Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28165
標題: A Study of Upland Productivity in Taiwan Farmlands-Diagnosis and Improvement of Soil Internal Drainage, Compaction, and Strong Acidity
增進台灣農地旱作生產力-土壤内部排水、壓實、強酸性的問題診斷和改良系統的建立
作者: Tseng, Kuo-Jin
曾國珍
關鍵字: soil productivity
土壤生產力
soil problem diagnosis
soil improvement
土壤問題診斷
土壤改良
出版社: 土壤環境科學系所
引用: 孫存禮。 1988。 沖積土排水不良問題之發生與分級。 國立中興大學土壤學研究所碩士論文。 孫存禮、楊策群。 1989。 臺灣沖積土排水不良問題之發生。 中國農業化學會誌 27:38-45。 國立中興大學。 1969a。 彰化縣土壤調查報告。 國立中興大學。 1969b。 臺南縣土壤調查報告。 國立中興大學。 1971a。 嘉義縣土壤調查報告。 國立中興大學。 1971b。 屏東縣土壤調查報告。 國立中興大學。 1975a。 雲林縣土壤調查報告。 國立中興大學。 1975b。 高雄縣土壤調查報告。 國立中興大學。 1976。 臺中縣、南投縣土壤調查報告。 陳春泉。1976。桃園縣土壤調查報告。台灣省農業試驗所報告第33號。 陳春泉。1977。新竹縣、苗栗縣土壤調查報告。台灣省農業試驗所報告第34號。 陳春泉。1978。臺北縣,宜蘭縣土壤調查報告。台灣省農業試驗所報告第35號。 陳春泉。1979。花蓮縣、臺東縣土壤調查報告。台灣省農業試驗所報告第36號。 陳世雄。 1987。 臺灣轉作稻田土壤物理性限制因子之診斷及改良。 國立中興大學土壤學研究所博士論文。 陳世雄、鄭混元。 1990。 臺灣春作玉米低產之根系環境障礙。II. 土壤壓實及磷之影響。 農林學報39(2):167-174。 陳世雄。 1991。 玉米在紅壤及砂頁岩沖積土轉作田之灌溉水利用效率。農林學報40(2):29-38。 陳榮民、楊策群。 1985。 擬定蔗田灌溉制度的新觀念。 中華民國農團體七十四年度聯合年會特刊 77-95。 陳世楷、劉振宇。 2000。 水田滲漏/側滲之數值模擬。 農業工程學報46(2):1-23。 連深、王鐘和。 1983。 長期連用矽酸爐渣對水稻收量和土壤化學性質之影響。 中華農業研究 32(2):195-199。 黃祥慶、蔡宜峰。 1988。 椪柑園施用石灰之研究。 臺中區農業改良場研究彙報 20:23-31。 黃祥慶、蔡宜峰、賴文龍、王錦堂。 1989。 酸性土壤改良對蘿蔔產量及地力影響研究。臺中區農業改良場研究彙報 25:27-34。 曾國珍。 1981。 還原電位和總體密度對水稻根系分佈與產量的影響。 國立中興大學土壤學研究所碩士論文。 楊策群。 1988。 臺灣農田旱作生產力分級圖之調繪與應用。 林正錺‧蔡彰輝 編。農地生產力評估技術之開發與應用。 蔡東耀。 1990。 深層翻土改良土壤排水和壓實的效果。 國立中興大學土壤學研究所碩士論文。 譚增偉。 1987。 以灰斑層作為臺灣農田旱作生產分級之探討。 國立中興大學土壤學研究所碩士論文。 Adams, F., and B.L. Moore. 1983. Chemical factors affecting root growth in subsoil horizons of Coastal Plain soils. Soil Sci. Soc. Am. Proc. 47:99-102. Arkin, G.F., and H. M. Taylor. 1981. Modifying the root environment to reduce crop stress. ASAE Book Ser. No. 4. ASAE, Michhigan. Aylor, D. E., and J.Y. Parlange 1973. Vertical infiltration into layered soil. Soil Sci. Soc. Am. Proc. 37:673-676. Bertrand, A.R., and H. Kohnke. 1957. Subsoil condition and their effects on oxygen supply and the growth of corn roots. Soil Sci. Soc. Am. Proc. 21:135-140. Bouton, J., M.E. Sumner, J.E. Hammel, and H. Shahandeh. 1986. yield of an alfalfa germplasm selected for acid soil tolerance when grown in soil with modified subsoil. Crop Sci. 26:334-336. Bradford, J.M. 1986. Penetrability. In A.Klute (ed.). Methods of soil analysis, Part 1. 2nd. Edition Agronomy 9:463-478. ASA and SSSA, Madison, Wis. Eck, H.V., and H.M. Taylor 1969. Profile modification of a slowly permeable soil. Soil Sci. Soc. Am. Proc. 33:779-783. Ehlers, W., Kopke, U., Hesse, F., and Bohm, W. 1983. Penetration resistance and root growth of oats in tilled and untilled loess soil. Soil Tillage Res. 3:261-275. Foth, H.D., and B.G. Ellis. 1996. Soil fertility and plant nutrition. P.1-24. Soil fertility 2nd ed., CRC press LLC, New York. Gill, W.R., and R.D. Miller. 1956. A method for study of the influence of mechanical impedance and aeration on the growth of seedling roots. Soil Sci. Soc. Am. Proc. 20:154-157. Hammel, J.E., M.E. Sumer, and H. Shahandeh. 1985. Effect of physical and chemical profile modification on soybean and corn priduction. Soil Sci. Soc. Am. Proc. 49:1508-1511. Huck, M.G. 1970. Variation in toproot elongation rate as influenced by composition of the soil air. Agron. J. 62:815-818. Jury, W.A., W.R. Gardner, and W.H. Gardner. 1991. Water movement in soil. p.73-117. Soil physics, 5th ed., John Wiley & Sons. Inc, New York. Lathwell D.J. 1984 Crop response to lime in the Northeastern United States In “Soil Acidity and Liming” (F. Adams ed.) pp.305-332. Agronomy Monograph 12 2nd edition American Society of Agronomy, Madison, Wisconsin. Letey, L., L.H. Stolzy, and G.B. Blank. 1962. Effect of duration and timing of low oxygen content on shoot and root growth. Agron. J. 54:34-37. McKenzie, R.C., and M. Nyborg. 1984. Influnce of subsoil acidity on root development and crop grown in soils of Alberta and Northeastern British Columbia. Can. J. Soil Sci. 64:681-697. Mc Lean, E.O. 1982. Soil pH and Lime Requirement. In A.L. Page (ed.). Methods of soil analysis, Part 2. 2nd. Edition Agronomy 9:199-224. ASA and SSSA, Madison, Wis. Mech, S.J., G.M. Horner, L.M. Cox, and E.E. Cary. 1967. Soil profile modification by backhoe mixing and deep plowing. Trans. Am. Soc. Agric. Eng. 10:775-779. Miller, D.E., and W.H. Gardner. 1962. Water infiltration into stratified soil. Soil Sci. Soc. Am. Proc. 26:115-118. Musick, J.T., and D.A. Dusek. 1975. Deep tillage of graded-furrow-irrigated Pullman clay loam. Trans. Am. Soc. Agric. Eng. 18:263-269. Plaster, E.J. 1996. Soil water. P.55-72. Soil science & management. 3rd ed., Delmar, New York. Reeve, M.T., P.D. Smith, and A.J. Thmoson 1973. The effect of bulk density on water retention properties of field soil. J. Soil Sci. 24:355-367. Russel, R.S. 1977. Plant root systems: Their function and interaction with the soil. McGraw-Hill Book Company. London, England. Schuurman, J.J. 1965. Influence of soil density on root development and growth of oats. Plant and soil. 22:352-374. Soil survey Staff. 1975. Soil taxonomy. Agr. Handbook no. 436 U.S. Government Orinting Office, Washington, D.C. Soileau, J.M., O.P. Englestad, and J.B. Martin, Jr. 1969. Cotton growth ub an acid fragipan subsoil:Π. Effects of soluble calcium, magnesium, and aluminum on roots and tops. Soil Sci. Soc. Am. Proc. 33:919-924. Stephiewshki, W. 1980. Oxygen diffusion and strength as related to soil compaction. I. ODR. Pol. J. Soil Sci. 13:3. Sumner, M.E., H. Shahandeh, J. Bouton, and J. Hammel. 1986. Amelioration of an acid soil profile through deep liming and surface application of gypsum. Soil Sci. Soc. Am. Proc. 50:1254-1258. Taylor, H.M., C.E. Van Doren, C.L. Godfrey, and J.R. Coover. 1963. Soils of the Southwestern Great Plains Field Station. Texas Agric. Exp.Stn. Misc. Publ. MP-669, College Station. Taylor, H.M., and Ratliff, L.F. 1969. Root elongation rates of cotton and peanuts as a function of soil strength and soil water content. Soil Sci. 108:113-119. Unger, P. W. 1970. Water relations of a profile-modified slowly permeable soil. Soil Sci. Soc. Am. Proc. 34:492-495. Unger, P.W. 1993. Residual effects of soil profile modification on water infiltration, bulk density, and wheat yield. Agron. J. 85:656-659. Unger, P.W. and T.C. Kaspar 1994. Soil compaction and root growth: A Review. Agron. J. 86:759-766. Veihmeyer, F.J., and A.H. Hedrickson. 1948. Soil density and root penetration. Soil Sci. 65:487-493. Vepraskas, M.J., G.S. Miner, and G.F. Peedin. 1986. Relationships of dense tillage pans, soil properties, and subsoiling to tobacco root growth. Soil Sci. Soc. Am. Proc. 50:1541-1546. Vepraskas, M.J., and M.G. Wagger. 1990. Corn root distribution and yield response to subsoiling for Paleudults having different aggregate sizes. Soil Sci. Soc. Am. Proc. 54:849-854. Williamson, R.E., 1964. The effect of root aeration on plant growth. Soil Sci. Soc. Am. Proc. 28:86-90 Wopereis, M.C.S., J.H.M. Wosten, J. Bouma and T. Woodhead. 1992. Hudraulic resistance in puddle rice soils: measurement and effects on water movement. Soil Tillage Res. 24:199-209. Yang, T.C., and C.F. Lin. 1975. Seasonal distribution of oxygen in a sandstone and shale alluvial soil and its effect on the growth of corn (in Chinese). Proc. National Sci. Council 8:233-243.
摘要: 自八O年代起,臺灣的農業進入轉型期,政府陸續推動稻田轉作,農地釋出,積極加入WTO等政策,而且農產品的消費趨向高品質。從農地利用因應這階段的農業轉型,必須提出策略以增進土壤旱作生產力,提昇農業競爭力。健康的土壤根系環境可有效增進土壤旱作生產力。土壤內部排水不良、土壤壓實、強酸性土壤等問題在臺灣耕地土壤普遍發生,是限制土壤旱作生產力的重要因子。質地剖面是臺灣耕地土壤區分土系的依據,各種不同的質地層理組合更是耕地土壤的特性之一,也是造成土壤內部排水不良的主要原因,根據灰斑開始出現的深度而制定的排水分級,明確而容易辨識,而且依此排水分級進行田間校核的耕地面積約73萬公頃,結果顯示約80%存在排水問題。更有約30%屬排水極差。另外種植水稻是臺灣最主要的農地利用,最多種植面積曾達80萬公頃,因此土壤剖面普遍存在犁底層;在轉種旱作後,犁底層成為限制根系伸展的重要因子;深層壓實則普遍和排水不良同時發生。而土壤發育和超量施用化學肥料是土壤成強酸性的主因,臺灣耕地表土pH<5.5的面積約有20萬公頃。這三個因子嚴重影響作物生長和限制根系發育。 深層翻土的土壤改良工程技術,可有效解決土壤內部排水不良和壓實問題。配合施用石灰資材則可改良剖面深層的強酸性,增進土壤生產力。以深層翻土的方法改良作物的根系環境,種植香蕉,生長加速,提早抽穗,產量增加;種植彩色海芋花梗較長,品質提高;種植甘藍,可減少30%的黑腐病和軟腐病發病率;種植豇豆,根系深入60cm,降低萎凋病的發病率。改良後並做效益分析和建議篩選改良後種植的作物以提升農業競爭力。深層翻土配合施用足量石灰(每公頃25公噸)改良紅土強酸性剖面60 cm改良深度範圍的pH約80%提升至5.5以上。而且成功栽培夏季蕃茄,每分地收益可達10萬元以上;種植生薑則有根莖碩大,提高品質的效果。深層翻土後第6年,調查種植檸檬的生長,翻土280 公分的處理每株產量156公斤,翻土150公分的處理每株產量142公斤,對照區的每株產量僅120公斤左右。顯見翻土後第6年仍有改良的效果。深層翻土亦可增加土壤入滲速率達10 mm/hr~15 mm/hr,在降雨季節有助地下水補注,減少農作物水害損害,洪水災害,及減輕農田排水系統的負擔。 土壤問題診斷和改良可強化農地生產條件,種植高產值作物,增加農作物生產效益,提高農民收入。建立的旱作生產力增進系統,希望可作為提昇農業競爭力和農地規劃利用的決策參考。
Since 1990s, agriculture in Taiwan has entered a transition period. A series of agricultural policies, such as farmland-transplanting, farmland release, and joining the World Trade Organization (WTO), were implemented to meet consumers' demands for agricultural products of high quality. The objectives of the research were intended to establish upland productivity improvement system as a reference for decision makers to enhance the competency of farming industry and farmland planning in the time of agricultural transformation. Soil diagnosis can help to ameliorate the problems of farmlands derived from poor soil physical and chemical properties. In Taiwan, poor soil productivity of farmlands was commonly associated with three factors: poor soil internal drainage, compacted soil layers, and strong acidity. Poor soil internal drainage was mainly due to the stratification of different soil textures. A field survey of 730,000 ha. farmlands based on the guideline of the Drainage Grading System found that 80% of the surveyed areas had drainage problem, among them, 30% were graded as &quot;the worst&quot;. Compacted soil layers, e.g. plowpan in the soil profile of rice-growing fields, constrained the extension of plant roots, and deeply compacted soils were often found to have drainage problem. The third factor was soil acidity (pH < 5.5) caused by soil development and overuse of chemical fertilizers. Those three factors list above severely limited plant growth and root development. To simultaneously solve the problems of poor internal drainage, compacted soil layers, and soil acidity, a deep plowing technique with liming actions was formulated in this study. As a result, the soil productivity was greatly improved. The application of the deep plowing technique increased the productivity of banana and the quality of calla lily, reduced the incidence of black rot and soft rot diseases of cabbage by 30%, and reduced the incidence of Fusarium wilt disease of adzuki bean when the roots grew to reach 60 cm in depth. Applying limes (25 tones/ha.) along with the deep plowing technique could increase the pH of 80% treated soils (within 60 cm of soil profiles) to reach above pH 5.5. The gross profits of summer tomato grown in the remediated farmlands were 1,000,000 NT dollars per hectare; meanwhile, the size and quality of gingers were greatly enhanced in the remediated farmlands. The deep plowing technique also had long-term benefits. 6 years after its application in a lemon orchard, 156 kg and 142 kg of lemons were produced from each plant with the plowing depths of 280 cm and 150 cm, respectively, in comparison to the productivity of 120 kg lemons per plant grown in un-plowed lands, suggesting that the application of deep plowing technique could sustain soil productivity for at least 6 years. In addition to the advantages of agricultural productivity, deep soil plowing may increase the water infiltration rate up to 10 to 15 mm/hr, which could be useful for refilling groundwater in rainy seasons, decreasing crop damage by flooding, and reducing the load of drainage systems in the fields. Taken together, the approach used in this study efficiently increased crop productivities, created sustainable agricultural activities, and consequently increased farmers' incomes.
URI: http://hdl.handle.net/11455/28165
其他識別: U0005-0608200915173400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0608200915173400
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.