Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28174
標題: 氣候變遷與自然資源的經濟分析-以珊瑚礁、水資源為例
The Economic Analysis of Climate Changes on Natural Resources - The Evidences on Coral Reefs and Water Resource
作者: 朱蘭芬
Chu, Lan-Fen
關鍵字: Climate Change
氣候變遷
Natural Resources
Coral Reefs
自然資源
珊瑚礁
出版社: 應用經濟學系所
引用: Adams, R., C.C. Chen, B. McCarl, and R. Weiher (1999), The Economic Consequences of ENSO Events on Agriculture. Climate Research, 13(3), 165-172. Adams, R.M., K.J. Bryant, B.A. McCarl, D. Legler, J. O'Brien, A. Solow, and R. Weiher (1995). Value of Improved Long-Range Weather Information. Contemporary Economic Policy, 13, 10-19. Ahn, J.H. and H.S. Kim (2005). Nonlinear Modeling of El Niño /Southern Oscillation Index. Journal of Hydrologic Engineering, 10, 8-15. Allan, R., J. Lindesay, and D. Parker (1996). El Niño, Southern Oscillation and Climatic Variability. CSIRO Publishing, Melbourne. Andrews, D.W.K. (1993). Tests for Parameter Instability and Structural Change with Unknown Change Point. Econometrica, 61(4), 821-856. An S.I, and B.Wang (2000). Interdecadal Change of the Structure of the ENSO Mode and its Impact on the ENSO Frequency. Journal of Climate, 13, 2044-2055. Atkins, F. J. (2002). Multiple Structural Breaks in the Nominal Interest Rate and Inflation in Canada and the United States. Discussion Paper 2002-07. Bai, J. and P. Perron (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66(1), 47-78. Bai, J. and P. Perron (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1-22. Banerjee, A. and G. Urga (1997). Bootstrapping Sequential Tests for Multiple Structural Breaks. Discussion Paper No. 17-98, Center for Economic Forecasting, London Business School. Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics, 31, 307-327. Boussama, F. (2000). Asymptotic Normality for the Quasi-Maximum Likelihood Estimator of a GARCH Model. Comptes Rendus de l'Academie des Sciences, Serie I, 331: 81-84 (in French). Bougerol, P. and N. Picard (1992). Stationarity of GARCH Processes and of Some Non-Negative Time Series. Journal of Econometrics, 52, 115-127. Brain, J.L.B. and O.K. Adam (2008). Are There ENSO Signals in the Macroeconoomy. Ecological Economics, 64, 625-633. Brock, W.A., D. A. Hsieh, and B. LeBaron (1991). Nonlinear Dynamics, Chaos, and Instability: Statistical theory and economic evidence, MIT Press, Cambridge, Mass. Brunner, A.D. (2002). El Niño and World Primary Commodity Prices: Warm Water or Hot Air?. Review of Economics and statistics, 84, 176-183. Carrasco, M. and X. Chen (2002). Mixing and Moment Properties of Various GARCH and Stochastic Volatility Models. Econometric Theory, 18,17-39. Chan, F., C. Lim, and M. McAleer (2005). Modelling Mmultivariate International Tourism Demand and Volatility. Tourism Management, 26, 459-471. Chen, C.C., and B. McCarl (2000). The Value of ENSO Information: Considerations of Uncertainty and Trade. Journal of Agricultural and Resource Economics, 25:(2), 368-385. Chen, C.C., B. McCarl, and R. Adams (2001). Economic Implications of Potential ENSO Frequency and Strength Shifts. Climatic Change, 49, 147-159. Chen, C.C., B.A. McCarl, and H. Hill (2002). An Agricultural Value of ENSO Information under Alternative Phase Definition. Climatic Change, 54, 305-325. Chen, C.C., D. Gillig, B.A. McCarl, and L. Williams (2005). ENSO Impacts on Regional Water Management: Case Study of the Edwards Aquifer (Texas, USA). Climate Research, 28, 175-182. Chen, W.Y. (1982). Assessment of Southern Oscillation Sea-Level Pressure Indices. Monthly Weather Review, 111, 2371-2384. Chu, P.S. and R.W. Katz (1985). Modeling and Forecasting the Southern Oscillation: A Time-Domain Approach. Monthly Weather Review, 113, 1876-1888. Chow, G. C. (1960). Test of Equality Between sets of Coefficients in Two Linear Regressions. Econometrica, 28(3), 591-605. Davis, M., 2001. Late Victorian Holocausts. El Niño Famines and the Making of the Third World,” Verso, London. Debelle, G. and G, Stevens. (1995). Monetary Policy Goals for Inflation in Australia. Reserve Bank of Australia Research discussion paper no. 9503. Dickey, D.A., and Fuller, W.A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74, 427-431. Dickey, D.A., and Fuller, W.A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica, 49, 1057-1072. Dilley, M. (1997). Climatic Factors Affecting Annual Maize Yields in the Valley of Oaxaca, Mexico. International Journal of Climatology, 17, 1549-1557. Dracup, J.A., and E. Kahya (1994). The Relationships Between U.S. Streamflow and La Niña Events. Water Resources Research, 30(7), 2133-2141. Elie, L. and T. Jeantheau (1995). Consistency in Heteroskedastic Models. Comptes Rendus de l'Académie des Sciences, Série I, 320:1255-1258 (in French). Engle, R.F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987-1007. Environment, Harvard Medical School, Boston, MA. Glosten, L., R. Jagannathan and D. Runkle (1992). On the Relation Between the Expected Value and Volatility of Nominal Excess Return on Stocks. Journal of Finance, 46, 1779-1801. Gu D, Philander S.G.H. (1995). Secular Changes of Annual and Interannual Variability in the Tropics during the Past Century. Journal of Climate, 8, 864-876. Hall, A.D., J. Skalin, and T. Teräsvirta (2001). A Nonlinear Time Series Model of El Niño. Environmental Modeling and Software, 16, 139-146. Handler, P. (1983). Climatic Anomalies in the Tropical Pacific Ocean and Corn Yields in the United States. Science, 20, 1155-1156. Hansen, B.E. (2001). The New Econometrics of Structural Change: Dating Breaks in U.S. Labor Productivity. Journal of Economic Perspectives, 15(4), 117-128. He, C. and T. Teräsvirta (1999). Properties of Moments of a Family of GARCH Processes. Journal of Econometrics, 92, 173-192. Horel, J.D. and J.M. Wallace (1981). Planetary Scale Atmospheric Phenomena Associated with the Southern Oscillations. Monthly Weather Review, 109, 813-829. Intergovernmental Panel on Climate Change. 2001. Climate change 2001: synthesis report. A contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Watson, R. T. and the Core Writing Team (eds.)]. Cambridge University Press, New York, NY, USA. James, B., K.K. James, and D. Siegmund (1987). Tests for a Change Point. Biometrika,74(11), 71-83. Jeantheau, T. (1998). Strong Consistency of Estimators for Multivariate ARCH Models. Econometric Theory, 14, 70-86. Kane, R.P. (1998). ENSO Relationship to the Rainfall of Sri Lanka. International, Journal of Climatology, 18(8), 859-872. Kleeman R, and A.M. Moore (1999). A New Method for Determining the Reliability of Dynamical ENSO Prediction. Monthly Weather Review, 127, 694-705. Kovats, R.S., M.J. Bouma, S. Hajat, E. Worrall, A. Haines (2003). El Niño and Health. The Lancet. Published online May 20,2003 : http://image.thelancet.com/extras/02art5336web.pdf. Lee, C.C., C.C. Lee, and J.W. Hsiao (2008). Structural Breaks in the Real Interest Rate and Inflation: Evidence from Asian Countries. Journal of Chinese Statistical Associatio,, 46, 213-243. Lee, S.W. and B.E. Hansen (1994). Asymptotic Theory for the GARCH(1,1) Quasi-Maximum Likelihood Estimator. Econometric Theory, 10, 29-52. Li, W.K., S. Ling, M. McAleer (2002). Recent Theoretical Results for Time Series Models with GARCH Errors. Journal of Economic Surveys, 16, 245-269 (Reprinted in M. McAleer and L. Oxley (Eds.), Contributions to Financial Econometrics: Theoretical and Practical Issues. Blackwell, Oxford, 2002, pp. 9-33.). Ling, S. and W.K. Li (1997). On Fractionally Integrated Autoregressive Moving-Average Models with Conditional Heteroskedasticity. Journal of the American Statistical Association, 92, 1184-1194. Ling, S. and M. McAleer (2002a). Stationarity and the Existence of Moments of a Family of GARCH Processes. Journal of Econometrics, 106, 109-117. Ling, S. and M. McAleer (2002b). Necessary and Sufficient Moment Conditions for the GARCH(r,s) and Asymmetric Power GARCH(r,s) Models. Econometric Theory, 18, 722-729. Ling, S. and M. McAleer (2003a). Asymptotic Theory for a Vector ARMA-GARCH Model. Econometric Theory, 19, 278-308. Ling, S. and M. McAleer (2003b).On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors. Annals of Statistics, 31, 642-674. Ling, S. and W.K. Li (1997). On Fractionally Integrated Autoregressive Moving-Average Models with Conditional Heteroskedasticity. Journal of the American Statistical Association, 92, 1184-1194. McAleer, M., F. Chan, and D. Marinova (2007). An Econometric Analysis of Asymmetric Volatility: Theory and Application to Patents. Journal of Econometrics, 139, 259-284. McBride, J.L. and N. Nicholls (1983). Seasonal Relationships Between Australian Rainfall and the Southern Oscillation. Monthly Weather Review, 111, 1998-2004. Moss, M.E., C.P. Pearson, and A.I. McKerchar (1994). The Southern Oscillation Index as a predictor of the Probability of Low Streamflows in New Zealand. Water Resources Research, 30(10), 2717-2723. Naylor, R.L., Falcon, W.P., Rochberg, D., Wada, N. (2001). Using El Niño/Southern Oscillation Climate Data to Predict Rice Production in Indonesia. Climate Change, 50, 255-265. Nelson, D.B. (1990). Stationarity and Persistence in the GARCH(1,1) Model. Econometric Theory, 6, 318-334. Nelson, D.B. (1991). Conditional Heteroscedasticity in Asset Returns: a New Approach. Econometrica, 59, 347-370. Quandt, R. E. (1958). The Estimation of Parameters of a Linear Regression System Obeying Two Separate Regimes. Journal of the American Statistical Association, 53, 873-880. Piechota, T.C. and J. A. Dracup (1996). Drought and Regional Hydrologic Variation in the United States: Associations with the El Nino-Southern Oscillation. Water Resources Research, 32(5), 1359-1373. Quinn, W.H. and W.V. Burt (1972). Use of the Southern Oscillation in Weather Prediction. Jorunal of Applied Meteorology, 11, 616-628. Rasmusson, E.M. and T.H. Carpenter (1982). Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/ El Niños. Monthly Weather Review, 110, 354-384. Rasmusson, E.M. and T.H. Carpenter (1983). The Relationship between Eastern Equatorial Pacific Sea Surface Temperature and Rainfall Over India and Sri Lanka,” Monthly Weather Review, 110, 354-383. Ropelewski, C.F., and M.S. Halpert (1989). Precipitation Patter Aassociated with the High Index Phase of the Southern Oscillation. Journal of Climate, 2(3), 268- 284. Rosenzweig, C., Iglesias, A., Yang, X.B., Epstein, P.R., Chivian, E., 2000. Climate Change and U.S. Agriculture: Impacts of Warming and Extreme Weather Events on Productivity, Plant Diseases and Pests. Center for Health and the Global Rothstein, L.M., and D. Chen (1996). The El Niños /Southern Oscillation Phenomenon: Seeking its ‘Trigger' and Working Towards Prediction. Oceanus, 39, 39-41. Schwarz, G., (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6, 461-464. Shephard N. (1996). Statistical Aspects of ARCH and Stochastic Volatility. In: Cox D.R., Barndorff-Nielsen O.E., and Hinkley D.V. (Eds.), Time Series Models In Econometrics, Finance and Other Fields, Chapman and Hall, London, pp. 1-67. Shuzhen, P., Y. Huiling, J. Toole, B. Millard, M.J. McPhaden, L.J. Mangum (1990). Comparisons Among Autoregression Models for Forecasting El Niños Events. In Air-Sea Interaction in Tropical Western Pacific, Proceedings, US-PRC International TOGA Symposium. Solow, A.R. (1995). An Exploratory Analysis of a Record of El Niños Events, 1800-1987. Journal of the American Statistical Association, 90, 72-77. Solow, A., R.F. Adams, K.J. Bryant, D. Legler, J.O'Brien, B.A. McCarl, W. Nayda, and R. Weiher (1998). The Value of Improved ENSO Prediction to U.S. Agriculture. Climatic Change, 39, 47-60. Suppiah, R. (1997). Extremes of the Southern Oscillation and the Rainfall of Sri Lanka. International Journal of Climatology, 17(1), 87-101. Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999). Increased El Niño Frequency in a Climate Model Forced by Future Greenhouse Warming. Nature, 398, 694-97. Trenberth, K.E. (1976). Spatial and Temporal Variations of the Southern Oscillation. Quarterly Journal of the Royal Meteorology Society, 102, 639-653. Trenberth, K.E. (1984). Signal versus Noise in the Southern Oscillation. Monthly Weather Review, 112, 326-332. Trenberth, K.E. (1997). The Definition of El Niños. Bulletin of the American Meteorological Society, 78, 2771-2777. Trenberth, K.E and D. J. Shea (1987). On the Evolution of the Southern Oscillation. Monthly Weather Review, 115, 3078-3096. Trenberth, K.E. and T.J. Hoar (1996). The 1990-1995 El Niños-Southern Osciallation Event: Longest on Record. National Center for Atospgeric Research, Boulder, Colorado. Troup A.J. (1965). The Southern Oscillation. Quarterly Journal of the Royal Meteorological Society, 91, 490-506. Tziperman, E.,L. Stone, M.A. Cane, and H. Jarosh (1994. El Niños Chaos: Overlapping of Resonances Between the Seasonal Cycle and the Pacific Ocean-atmosphere Oscillator. Science, 264, 72-74. Walker, G. T. (1923). Correlation in Seasonal Variations of Weather (VIII): A Preliminary Study of World Weather. Memoirs of the Indian Meteorological Department, 24, 75-131. Wallace, J, E. Rasmusson, T. Mitchell, V. Kousky, E. Sarachik, H. von Storch (1998) On the Structure and Evolution of ENSO-Related ClimateVariability in the Tropical Pacific: Lessons. Journal of Geophysical Research, 103, 14241-14259. Wang, B. (1995). Interdecadal Changes in El Niño Onset in the Last Four Decades. Journal of Climate, 8, 267-285. Wang B, and Y. Wang (1996). Temporal Structure of the Southern Oscillation as Revealed by Waveform and Wavelet Analysis. Journal of Climate, 9, 1586-1598. Wong, H. and W.K. Li (1997). On a Multivariate Conditional Heteroscedasticity Model. Biometrika, 4, 111-123. Zebiak SE, and M.A. Cane (1991). Natural Climate Variability in a Coupled Model. In: Schlesinger ME (ed). Greenhouse Gas Induced Climate Change. Elsevier, Amsterdam, pp 457-470. Ahmed, M., G.M. Umali, C.K. Chong, M.F. Rull, and M.C. Garcia (2006). Valuing recreational and conservation benefits of coral reefs- The case of Bolinao, Philippines. Elsevier Ltd. Andersson, J.E.C. (2007). The recreational cost of coral bleaching- a stated and revealed preference study of international tourists. Ecological Economics, 62, 704-715. Arin, T. and R.A. Kramer (2002). Divers' willingness to pay to visit marine sanctuaries: an exploratory study. Ocean & Coastal Management, 45, 171-183. Asafu-Adjaye, J. and S. Tapsuwan (2004). A contingent valuation study of scuba diving benefits: case study in Mu Ko Similan Marine National Park, Thailand. Working Paper, 1-29. Ashenfelter, O., C. Harmon, and H. Oosterbeek (1999). A review of estimates of the schooling/earnings relationship, with tests for publication bias. Labour Economics, 6, 453-470. Bateman, I.J., A.P Jones (2003). Contrasting conventional with multi-level modelling approaches to meta-analysis: expectation consistency in UK woodland recreation values. Land Economics, 79, 235-258. Begg, C.B. and J.A. Berlin (1988). Publication bias: a problem in interpreting medical data. Journal of the Royal Statistical Society, 151, 419-463. Berkelmans, R., G. De'ath, S. Kininmonth, and W. Skirving (2004). A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation and predictions. Coral Reefs, 23, 74-83. Berg, H., M.C. Öhman, S. Troëng and O. Lindén. 1998. Environmental economics of coral reef destruction in Sri Lanka. Ambio, 27:627-634. Bhat, N.G. (2003). Application of non-market valuation to the Florida Keys marine reserve management. Journal of Environmental Management, 67, 315-325. Birkeland, C. eds. (1997). Life and death of coral reefs. International Thomson Publishing. Brander, L.M., P. Van Beukering, H.S.J. Ceser (2007). The recreational value of coral reefs: a meta-analysis. Ecological Economics, 63, 209-218. Brookshire, D.S. and H.R. Neill (1992). Benefit transfers; conceptual and empirical issues. Water Resources Research, 28, 651-655. Brouwer R. (2000). Environmental value transfer: state of art and future prospects. Ecological Economics, 32, 137-152. Brown B.E. (1997a). Coral bleaching: causes and consequences. Coral Reefs, 16, 129-138. Brown B.E. (1997b). Adaptations of reef corals to physical environment stress. Advanced Marine in Biology., 31, 221-299. Brown B.E. and Suharsono (1990). Damage and recovery of coral reefs affected by El Nino related seawater warming in the Thousand Island, Indonesia. Coral Reefs, 8, 163-170. Brown, K., W.N. Adger, E. Tompkins, and P. Baco (2001). Trade-off analysis for marine protected area management. Ecological Economics, 37, 417-434. Bruno, J.F. and E.R. Seling (2007). Regional decline of coral cover in the Indo -Pacific: timing, extent, and subregional comparisons. PLoS ONE. 2(8), e711. doi:10.1371/journal.phone.0000711. Bryant, D., L. Burke, J. McManus, and M.D. Spalding (1998). Reefs at risk: a map-based indicator of threats to the world's coral reefs. World Resources Institute: Washington, D.C, USA. Burke, L. and J. Maidens (2004). Reefs at risk in the Caribbean. World Resources Institute, Washington DC, pp80. Card, D. and A.B. Krueger (1995). Time-series minimum-wage studies: a meta-analysis. American Economic Review, 85, 238-243. Cesar, H. (1996). Economic analysis of Indonesian coral reefs. World Bank Environmental Development, Washington D.C, USA. Cesar, H., P. van Beukering, S. Pintz, and J. Dierking (2002). Economic valuation of Hawaiian reefs, Final Report. Cesar, H., L. Burke, L. Pet-Soede, 2003a. The economics of worldwide coral reef degradation. WWF and ICRAN. Coles, S.L. and B.E. Brown (2003). Coral bleaching-capacity for acclimatization and adaptation. Advances in Marine Biology, 46, 183-223. Cook, C., A. Logan, J. Ward, B. Luckhurst, and C. Berg (1990). Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event. Coral Reefs, 9, 45-49. Costanza, R., R. d'Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, s. Naeem, R.V. O'Neill, J. Paruelo, R. G. Raskin, P. Sutton, and M. van den Belt (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253-260. Crouch, G.I. (1994). Guidelines for the study of international tourism demand using regression analysis. In Travel, Tourism, and Hospitality Research (2nd ,ed), J.R. brend Ritchie and Charles R. Goeldner, editors. pp. 583-596 Wiley. Dalzell, P. and D. Schug (2001). Synopsis of information relating to sustainable coastal fisheries. SPREP-Strategic Action Programme for International Waters of the Pacific Islands Region. South Pacific Regional Environment Programme, Apia, Samoa. De Long, J.B. and K. Lang (1992). Are all economic hypotheses false?. Journal of Political Economy, 100, 1257-1272. Desvousges, W.H., F. R. Johnson and M. C. Ruby (1998). Using stated preferences and health-state classifications to estimate the value of health effects of air pollution: Final report. Prepared by Triangle Economic Research. Ottawa: Environment Canada and Health Canada. Dixon, J.A., Scura, L.F. and T. van't Hof (1993). Meeting ecological and economic goals: marine parks in the Caribbean. Ambio, 22(2-3), 117-125. Doucouliagos, C. (2005). Publication bias in the economic freedom and economic growth literature. Journal of Economic Surveys, 19(3), 367-387. Egger, M., G.D. Smith, M. Scheider, and C. Minder (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 316, 629-634. Egger, M. and G.D Smith (1998). Meta-analysis bias in location and selection of studies. British Medical Journal, 316, 61-66. Gates, R. (1990). Seawater temperature and sublethal coral bleaching in Jamaica. Coral Reefs, 8, 192-197. Glass, G.V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5, 3-8. Gleason, M.G. (1993). Effects of disturbance on coral communities: bleaching in Moorea, French Polynesia. Coral Reefs, 12, 193-201. Glynn, P.W (1984). Widespread coral mortality and the 1982/83 El Niño warming event. Environment Conservation, 11, 133-146. Glynn, P.W (1988). El Nino warming, coral mortality, and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea, 7, 129-160. Glynn, P.W. and L. D'Croz (1990). Experimental Evidence for high Temperature Stress as the Cause of El Nino-Coincident Coral Mortality. Coral Reefs, 8, 181-191. Glynn, P.W. (1991). Coral reef bleaching in the 1980s and possible connections with golbal warming. Trend Ecology & Evolution, 6, 175-179. Glynn, P.W. (1993). Coral reef bleaching: ecological perspectives. Coral reefs, 12, 1-17. Goreau. T.J. and R.L. Hayes (1994). Coral bleaching and ocean “hot spots”. Ambio, 23:176-180. Goreau. T.J., R.L. Hayes, J.W. Clark, D.J. Basta, and C.N. Robertson (1993). Elevated sea surface temperatures correlate with Caribbean coral reef bleaching. pp 225-255 in R.A. Geyer, editor. A global warming forum: scientific, economic, and legal overview. CRC Press, Ann Arbor, Michigan. Goreau, T.J., T. McClannhan, R. Hayes, and A. Strong (2000). Conservation of coral reefs after the 1998 global bleaching event. Conservation Biology, 14, 5-17. Görg, H. and E. Strobl (2001). Multinational cCompanies and productivity spillovers: a meta-analysis. Economic Journal, 111, 723-740. Guinotte, J.M., R.W. Buddemeier, and J.A. Kleypas (2003). Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific Basin. Coral Reefs, 22, 551-558. Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47 (1), 153-161. Hedges, L.V. and I. Olkin (1985). Statistical methods for meta-analysis. Orlando: Academic Press. Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world's coral reefs. Marine and Freshwater Research, 50, 839-866. Hughes T.P., A.H. Baird, D.R. Bellwood, M. Card, S.R. Connolly C. Folke, R. Grosberg, O. Hoegh-Guldberg, J.B.C. Jackson, J. Kleypas, J.M. Lough, P. Marshall, M. Nyström, S.R. Palumbi, J.M. Pandolfi, B. Rosen (2003). Climate change, human impacts, and the resilience. Science 301:929-933. Hughes, T.P., D.R. Bellwood, C. Folke, R.S. Steneck, and J. Wilson. (2005). New paradigms for supporting the resilience of marine ecosystems. Trends in Ecology and Evolution, 20, 380-386. Hundloe, T., F. Vancly and M. Carter (1987). Economic and socioeconomic impacts of the crown of thorns starfish on the Great Barrier Reef. Report to the Great Barrier Reef Marine Park Authority, Townsville, Australia. Jameson, S.C., J.W. McManus, and M.D. Spalding (1995). State of the reefs, regional and global perspectives. U.S. Department of State, Washington, D.C. Jokiel, P.L. (2004). Temperature stress and coral bleaching. pp. 401-425 in Coral Health and Disease (E. Rosenberg and Y. Loya, eds.). Springer, Berlin, Germany. Jokiel, P.L. and S.L. Coles (1990). Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs, 8, 155-162. Kaoru, Y. and V.K. Smith (1995). Can markets value air quality? A meta-analysis of hedonic property values models. Journal of Political Economy, 103, 209-227. Kayanne, H., S. Harii, H. Tamano, M. Tamura, Y. Ide, and F. Akimoto (1999). Changes in living coral coverage before and after the 1998 bleaching event on coral reef flats of Ishigaki Island, Ryukyu Islands. Galaxea, JCRS, 1, 73-82. Kenneth R., N. Anthony, S. R. Connolly, and Ove Hoegh-Guldberg (2007). Bleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regime. Linmol Oceanogr, 52, 716-726. Kirchhoff, S., B.G. Colby, and J.T. LaFrance (1997). Evaluating the performance of benefit transfer: an empirical inquiry. Journal of Environmental Economics and Management, 33, 75-93. Kleypas, J.A., R.W. Buddemeier, and J. Guttuso (2001). The future of coral reefs in an age of global change. International Journal of Earth Sciences, 90, 426-437. Knowlton, N. (2000). The future of coral reefs. Proceedings of the National Academy of Sciences. USA. 98: 5419-5425 Leeworthy, V.R. and J.M. Bowker (1997). Nonmarket economic user values of the Florida Keys/Key West. Silver Spring, MD: National Oceanic and Atmospheric Administration, Strategic Environmental Assessments Division. pp. 41. Lesser, M.P. (1997). Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs, 16, 187-192. Lim, C. (1999). A meta-analytic review of international tourism demand, Journal of Travel Research, 37, 273-84. Liam, C. and R. Mdndelsohn (2003). Valuing coral reefs: a travel cost analysis of the Great Barrier Reef. Ambio, 32(5), 353-357. McClanahan, T.R (2002). The Near Future of Coral Reefs. Environmental Conservation, 29, 460-483. McClanahan, T.R, M. Ateweberhan, N.A.J. Graham, S. K. Wilson, C. Ruiz Sebastián, M. M. M. Guillaume, J. H. Bruggemann (2007). Western Indian Ocean coral communities: bleaching responses and susceptibility to extinction. Marine Ecology Progress Series, 337, 1-13. McConnell, K.E. (1992). On-site time in the demand for recreation. American Journal of Agricultural Economics, 74(4), 918-925. Moberg, F. and C. Folke (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29, 215-33. Moffat, D., M.N. Ngoile, O. Linden, and J. Francis (1998). The reality of the Stomach: coastal management at the local level in eastern Africa. Ambio, 26, 590-598. Munro, J.L (1996). The Scope of Tropical Reef Fisheries and Ttheir Management. Pages 1-14 in Polunin, N.V.C. and C.M. Roberts. Reef Fisheries. Chapman and Hall, London. Ngazy, Z., N. Jiddawi, and H. Cesar (2001). Coral bleaching and the demand for coral reefs: a marine recreation case in Zanzibar. WorldFish Center. Economic valuation and policy priorities for sustainable management of coral reefs Nijkamp, P. and G. Vindigni (2003). The economics of biodiversity: a multivariate meta-analysis. Vrije Universiteit, Amsterdam. Pendleton, L.H. (1995). Valuing coral reef protection. Ocean & Coastal Mangement, 26, 119-131. Pham, K.N., V.H.S Tran, and H. Cesar (2005). Economic valuation of the Hon Mun marine protected area. Poverty Reduction and Environmental Management (PREM). Working Paper. 1-21. Reaka-Kudla, M.L., J.S. Feingold, and P.W. Glynn (1996). Experimental studies of rapid bioerosion of coral reefs in the Galapagos Island. Coral Reefs, 15, 101-107. Roberts, C. M., J. Hawkins, F. W. Schueler, A. E. Strong, and D. E. McAllister. (1998). The distribution of coral reef fish biodiversity: the climate-biodiversity connection. Fourth Session of the Conference of the Parties of the United Nations Framework Convention on Climate Change. United Nations, New York. Rosenberger, R S. and J.B. Loomis (2000). Using meta-analysis for benefit transfer: in-sample convergent validity tests of an outdoor recreation database. Water Resources Research, 36, 1097-1107. Rosenberger, R.S. and T.T Phipps (2002). Correspondence and convergence in benefit transfer accuracy: a meta-analytic review of the literature. Division of Resource Management, West Virginia University. Rosenthal, R. (1984). Meta-analytic procedures for social research. Beverly Hills: Sage. Rosenthal, R. and M.R. DiMatteo (2001). Meta-analysis: recent developments in quantitative methods for literature reviews. Annual Review of Psychology, 52, 59-82. Ruitenbeek, J. and C. Cartier (1999). Marine system valuation: an application to coral reef systems in the developing tropics. Final Report. World Bank Research Committee Project RPO# 682-22. Samonte-Tan, G.P.B., A.T. White, M.A. Tercero, J. Diviva, E. Tabara, C. Caballes (2007). Economic valuation of coastal and marine resources: Bohol Marine Triangle, Philippines. Coastal Management, 35, 19-338, Seenprachawong, U. (2002). An economic analysis of coral reef benefits from Phi Phi Island, Thailand. Proceedings of the coastal zone Asia-Pacific conference Shrestha, R.K. and J.B. Loomis (2001). Testing a meta-analysis model for benefit transfer in international outdoor recreation. Ecological Economics, 39, 67-83. Shrestha, R.K. and J.B. Loomis (2003). meta-analytic benefit transfer of outdoor recreation economic values: testing out-of-sample convergent validity. Environment and Resources Economics, 25, 79-100. Schmidt, F.L. and J.E Hunter (1977). Development of a general solution to the problem of validity generalization. Journal of Applied Psychology, 62, 529-540. Sebens, K.P. (1994). Biodiversity of Coral Reefs: What Are We Losing and Why?. American Zoologist, 34, 115-133. Smith, V.K. (1992). On separating defensible benefit transfers from smoke and mirrors. Water Resources Research, 28(3), 685-694. Smith, V.K. and J.C Huang (1995). Can markets value air quality? a meta-analysis of hedonic property value models. Journal of Political Economy, 103, 209-2027. Smith, V.K., Y. Kaoru (1990). Signals or noise? Explaining the variation in recreation. American Journal of Agricultural Economics, 72(2), 419-433. Stafford-Deitsch, J. (1993). Reef: A Safari Through the Coral World. Sierra Club Books, San Francisco. Stanley, T.D. (2001). Wheat from chaff: meta-analysis as quantitative literature review. Journal of Economic Perspectives, 15, 131-50. Stanley, T.D. (2005). Beyond publication bias. Journal of Economic Surveys, 19(3), 310-345. Sterling T.D. (1959). Publication decisions and their possible effects on inferences drawn from tests of significance. Journal of the American Statistical Association, 54, 30-34. Strong, A.E., E. Kearns, and K.K. Gjovig (2000). Sea surface temperature signals from satellities- an update. Geophys Res Letters, 27, 1667-1670. Sutton,A.J., S.J. Duval, R.L Tweedie, K.R. Abrams, and D.R .Jones (2000b). Empirical assessment of the effect of publication bias on meta-analyses. British Medical Journal, 320, 1574-1577. Taniguchi, H., K. Iwao and M. Omori (1999). Coral bleaching around Akajima, Okinawa: a report of the September 1998 survey. Galaxea, JCRS, 1, 59-64. Woodward, R.T. and Y-S, Wui (2001). The economic value of wetland services: a meta-analysis. Ecological Economics, 37, 257-270. Wright, M.G. (1995). An economic analysis of coral reef protection in Negril, Jamaica. Working Paper 11, Centre for Environment and Development, University of the West Indies at Mona, Kingston, Jamaica. Winter, A., R.S. Appeldoorn, A. Bruckner, E.H. Williams and Jr. C. Goenaga (1998). Sea surface temperatures and coral reef bleaching off La Parguera, Puerto Rico (Northeastern Caribbean Sea). Coral Reefs, 17, 377-382. Yeo, B.H. (2004). The recreational benefits of coral reefs: a case study of Pulau Payar Marine Park, Kedah, Malaysia. WorldFish Center. Economic Valuation and policy priorities for sustainable management of coral reefs. 108-117. IPCC Special Report on Emissions Scenarios (SRES), 2000. http://www.grida.no/climate/ipcc/emission/115.htm) Taiwan Agricultural Annual Statistics, Various versions, Council of Agriculture. Taiwan Agricultural Production Investigation Report, 2001, Council of Agriculture, Executive Yuan. Taiwan Municipal Water Demand Report, 2001, Water Resource Agency, Ministry of Economic Affairs. Taiwan Industry Water Demand Report, 2001, Water Resource Agency, Ministry of Economic Affairs. Taiwan Agricultural Water Demand Report, 2001, Water Resource Agency, Ministry of Economic Affairs. Adams, R.M., S.A. Hamilton, and B.A. McCarl (1986). The benefits of pollution control: The case of ozone and U.S. agriculture. American Journal of Agricultural Economic, 68, 886-893. Baumes, H. (1978). A Partial Equilibrium Sector Model of U.S. Agriculture Open to Trade: A Domestic Agricultural and Agricultural Trade Policy Analysis. Ph.D. Dissertation, Purdue University. Burton, R.O. and M.A. Martin (1987). Restrictions on herbicide use: an analysis of economic impacts on U.S. agriculture. North Central Journal of Agricultural Economics, 99, 181-194. Chang, C.C., B.A., McCarl, J.W., Mjelde, and J. W., Richardson (1992). Sectoral implications of farm program modification. American Journal of Agricultural Economics, 74, 38-49. Chen, C.C., D. Gillig, and B. McCarl (2001). Effects of climatic change on a water dependent regional economy: a study of the Texas Edwards Aquifer. Climatic Change, 49, 397-409. Chen, C.C., D. Gillig, B.A. McCarl, and L. Williams (2005). ENSO impacts on regional water management: A case study of the Texas Edwards Aquifer regio
摘要: 自工業革命以來,全球氣候變遷即不斷的在發生。大量石化燃料的使用促使二氧化碳、甲烷、一氧化碳、臭氧、氟氯碳化物、水蒸氣等溫室氣體的排放讓地球體系失去其調節氣候的功能,間接地造成了氣候變遷。所有溫室氣體對溫室效應的影響,以二氧化碳的影響最為嚴重,約佔六到七成。儘管自然界本身就會產生許多的溫室氣體,但藉由森林及海洋的調節,仍可使地球維持平衡。近幾年來,人類大量製造出來的溫室氣體,使得此平衡的機制遭受破會,不僅區域性氣候的變異性增高,也造成全球的氣候變遷。 氣候變遷後對地球最直接的影響即是水資源、農業生產以及生態系統受到衝擊。在水資源的議題方面,不均的降雨會導致雨量過多的地方發生洪災;雨量極少的地區即發生乾旱,亞洲地區的國家可能會因為此情況而產生農業生產力降低的現象,而美國東岸可能因此面臨更強的暴風雨,造成巨大的損失。由於台灣地處亞熱帶,為海島型自然環境,更易受氣候變遷的衝擊。氣候變遷對珊瑚礁的影響是多方面的;其中,最普遍的現象就是溫室效應導致海溫上升,促使台灣島附近海域的珊瑚數量減少或大規化珊瑚白化、疾病蔓延或者死亡,使得維持海洋生物多樣性的工作之困難度提升。水資源的不均,下雨的天數越來越少,乾旱與洪災出線的機率增加,在在皆使得台灣島地區南、北水源運用與調配受到重視。 最近,聖嬰現象被認為是導致氣候發生變化的因素之一,由於此現象的發生已有百年的歷史,故其相關研究也不勝枚舉。近數十年來,聖嬰現象的強度與週期都有發生改變的現象,有研究指出1982-1983以及1997-1998的強度都是歷年來罕見的強度,而1991~1995年聖嬰現象的週期也都有持續延長的特性。不論氣候變遷是起因於溫室氣體或是聖嬰現象,其所帶來的衝擊已成為各國政府施政的重要核心工作,為了更進一步掌握充分的訊息,投入經費於相關的研究工作也成為刻不容緩的任務。基於上述,本論文也提供三個與氣候變遷議題相關的研究,首先,探討影響氣候變遷主要因素-聖嬰現象的變異情形。在此研究中,我們利用時間序列的方法配適聖嬰現象發生的變異,並進一步找出發生變異的結構點,再找出結構點所區隔的期間中變異強弱的發生情況;其次,探討氣候變遷對珊瑚礁價值的影響;最後則探討氣候變遷對水資源調配的議題。 在聖嬰現象的變異情形中,很多文章指出聖嬰現象的強度與週期皆有發生變化的傾向並開始探討與證實,但以時間序列為主要分析方式的文章則不多,針對聖嬰現象的變化是否增強一說,需要由各種角度與方法切入探討,以增強其可信度。本文即以此作為研究動機,展開以時間序列之探求結構點變化之方法作為主要研究方法。研究的結果發現,聖嬰現象的變異在1998年4月發生了顯著的結構改變,即在1998年之後,聖嬰現象的變異有增強的趨勢。 珊瑚礁是造礁珊瑚群體骨骼再加上期間各種生物遺骸及海水沉積物所共同匯聚填充成的礁體。珊瑚骨架為其他生物、魚類的棲息場所,而生物死後鈣化的殘骸則填塞在空隙中形成新的基質,讓藻類及珊瑚再附著生長擴展,如此循環而使珊瑚礁增大,當珊瑚礁愈大,其基底下棲息的魚群愈多,生態系的生物多樣性愈加豐富。再者,有關珊瑚生態體系中各種生物間共生關係,有許多是人類尚未瞭解的,例如珊瑚礁是碳循環的一個關鍵,其鈣質骨骼生長的年輪忠實記錄各種古氣候資料,是研究地球氣候變遷的重要線索,由此可知,珊瑚不論學術或經濟上都有極珍貴的價值。 破壞珊瑚礁的因子可分為天然和人為破壞等兩大類。天然災害主要是暴風侵襲、大退潮、水溫升高、海平面上升等。其實,在許多情況下,這些天然因子可能是由人類活動間接或直接造成的。例如海水溫度升高,就可能由聖嬰現象或溫室效應所引起,而這些都與人類活動有關。根據國際珊瑚礁學會(International Society for Reef Studies)的統計,1998年全世界至少有五十個國家的珊瑚礁發生大量白化的現象,珊瑚白化的範圍非常廣,遍及太平洋、印度洋及大西洋的主要珊瑚礁區,而且從潮間帶一直延伸到水深二十公尺處,幾乎所有的石珊瑚和軟珊瑚都遭殃。因此,若能將海水溫度與珊瑚價值之間的關係予以數量化,可以具體化氣候變遷對珊瑚礁價值的影響。 本研究利用兩個階段的評估方法來討論氣候變遷所導致的海溫增高對珊瑚礁價值的影響。第一步驟即利用綜合分析(Meta-Analysis)先將珊瑚礁價值與珊瑚面積、珊瑚覆蓋率以及一些社經變數的關係估出。由於珊瑚礁偵測工作成本極高,而大部分的珊瑚礁多位於開發中國家或者是較為落後的地區,欲獲得珊瑚礁長期的監測資料或者是該地區以非市場財評估方法所衡量出來的價值資料是困難的,因為非市場財的評估方法成本高、花費時間也較長,也不可能針對每一個珊瑚座落點予以價值上的評估,因此以綜合分析(Meta-Analysis)為評估方法,可以克服各國資料不足的缺點,可以綜觀整個世界珊瑚礁所提供的相關價值。儘管此法可能會因為衡量方法、珊瑚座落點等差異而有估計誤差,但可彌補於珊瑚價值資料缺乏而造成研究無法進行的缺憾。第二步驟利用簡單迴歸估出珊瑚覆蓋率以及海水溫度(sea surface temperature, SST)的關係,然後結合兩迴歸方程式的係數乘積即得氣候變遷與珊瑚礁價值的關係。本研究估計結果發現海水溫每上升1℃將使將透過珊瑚覆蓋率的減少使得珊瑚礁的價值減少$19,615~$21,552。 台灣南部地區的環境受到地形、季風海洋等相關因素的影響,夏季期間多雨、高溫且多颱風;冬季期間則乾旱、多風或偶有寒潮。南部地區為台灣主要的農業地區,當農民無法掌握這些氣候變化時,農民將遭受損失,或者工業缺水時,對經濟也有頗大的影響。最近氣候變遷的情況加劇,促使原本降雨不均的台灣,乾旱季缺水發生的機率將提升,因此如何調配水資源的便成政府不可忽略的議題。第三個議題將利用線性規劃的分析,討論南部地區水資源運用的現況下,最適的移轉的價格與社會福利的情況,然後再將ECHAM4、CGCM2及HADCM3三種氣候變遷模式下不同的降雨變化情況納入考慮後,再求出考慮氣候變遷之後的水移轉均衡價格與社會福利變化的情形。
In recent years there has been growing concern over the issue of global climate change is dominated by human influences. Since 1800 various human activities have resulted in the emission of great volumes of gaseous materials into the atmosphere, which gradually increases earth's average temperature. These notable gaseous include carbon dioxide, methane, carbon monoxide, ozone and chlorofluorocarbons (CFCs), which absorb the earth''s radiation and destroy the function of climatic modulation, leading potentially to a warming of the earth''s surface, which in turn could alter the earth''s climate. The emitted carbon dioxide account for 60~70% among the involved gaseous emission, which has become a serious problem due to it has the longest life in the atmosphere, thus accumulating over time. From the point of view of nature, the earth would produce a lot of greenhouse gas by itself, and meanwhile the ocean and forests can modulate greenhouse gas by itself, making the operation of earth balance. During recent years, human activities have made the nature mechanism out of control, the regionally climatic variation and large-scale climate change all followed the failure mechanism of nature. Obviously, plants and animals in the natural environment of the world is dominated climate change. In addition, agricultural activities, water supplies, heating, hurricane and drought also deeply affected by climate change. Several key potential economic impacts have been identified. The impact of climate change on agricultural activities may be thought as the most important issue due to the agricultural products are the main living food for people. If the climate change occurs, the uncertainty for provision of world food will go up, and further makes the crisis of safe food appear all over the world. Recently, climate change has been linked to water resource due to water resource also affect the production process of agriculture. Climate change will affect water availability- quantity, quality, timing, and distribution. It will affect people who rely on water for everyday us. Taiwan is located in the subtropical zone surrounded by the ocean, facilitating Taiwan to receive the impacts of climate change. From the point of view of the precipitation, the climate change has a big influence on the distribution of precipitation form the north region to the southern region in Taiwan. The increasing tendency of uneven precipitation would lead the higher probability for the shortage of water supply in the drought season. This not only influences the agricultural water, but also influences the allocation of the whole social water resource. This influences, moreover, the whole social welfare and the economic development would be held back by lacking water in the industrial sector. From the point of view of the ecological resources, climate change has influenced coral reefs by different ways and the most general phenomenon is that the greenhouse effects cause the sea surface temperature to rise warmly, which makes coral reefs can not survive after large-scale sea surface temperature warmed up. In 1998, unprecedented worldwide coral bleaching coincided with some of the warmest sea surface temperature on record. This year experienced the strongest El Niño since the ENSO has been investigated. Coral bleaching was reported in at least 60 countries and states in the Pacific Ocean, Indian Ocean, Red Sea, Arabian Gulf, and the Caribbean. Only the central Pacific seemed to have been unaffected (Beaser, 2000). From the above-mentioned, it shows the issue related climate change has becoming more and more important investigation, inducing us to do some investigation about this issue. There are three essays in this thesis. First, the volatility of ENSO will be discussed by using time series model, and the structural point used to distinguish weather the variation of volatility of ENSO changed. Second, we will discuss the impact of climate change on coral reefs of the world. Finally, we will examine the influence of climate change on the transfer water price in the southern Taiwan. During the two decades, the ENSO phenomenon has a weighty tendency with strong intensity and frequency. Some researches indicate and point out that the intensity of 1982-1983 and 1997-1998 are all the rare intensity over the recent years, while the ENSO cycles are prolonged during 1991~1995. In our the first topic, we make an attempt to find an optimal volatility model, and further to find out a structure point as a line of demarcation of the variation of ENSO. By finding a structure point, we check weather the ENSO volatility has become stronger or weaker tendency. The second topic is about the world valuation of coral reefs. According to the report of the International Society for Reef Studies, there has been account for 50 countries of the world have occurred a large number and large scale coral bleaching and the main coral reef bleaching areas is from the Pacific Ocean, the Indian Ocean and the Atlantic Ocean have been extending from the intertidal zone to the 20 metres depth for the sea area, almost all the stone and soft coral have suffered the disaster. The main factor to destroy the coral reef can be divided into man-made and the natural calamity, the former includes over-fish, diving, poisoned fish and the latter includes sea surface temperature rising, the sea level rising. In the second topic, we use two stages to estimate the warmly sea surface temperature caused from the climate change on the valuation of coral reefs. The first step is to estimate the relationship between coral coverage rate and sea surface temperature by running a simple regression. The second step is to estimate the relationship between coral coverage rate, coral reefs area and the valuation of coral reefs by running a meta regression. The main reason to use a meta regression is that available data for coral reefs value is not so popular enough to do a cross analysis or a time series analysis in each region or country. By combining the above result of regression, we can get the relationship between the sea surface temperature and the valuation of coral reefs. The third topic is about the impact of the variation of precipitation resulted from the climate change on the water transfer price and the social welfare in the southern Taiwan. The southern areas are the main agricultural production in Taiwan. When peasants are unable to grasp the uncertainty factor (like uneven precipitation) resulted from climatic change, peasants will suffer economic losses. Moreover, when industrial sectors are in the face of water shortage, the economic development will be obstructed in southern Taiwan. Climate change has aggravated during the decade, making the higher probability of water shortage take place in this area, therefore how to improve the allocation of water resource has become an important policy for the government. Many researches have suggested that a good policy is about the water transfer from inefficient sector to efficient sector in this area. This good policy has not been enforced because the information about the water transfer price has not been set up. Therefore, the most important work is to come out with the relevant transfer price at present, and then the related transfer activities and the related subsidization could be enforce in the society. To this end, we try to use a mathematics programming model to calculate the present water transfer price and then to calculated the water transfer price after considering the variation resulted from the climate change. Under the consideration of climate change, the precipitation will be set up for three scenarios which are ECHAM4, CGCM2 and HADCM3 scenarios, and each scenario will have two types with A2 and B2, the water transfer price will be calculated again.
URI: http://hdl.handle.net/11455/28174
其他識別: U0005-2101200923463000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2101200923463000
Appears in Collections:應用經濟學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.