Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28146
標題: 稻桿製成之黑炭對六價鉻之吸附和還原轉化作用
Sorption and reductive transformation of hexavalent chromium by black carbon derived from rice straw
作者: 許乃樺
HSu, Nai-Hua
關鍵字: 黑炭
Black carbon
六價鉻的吸附及還原
sorption of Cr(VI)
reduction of Cr(VI)
出版社: 土壤環境科學系所
引用: Adriano, D.C. 2001. Trace elements in the terrestrial environment: biogeochemistry, bioavailability, and risks of metals, 2nd ed. Springer, New York. Anderson, R.A. 1989. Essentiality of chromium in humans. Sci. Tot. Environ. 86:75-81. Annadurai, G., R.S. Juang, and D.J. Lee. 2002. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 92:263-274. Ball, J.W., and D.K. Nordstrom. 1998. Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous Ions, hydrolysis species, oxides, and hydroxides. J. Chem. Eng. Data 43:895-918. Ball, W.P., and P.V. Roberts. 1991. Long-term sorption of halogenated organic chemicals by aquifer material. 2. Intraparticle diffusion. Environ. Sci. Technol. 25:1237-1249. Bartlett, R.J., and J.M. Kimble. 1976a. Behavior of chromium in soils: I. Trivalent forms. J. Environ. Qual. 5:379-382. Bartlett, R.J., and J.M. Kimble. 1976b. Behavior of chromium in soils: II. Hexavalent forms. J. Environ. Qual. 5:383-386. Bartlett, R.J., and B.R. James. 1979. Behavior of chromium in soils: oxidation. J. Environ. Qual. 8:31-35. Bartlett, R.J., and B.R. James. 1988. Mobility and bioavailability of chromium in soils. p.267-304. In J.O. Nriagu, and E. Nieboer (ed.) Chromium in the netural and human environments. John Wiley & Sons, New York. Bartlett, R.J., B.R. James. 1996. Methods of soil analysis. 3rd ed. SSSA, Madison, WI. Binay K. Singh, N.S.R. 1994. Comparative sorption kinetic studies of phenolic compounds on fly ash and impregnated fly ash. J. Chem. Technol. Biotechnol. 61:57-65. Bishnoi, N.R., M. Bajaj, N. Sharma, and A. Gupta. 2004. Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresour. Technol. 91:305-307. Boehm, H.P. 1966. Chemical identification of surface groups. Advan. Catal. Volume 16:179-274. Calder, L.M. 1988. Chromium contamination of groundwater. In: Nriagu, J.O., Nieboer, E.(eds.), Chromium in natural and human environmental environments. Wiley Interscience, New York. Cheng, C.H., J. Lehmann, J.E. Thies, S.D. Burton, and M.H. Engelhard. 2006. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 37:1477-1488. Chun, Y., G. Sheng, C.T. Chiou, and B. Xing. 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 38:4649-4655. Cotton, F.A., and G. Wilkinson. 1980. Chromium. In: Advanced Inorganic Chemistry, a Comprehensive Text, 4th Edition. John Wiley, New York, pp. 719-736. Crutzen, P.J., and M.O. Andreae. 1990. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669-1678. Deng, B., and A.T. Stone. 1996. Surface-catalyzed chromium(VI) reduction: the TiO2-Cr(VI)-mandelic acid system. Environ. Sci. Technol. 30:463-472. Eary, L.E., and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22:972-977. Griffin, R.A., A.K. Au, and R.R. Frost. 1977. Effect of pH on adsorption of chromium from landfill-leachate by clay minerals. Environ. Sci. Health A12:431-449. Hammes, K., R.J. Smernik, J.O. Skjemstad, A. Herzog, U.F. Vogt, and M.W.I. Schmidt. 2006. Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification. Org. Geochem. 37:1629-1633. Han, F.X.X., A. Banin, Y. Su, D.L. Monts, M.J. Plodinec, W.L. Kingery, and G.E. Triplett. 2002. Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89:497-504. James, B.R., and R.J. Bartlett. 1983a. Behavior of chromium in soils:VI. interaction between oxidation-reduction and organic complexation. J. Environ. Qual. 12:177-181. James, B.R., and R.J. Bartlett. 1983b. Behavior of chromium in soils. V. Fate of organically complexed Cr(III) added to soil. J. Environ. Qual. 12:169-172. James, B.R., J.C. Petura, R.J. Vitale, and G.R. Mussoline. 1995. Hexavalent chromium extraction from soils: a Comparison of five methods. Environ. Sci. Technol. 29:2377-2381. Jardine, P.M., S.E. Fendorf, M.A. Mayes, I.L. Larsen, S.C. Brooks, and W.B. Bailey. 1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous Soil. Environ. Sci. Technol. 33:2939-2944. Kotas, J., and Z. Stasicka. 2000. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 107:263-283. Kozuh, N., J. Stupar, and B. Gorenc. 2000. Reduction and oxidation processes of chromium in Soils. Environ. Sci. Technol. 34:112-119. Kuhlbusch, T.A., and P.J. Crutzen. 1995. Toward a global estimate of black carbon in residues of vegetations fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem. Cycles 9:491-501. Leon y Leon, C.A., J.M. Solar, V. Calemma, and L.R. Radovic. 1992. Evidence for the protonation of basal plane sites on carbon. Carbon 30:797-811. Liang, B.J., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, and B. O''Neill. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70:1719-1730. Lopez-Ramon, M.V., F. Stoeckli, C. Moreno-Castilla, and F. Carrasco-Marin. 1999. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37:1215-1221. Makino, T., K. Kamewada, T. Hatta, Y. Takahashi, and Y. Sakurai. 1998. Determination of optimal chromium oxidation conditions and evaluation of soil oxidative activity in soils. J. Geochem. Explor. 64:435-441. Manceau, A., L. Charlet, M.C. Boisset, B. Didier, and L. Spadini. 1992. Sorption and speciation of heavy metals on hydrous Fe and Mn oxides.From microscopic to macroscopic. Appl. Clay Sci. 7:201-223. Masiello, C.A., and E.R.M. Druffel. 1998. Black carbon in deep-sea sediments. Science 280:1911-1913. Mohanty, K., M. Jha, B.C. Meikap, and M.N. Biswas. 2005. Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chem. Eng. Sci. 60:3049-3059. Montes-Moran, M.A., D. Suarez, J.A. Menendez, and E. Fuente. 2004. On the nature of basic sites on carbon surfaces: an overview. Carbon 42:1219-1225. Neiboer, E., and A.A. Jusys. 1988. Biologic chemistry of chromium. In: Niragu JO, Neibor(E) chromium in Natural of Human Enviroments. Wiley, New York. Park, D., Y.S. Yun, and J.M. Park. 2005. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere 60:1356-1364. Park, D., Y.S. Yun, and J.M. Park. 2008. XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. J. Colloid Interface Sci. 317:54-61. Penner, J.E., H. Eddleman, and T. Novakav. 1993. Toward the development of a global inventory for black carbon. Atmos. Environ. 27:1277-1295. Powell, R.M., R.W. Puls, S.K. Hightower, and D.A. Sabatini. 1995. Coupled iron corrosion and chromate reduction: mechanism for subsurface remediation. Environ. Sci. Technol. 29:1913-1922. Puri, B. 1970. Chemistry and physcis of carbon. In: Walker PL, New York: Dekker. . Rai, D., B.M. Sass, and D.A. Moore. 1987. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 26:345-349. Ravel, B., and M. Newville. 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12:537-541. Reddad, Z., C. Gerente, Y. Andres, and P. Le Cloirec. 2003. Mechanisms of Cr(III) and Cr(VI) removal from aqueous solutions by sugar beet pulp. Environ. Technol. 24:257-264. Richard, F.C., and A.C.M. Bourg. 1991. Aqueous geochemistry of chromium: a review. Water Res. 25:807-816. Sayers, D.E., and B. Bunker. 1988. EXAFS data analysis. p.211-253. In D.C. Koningsberger and R.Prins(ed). X-ray absorption principles, applications, techniques of EXAFS, SEXAFS and XANES. John Wiley and Sons, New York. Schmidt, M.W.I., and A.G. Noack. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem. Cycles 14:777-793. Solum, M.S., R.J. Pugmire, M. Jagtoyen, and F. Derbyshire. 1995. Evolution of carbon structure in chemically activated wood. Carbon 33:1247-1254. Wittbrodt, P.R., and C.D. Palmer. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ. Sci. Technol. 29:255-263. Wittbrodt, P.R., and C.D. Palmer. 1996. Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances. Environ. Sci. Technol. 30:2470-2477.
摘要: Black carbon (BC) is produced by incomplete combustion of various organic material including fossil fuels and vegetation. In rice paddy soils, the major source of black carbon is burning rice straw. Burning rice straw is a common post-harvest practice of rice production. Because black carbon is resistant to decomposition, a long-term rice production may result in the accumulation of BC in rice paddy soils to a considerable extent with respect to determining the fates of contaminants in soils. In this work, Cr(VI) sorption and reductive transformation on BC derived from rice straw were investigated. Rice straw was burned in the air and the resulting ash was treated with HCl/HF solution to remove soluble salts and silica. Sorption of Cr(VI) on BC was investigated under various pHs, Cr(VI) concentrations and ion strengths. After sorption experiments, the residual sorbents were analyzed by X-ray photoelectron spectroscopy(XPS) and Cr K-edge X-ray absorption near-edge structure (Cr K-edge XANES) to determine the structures of sorbed Cr. The results of Cr K-edge XANES and XPS revealed that Cr(VI) was sorbed and reduced to Cr(III) on BC. Thus, BC derived from rice straw is an effective sorbent and reductant for Cr(VI) and may play an important role in determining the fate of Cr(VI) in soils.
黑炭(black carbon)在環境中主要來自於各種有機物質的不完全燃燒所產生的含碳物質。在水田土壤中,黑炭則來自稻米生產的副產物-稻桿的焚燒。台灣在過去有很長的水稻種植歷史,因此推測水田土壤中應有相當量黑炭的存在,並可能影響污染物在水田土壤中的化學轉換和移動性,因此本研究的目的是探討稻桿衍生之黑炭對六價鉻的吸附和還原轉化作用。稻桿經過燃燒後,所得的灰燼進一步以HCl/HF處理以去除可溶性鹽類和矽,以收集其中的黑炭部份,分析顯示其表面具有酸鹼官能基。在不同的pH、離子強度、鉻濃度等實驗條件下將黑炭與六價鉻溶液反應,並以Cr的X光光電子光譜和X光吸收近邊緣結構分析鉻的結構和氧化還原組態。結果顯示,黑炭除了吸附六價鉻之外,還可進一步將其還原成三價鉻,三價鉻除了在表面形成沉澱外,並有部分被釋放至水溶液中。黑炭對Cr(VI)進行表面吸附,吸附於黑炭表面的Cr(VI)再被黑炭還原成Cr(III)。因此,稻桿衍生之黑炭為有效的吸附劑和還原劑,預期對六價鉻在土壤中的生物有效性和宿命將扮演重要的角色。
URI: http://hdl.handle.net/11455/28146
其他識別: U0005-2508200811162500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200811162500
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.