carbons,sorption,organic compounds
出版社: 土壤環境科學系所
引用: Akaho, E., and Y. Fukumori. 2001. Studies on adsorption characteristics and mechanism of adsorption of chlorhexidine mainly by carbon black. J. Pharm. Sci. 90:1288-1297. Aksu, Z., and J. Yener. 2001. A comparative adsorption/boisorption study of mono-chlorinated phenols onto various sorbent. Waste Manage. 21:695-702. Atkinson, R. 1990. Gas-Phase Tropospheric Chemistry of Organic Compounds: A Review. Atmos. Envir. 24:1-41. Accardi-dey, A., and P.M. Gschwend. 2003. Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption. Environ. Sci. Technol. 37:99-106. Holmen, B.A. 1995. Polycyclic aromatic hydrocarbon sorption kinetics in three iron oxide-coated aquifer sands. Department of civil and environmental engineering. Bornemann, L.C., R.S. Kookana, and G. Welp. 2007. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere. 67:1033-1042. Brunauer, S., L.S. Deming, W.S. Deming, and E. Teller. 1940. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62: 1723-1732. Gonzalez-Garcia, C.M., M.L. Gonzalez-Martin, V. Gomez-Serrano, J.M. Bruque, and L. Labajos-Broncano. 2000. Determination of the free energy of adsorption on carbon blacks of a nonionic surfactant from aqueous solutions. Langmuir. 16:3950-3956. Bucheli, T. D., and O. Gustafsson. 2000. Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environ. Sci. Technol. 34:5144-5151. Bucheli, T. D., and O. Gustafsson. 2003. Soot sorption of non-ortho and ortho substituted PCBs. Chemosphere. 53:515-522. Burg, P., P. Fydrych, M.H. Abraham, M. Matt, and R. Gruber. 2000. The characterization of an activated carbon in terms of selectivity towards volatile organic compounds using and LSER approach. Fuel. 79: 1041-1045. Cal, M.P., S.M. Larson, and M.J. Rood. 1994. Experimental and modeled results describing the adsorption of acetone and benzene onto activated carbon fibers. Environ. Prog. 13:26-30. Cheng, C.H., J. Lehmann, J.E. Thies, S.D. Burton, and M. H. Engelhard. 2006. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 37:1477-1488. Chen, B., E.J. Johnson, B. Chefetz, L. Zhn, and B. Xing. 2005. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility. Environ. Sci. Technol. 39:6138-6146. Chiou, C.T., D.E. Kile, and D.W. Rutherford. 2000. Sorption of the selected organic compounds from water to a peat soil and its humic-acid and humic fractions potentiall sources of the sorption nonlinearity. Environ. Sci. Technol. 34:1254-1258. Cornelissen, G., J. Haftka, J. Parsons, and O. Gustafsson. 2005. Sorption to black carbon of organic compounds with varying polarity and planarity. Environ. Sci. Technol. 39:3688-3694. Cornelissen, G., M. Elmquist, I. Groth, and O. Gustafsson. 2004. Effect of sorbate planarity on environmental black carbon sorption. Environ. Sci. Technol. 38:3574-3580. Cornelissen, G., and O. Gustafsson. 2005. Importance of unburned coal carbon, black carbon, and amorphous organic carbon to phenanthrene sorption in sediments. Environ. Sci. Technol. 39:764-769. Cornelissen, G., and O. Gustafsson. 2004. Sorption of phenanthrene to environmental black carbon in sediment with without organic matter and native sorbates. Environ. Sci. Technol. 38:148-155. Cornelissen, O., and O. Gustafsson. 2006. Effect of added PAHs and precipitated humic acid coatings on phenanthrene sorption to environmental black carbon. Environ. Pollut. 141:526-531. Cornelissen, G., O. Gustafsson, T.D. Bucheli, M.T.O. Jonker, A.A. Koelmans, and P.C.M. van Noort. 2005. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 39:6881-6895. Cornelissen, G., Z. Kukulska, S. Kalaitzidis, K. Christanis, and O. Gustafsson. 2004. Relations between environmental black carbon sorption and geochemical sorbent characteristics. Environ. Sci. Technol. 38:3632-3640. Dickerson, R.R., M.O. Andreae, T. Campos, O.L. Mayol-Bracero, C. Neusuess, and D.G. Streets. 2002. Analysis of black carbon and carbon monoxide observed over the Indian Ocean: Implications for emissions and photochemistry. J. Geophys. Res. 107:8017-8025. Dimotakis, E.D., M.P. Cal, J. Economy, M.J. Rood, and S.M. Larson. 1995. Chemically treated activated carbon cloths for removal of volatile organic carbons from gas streams: evidence for enhanced physical adsorption. Environ Sci Technol. 29: 1876-1880. Dolidovich, A.F., and G.S. Akhremkova. 1999. Efremtsev vs novel technologies of VOC decontamination in fixed, moving and fluidized catalyst-adsorbent beds. J. Chem. Eng. 77:342-355. Freitas, J.C.C., T.J. Bonagamba, and F.G. Emmerich. 2001. Investigation of biomass- and polymer-based carbon materials using 13C high-resolution solid-state NMR. Carbon. 39:535-545. Frind, B. A., T. E. A. Ten Hulscher, and D. C. M. Van Noort. 2006. Kinetics of adsorption and desorption of some organchlorine compounds on black carbon in a sediment. Environ. Sci. Technol. 25:942-946. Foster, K.L., Fuerman, R.G., J. Economy, S.M. Larson, and M.J. Rood. 1992. Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers. Chem. Mater. 4:1068-1073. Goldberg, E.D. 1985. Black carbon in the environmental. John Wiley & Sons, New York. Gonazlo, A., K. Helike, and J. G. Francisco. 2003. Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy. Org. Geochem. 34:1559-1568. Gonzalez-Garcia, C.M., M.L. Gonzalez-Martin, V. Gomez-Serrano, and J.M. Yang, Y., and G. Sheng. 2003. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ. Sci. Technol. 37:3635-3639. Gregg, S.J., and K.S.W. Sing. 1982. In Adsorption, surface area and porosity. Academic Press, New York. Guo, Y., and R.M. Bustin. 1998. FT-IR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. Int. J. Coal Geol. 37:29-53. Gustafsson, O., and P.M. Gschwend. 1997. In molecular markers in environmental geochemistry, Eganhouse, R.P., Ed., ACS Symposium Series 671; American Chemical Society: Washing ton, DC, 365-381. Gustafsson, O., and P.M. Gschwend. 1998. The flux of black carbon to surface sediments on the New England continental shelf. Geochim. Cosmochim. Acta . 62:465-472 Holmen, B.A., and P.M. Gschwend. 1997. Estimating sorption rates of hydrophobic organic compounds in iron oxide- and aluminosilicate clay-coated aquifer sands. Environ. Sci. Technol. 31:105-113. Huang, W., T.M. Young, M.A. Schlautman, and J.W.J. Weber. 1997. Adistributed reactivity model for sorp ion by soil and sediments. 9. General isotherm nonlinearity and applicability of the dual reactive domain model. Environ. Sci. Technol. 31:1703-1710. James, G., D.A. Sabatini, C.T. Chiou, D. Rutherford, A.C. Scott, and H.K. Karapanagioti. 2005. Evaluating phenanthrene sorption on various wood chars. Water Research. 39:549–558. Jonker, M.T.O., and A.A. Koelmans. 2001. Polyoxymethylene solid phase extraction as a partitioning method fo hydrophobic organic chemicals in sediment and soot. Environ. Sci. Technol. 35:3742-3748. Ju, D., and T.M. Young. 2005. The influence of the rigidity of geosorbent organic matter on non-ideal sorption behaviors of chlorinated benzenes. Water Research. 39:2599-2610. Jung, M.W., K.H. Ahn, Y. Lee, K.P. Kim, J.S. Rhee, J.T. Park, and K.J. Paeng. 2001. Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchem. Journ. 70:123-131. Kubin, M. 1965. Beitrag zur theorie der chromatographie Ⅱ. Einfluss der diffusion ausserhalb und der adsorption innerhalb des sorbens-korns. Collecttion Czechoslov. Chem. Common. 30 Kucera, E. 1965. Contribution to the theory of chromatography-linear non-equilibrium elution chromatography. J. Chromatogr. 19:237-248. Kuhlbush, T.A.J. 1998. Black carbon and carbon cycle. Science. 280:1903-1903. Liang, C.S., Z. Dang, B.H. Mao, W.L. Hung, and C.O. Liu. 2005. Equilibrium sorption of phenanthrene by soil humic acid. Chemosphere. 63:1961-1968. Lin, Y., and P. Alexandridis. 2002. Temperature-dependent adsorption of Pluronic F127 Block copolymers onto carbon black particles dispersed in aqueous media. J. Amer. Chem. Soc. 106:10834-10844. Liou, T.H. 2004. Evolution of chemistry and morphology during the carbonization and combustion of rice husk. Carbon. 42:785-794 Luthy, R.G., G.R. Aiken, M.L. Brusseau, S.D. Cunningham, P.M. Gschwend, J.J. Pingatello, M. Reinhard, S.J. Traina, W.J. Weber, and J.C. Westall. 1997. Sequestration of hydrophobic orangic contaminants by geosorbents. Environ. Sci. Technol. 31:3341-3347. Masiello, C.A., and E.R.M. Druffel. 1998. Black carbon in deep-sea sediments. Science. 280:1911-1913. Morterra, C., M.J.D. Low, and A.G. Severdia. 1984. IR studies of carbon. 3. The oxidation of cellulose chars. Carbon. 22:5-12. Nguyen, T.H., and W.P. Ball. 2006. Absorption and adsorption of hydrophobic organic contamints to diesel and hexane soot. Environ. Sci. Technol. 40:2958-2964. Nyazi, K., A. Bacaoui, A. Yaacoubi, H. Darmstadt, A. Adnot, and C. Roy. 2005. Influence of carbon black surface chemistry on the adsorption of model hericides from aqueous solution. Carbon. 43:2215-2234. Penner, J.E., H. Eddleman, and T. Novakov. 1993. Towards the development of a global inventory for black carbon emissions. Atmo. Environ. Part a-General Topics. 278:1277-1295. Pignatello, J.J. 1998. Soil organic matter as a nanoporous sorbent of organic pollutants. Adv. Coll. Inter. Sci. 77:445-467. Pingtello, J.J., and B. Xing. 1996. Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30:1-11. Ruhl, M.J. 1993. Recover VOCs via adsorption onto activated carbon. Chem Eng Prog. 89:37-41. Schmidt, M.W.I., J.O. Skjemstad, C.I. Czimczik, B. Glaser, K.M. Prentice, Y. Gelinas, and T.A.J. Kuhlbusch. 2001. Comparative analysis of black carbon in soils. Glob. Biogeochem. Cycl. 15:163-167. Song, J., P. Peng, and A Huang. 2002. Black carbon and kerogen in soils and sediments. 1. Quantification and characterization. Environ. Sci. Technol. 36:3960-3967. Sun, H., and Z. Zhou. 2008. Impacts of charcoal characteristics on sorption of polycyclic aromatic hydrocarbons. Appl. Surf. Sci. 71:2113-2120. Suzuki, M. 1990. Adsorption Engineering, Kodansha Ltd. Tokyo and Elsevier Science Publishers B. V. Amsterdam. Tancrede, M., R. Wilson, L. Zeise, and E.A.C. Crouch. 1987. The carcinogenic risk of some organic vapors indoors: a theoretical survey. Atmos. Environ. 21:2187-205. Van Noort, P.C.M. 2003. A thermodynamics based estimation model for sorption of low-polarity organic compounds by high surfsce area carbonaceous materials in environmental sorbents. Environ. Toxicol. Chem. 22:1179-1188. Wang, X., and B. Xing. 2007. Sorption of organic contaminants by biopolymer-derived chars. Environ. Sci. Technol. 41:8342-8348. Weber, W.J., J.P.M. Mcginley, and L.E. Katz. 1992. A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments. Environ. Sci. Technol. 26:1955-1962. Xiao, B., Z. Yu, W. Huang, J. Song, and P. Peng. 2004. Black carbon and kerogen in soils and sediments: 2. their roles in equilibrium sorption of less-polar organic pollutants. Environ. Sci. Technol. 38:5842-5852. Xing, B., B. Gigliotti and J.J. Pignatello. 1996. Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environ. Sci. Technol. 30:2432-2440. Yang, Y., and G. Sheng. 2003. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ. Sci. Technol. 37:3635-3639. 陳世裕,1996,土壤中揮發性有機物質傳及吸附行為之研究,國立台灣大學環境工程學研究所博士論文。 史盟秀,2000,BTEX在幾種台灣主要土壤中之吸附與降解,國立屏東科技大學環境工程與科學系碩士論文。 陳孝仲,2003,氯酚污染物在土壤與水系統中分佈機制之探討,朝陽科技大學環境工程與管理系碩士論文。 李美雪,2006,多壁奈米碳管吸附揮發性有機氣體之現象與機制,國立中興大學土壤環境科學系碩士論文。 周士閔,2006,有機黏粒對揮發性有機氣體之脫附動力學與吸附機制之探討,國立中興大學土壤環境科學系碩士論文。 張蓉蓉,2006,碳化稻殼及椰殼之結構鑑定與其對2-氯酚之吸附行為,國立中興大學土壤環境科學系碩士論文。 黃盈盈,2006,重複萃取腐植酸之結構特性及其對2,4,6-三氯酚吸附之影響,國立中興大學土壤環境科學系碩士論文。 邱建韶,2007,稻田土壤中黑碳與其他成份對達有龍農藥吸附行為之研究,國立台灣大學工學院環境工程學研究所碩士論文。
摘要: Pyrogenic carbon particles such as carbon black, soot and charcoal et al., collectively termed black carbon (BC), have been reported to exhibit an extremely strong sorption of organic compounds in the environment. The sorption process dominated the fate and transport of organic contaminants in the soil and sediment environments. This study aims to analyse the characterization of black carbon and study the sorption behaviors and sorption mechanisms of several organic compounds in these black carbons in an aqueous phase. The results demonstrate that produced process and starting material are potential factors that can explain the sorptive variability of black carbons. Sorption kinetics of organic contaminants into black carbons revealed that around several hours were enough to reach sorption equilibrium. Sorption isotherms of organic compounds can be described by sorion models including linear equation, Freundlich equation, and Langmuir equation. The results showed that use Freundlich equation can describe the sorption of organic compounds on black carbon form aqueous solutions well. The surface properties of black carbons controlled by their production conditions and depend on their starting material. Because of the surface area of BC1 is more than BC3 and BC4, the sorption coefficients of aromatic compounds without functional groups on BC1 were larger than those on BC3 and BC4. Sorption behaviors of black carbons were affected by functional groups, so sorption capacity of aromatic compounds with functional groups on BC4 is more than BC3 due to more functional groups observed on BC 3. The surface properties of these pyrogenic carbon particles such as surface area and functional groups affected the sorption behaviors of these compounds. The sorption coefficients of organic compounds including polar and non-polar chemicals on black carbons have been obtained via a reversed-phase liquid chromatography (RP-LC) method. Because of the surface area of BC1 is more than the other black carbons, the sorption coefficients of organic chemicals on BC1 were larger than those on the other four black carbons. The effect of sorption behaviors on black carbons also depended suface functional groups, so sorption of aromatic compounds with functional groups on BC3 is larger than that of BC4. Five black carbons have mostly non-polar surface, the observed sorption coefficients of organic compounds on black carbons increased with their octanol-water partition coefficient values (Kow). The results obtained that sorption coefficients of chloroethylenes and chlorophenols on the black carbons became larger with more chloro atoms on the molecular structures of chloroethylenes and chlorophenols and larger with more carbon atoms on the benzene compounds. By the regression of the sorption coefficients of organic compounds on these black carbons with the properties of organic compounds, several linear solvation energy relationship (LSER) equations were built. The analysis of the interactions based on these LSERs indicated that the London dispersion force and interaction through π- and n- elactrons were the major adsorption interaction in the sorption process on black carbons. The effects of the dipolarity / polarisability, the hydrogen bond acidity, and the hydrogen bond basicity were less. For selected organic chemicals, some specific interactions occur during the sorption process. Several LSERs equations were developed to facilitate the prediction of different organic chemicals on black carbons. The better understanding of the sorption behaviors of organic chemicals into pyrogenic carbon particles can facilitate the fate transport and risk assessment processes of contaminants in the environment.
經由不完成燃燒所生成之碳微粒,包括黑碳、soot及charcoal等,總稱為黑碳(black carbon 或 BC),許多文獻指出當黑碳存在於環境中時,對於有機化合物具高吸附能力,而黑碳之吸附能力將對於有機化合物之宿命扮演重要之角色。本研究之目的為分析黑碳之基本性質及探討水溶液中黑碳對於有機化合物之吸附行為,並說明黑碳對於有機化合物之吸附機制。由分析資料得知,由於生成黑碳之起始物質及生成條件,所生成之黑碳基本性質也有所不同,而對於有機化合物之吸附造成重要之影響。 黑碳吸附有機化合物之等溫吸附曲線可用等溫吸附模式加以描述之,所使用之吸附模式包括線性模式,Freundlich模式,及Langmuir模式,而使用Freundlich模式對於黑碳吸附有機化合物有較佳之描述。由於BC1之比表面積較大,可吸附較多之有機化合物,故所求得之BC1吸附未含官能基之苯環化合物之吸附平衡常數較BC3及BC4大,而吸附行為也受官能基影響,使得BC3對於含官能基有機化合物之吸附能力大於BC4。經由不完全燃燒之碳微粒所生成之表面特性如比表面積及官能基等會影響黑碳吸附有機化合物之能力。 利用逆相液相層析法求得黑碳對於極性及非極性有機化合物之吸附平衡常數。由研究得知,BC1吸附有機化合物之吸附平衡常數較其他四種黑碳之吸附平衡常數大;這是由於黑碳之比表面積較大,故黑碳表面可吸附較多之有機化合物。而由於BC3對於含官能基有機化合物之吸附能力大於BC4,說明官能基也會對於黑碳在低濃度範圍下之吸附行為造成影響。而由於黑碳具有非極性表面,求得之吸附平衡常數隨著辛醇-水系數(Kow)增加而增加,顯示黑碳對於氯烯類及氯酚類有機化合物之吸附平衡常數皆有隨著含氯數增加而增加的趨勢。 而利用所得之吸附平衡常數與LSER參數將建立線性溶合能量關係式(LSER;linear solvation energy relationship),結果得知黑碳與有機化合物之間的主要作用力為倫敦分散力及π電子或未共用電子對之吸附作用力,而偶極-偶極或偶極-誘導偶極作用力及氫鍵作用力則對於吸附影響較小。而由於有機化合物之不同,黑碳所提供之吸附能力也有所不同。經由不完全燃燒所產生之碳微粒吸附有機化合物之了解,將可加以說明當含碳物質存在於自然界時,環境中有機汙染物之宿命及傳輸分布情形。
其他識別: U0005-2108200817154700
Appears in Collections:土壤環境科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.