Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28182
標題: 含羞草屬植物之beta根瘤菌Burkholderia與Cupriavidus間結瘤的競爭作用
Competition by beta-rhizobia Burkholderia and Cupriavidus for nodulation of Mimosa spp.
作者: 周瑞興
Chou, Jui-Hsing
關鍵字: rhizobia
根瘤菌
Mimosa
nodulation
competition
polyphasic taxonomy
含羞草
結瘤作用
競爭作用
多相分類學
出版社: 土壤環境科學系所
引用: 吳天鳴、朱延和。2003。生命會自尋出路-細菌的抗藥性。科學發展4月,364期。p.64-73。 沈佛亭。2006。Gordonia菌屬放線菌之分子偵測、分類及鑑定。國立中興大學土壤研究所博士論文。 林良平。1987。土壤微生物(上/下冊),初版。國立編譯館,南山堂出版社。台北,台灣。 林冠穎。2007。海洋分離之Oceanicola marinus新種與ectoine生產之Marinococcus菌株特性研究。國立高雄海洋科技大學水產食品科學所碩士論文。 林稚蘭、黃秀梨。2000。現代微生物學與實驗技術。北京科學出版社。 洪美華。2002。台灣本土豆科植物根瘤菌分離及特性研究。國立中興大學土壤研究所碩士論文。 周儀如。2007。台灣本土四株新種細菌之分析與鑑定。國立高雄海洋科技大學水產食品科學所碩士論文。 陳佑誠。2002。本土快生型大豆根瘤菌之結瘤因子在共生感染中所扮演之角色。國立台灣大學農業化學研究所博士論文。 郭魁士。1997。土壤學,第八版。中國書局。台北,台灣。 淩明裕。2008。生態教室-大山母山植物介紹。p18-21。鳥語286。 劉和義、楊遠波、呂勝由、施炳霖。2000。植物簡誌-第三卷。p89-90。行政院農委會印製。 鄧小晨、胡承、汪復進、賴志河、李慶孝。2001。微生物學。新文京開發出版有限公司。 Achouak, W., R. Christen, M. Barakat, M. H. Martel, and T. Heulin. 1999. Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. Int. J. Syst. Bacteriol. 49:787-794 Alexander, M. 1977. Ecology of N2-fixing organisms. p. 94-114. In A. Ayanaba and P. J. Dart (ed.) Biological Nitrogen Fixation in Farming Systems in the Tropics, Lodon. Alvarez-Bernal D., S. Contreras-Ramos, R. Marsch, and L. Dendooven. 2007. Influence of catclaw Mimosa monancistra on the dissipation of soil PAHs. Int J Phytoremediation. 9:79-90. Amadou, C., G. Pascal, S. Mangenot, M. Glew, C. Bontemps, D. Capela, S. Carrère, S. Cruveiller, C. Dossat, A. Lajus, M. Marchetti, V. Poinsot, Z. Rouy, B. Servin, M. Saad, C. Schenowitz, V. Barbe, J. Batut, C. Médigue, C. Masson-Boivin. 2008. Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res. 18:1472-1483. Amarger, N., and J. P. Lobreau. 1982. Quantitative study of nodulation competitiveness in Rhizobium strains. Appl. Environ. Microbiol. 44:83-588. Ames-Gottfred, N. P., and B. R. Christie. 1989. Competition among strains of Rhizobium leguminosarum biovar trifolii and use of a diallel analysis in assessing competition. Appl. Environ. Microbiol. 55:1599-1604. Ames, P., and K. Bergman. 1981. Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J. Bacteriol. 148:728-729. Andam, C. P., and M. A. Parker. 2007. Novel alphaproteobacterial root nodule symbiont associated with Lupinus texensis. Appl. Environ. Microbiol. 73:5687-5691. Anollés, G. C., and G. Favelukes. 1986. Host-Symbiont Specificity Expressed during Early Adsorption of Rhizobium meliloti to the Root Surface of Alfalfa. Appl Environ Microbiol. 52:377-382 Araujo, R. S., E. A. Robleto, and J. Handelsman. 1994. A hydrophobic mutant of Rhizobium etli altered in nodulation competitiveness and growth in the rhizosphere. Appl. Environ. Microbiol. 60:1430-1436. Ayanaba, A., R. A. Haugland, M. J. Sadowsky, R. G. Upchurch, K. D. Weland, and R. M. Zablotowicz. 1986. Rapid colored-nodule assay for assessing root exudate-enhanced competitiveness of Bradyrhizobium japonicum. Appl. Environ. Microbiol. 52:847-851. Balachandar, D., P. Raja, K. Kumar, and S. P. Sundaram. 2007. Non-rhizobial nodulation in legumes. Biotechnol. Mol. Biol. Rev. 2:049-057. Baird, K. J. 1951. Multiple infection of clover plants by strains of the bodule organism in the field. Nature 168:116 -117. Barac, T., S. Taghavi, B. Borremans, A. Provoost, L. Oeyen, J. V. Colpaert, J. Vangronsveld, and D. van der Lelie. 2004. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22:583-588 Barea, J. M., and C. Azcon-Aguilar. 1983. Mycorrhizas and their significance in nodulating nitrogen-fixing plants. Adv. Agron. 36:1-54. Barneby, R. C. 1991. Sensitivae censitae: a description of the genus Mimosa Linnaeus (Mimosaceae) in the New World. Mem. N. Y. Botanic. Garden 65:1-835. Barnet, Y. M. 1980. The effect of rhizobiophages on populations of Rhizobium trifolii in the root zone of clover plants. Can. J. Microbiol. 26:572-576. Barrett, C. F., and M. A. Parker. 2005. Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst. Appl. Microbiol. 28:57-65. Barrett, C. F., and M. A. Parker. 2006. Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl. Environ. Microbiol. 72:1198-1206. Bauer, A. W., W.M.M. Kirby, J. C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45:493–496. Beck, D. P., and D. N. Munns. 1984. Phosphate nutrition of Rhizobium sp. Appl. Environ. Microbiol. 47:278-282. Benhizia, Y., H. Benhizia, A. Benguedouar, R. Muresu, A. Giacomini, and A. Squartini. 2004. Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst. Appl. Microbiol. 27:462-468. Benson, H. J. 2002. Microbiological applications. p.84-138. McGraw-Hill, New York. Berger, J. A., S. N. May, L. R. Berger, and B. B. Bohlool. 1979. Colorimetric enzyme-linked immunosorbent assay for the identification of strains of Rhizobium in culture and in the nodules of lentils. Appl. Environ. Microbiol. 37:642-646. Bergersen, F. J. 1974. Formation and function of bacteroids. p. 474-495 In A. Quispel (ed.) The Biology of Nitrogen Fixation, North-Holland Pub. Co. Oxford. Bezdicek, D.F., and Kennedy, A.C. 1988. Symbiotic nitrogen fixa¬tion and cycling in terrestrial environments. p. 241-260. In J. M. Lynch and J. E. Hobbie (ed.) Micro organisms in action: concepts and applications in microbial ecology. Blackwell Scientific Publications, Oxford. Bhuvaneswari, T. V., and W. D. Bauer. 1978. Role of lectins in plant-microorganism interactions. Plant Physiol. 62:71-74. Bohlool, B.B., and E. L. Schmidt. 1974. Lectins: A Possible Basis for Specificity in the Rhizobium-Legume Root Nodule Symbiosis. Science 185:269-271. Bowra, B. J., and M. J. Dilworth. 1981. Motility and chemotaxis towards sugars in Rhizobium leguminosarum. J. Gen. Microbiol. 126: 231-236. Brämer C. O., P. Vandamme, L. F. da Silva, J. G. C. Gomez, and A. Steinbüchel. 2001. Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int. J. Syst. Evol. Microbiol. 51:1709-1713. Brencic, A., and S. C. Winans. 2005. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol. Mol. Biol. Rev. 69:155-194. Brimecombe, M. J., F. A. de Leij, and J. M. Lynch. 2001. The effect of root exudates on Rhizosphere microbial populations. p. 95-140. In R. Pinton et al. (ed.) The rhi¬zosphere, biochemistry and organic substances at the soil-plant interface, New York: Inc. Marcel Dekker. Bringhurst, R.M., Cardon, Z.G., and Gage, D.J. 2001. Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc. Natl. Acad. Sci. U.S.A. 98:4540–4545. Bromfield, E.S.P., D. M. Lewis., and L. R. Barran. 1985. Cryptic plasmid and rifampin resistance in Rhizobium meliloti influencing nodulation competitiveness. J. Bacteriol. 164: 410-413. Burg, E., J. Guillaume, and R. Tailliez. 1982. Chemotaxis by Rhizobium meliloti. Arch Microbiol. 133: 162-169. Bushby, H. V. A. 1981. Quantitative estimation of rhizobia in nonsterile soil using antibiotics and fungicides. Soil Biol. Biochem. 13:237–239 Caballero-Mellado, J., L. Martínez-Aguilar, G. Paredes-Valdez, and P. Estrada-de Los Santos. 2004. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int. J. Syst. Evol. Microbiol. 54:1165-1172. Caetano-Anolles, G., L. G. Wall., A. T. Micheli, E. M. Macchi, and G. Favelukes. 1985. Attachment of non-motile and non-chemotactic mutants of Rhizobium meliloti to alfalfa roots. p. 257. In H. J. Evans et al. (ed.) Nitrogen Fixation Research Progress, Hingham, MA, U.S.A. Caetano-Anolles, G., L. G. Wall, A. T. De Micheli, E. M. Macchi, W. D. Bauer, and G. Favelukes. 1988. Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol. 86:1228-1235. Chabot, R., H. Antoun, and M. P. Cescas. 1996. Growth promotion of mazine and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil. 184:311-321. Chaintreuil, C., E. Giraud, Y. Prin, J. Lorquin, A. Ba, M. Gillis, P. de Lajudie, and B. Dreyfus. 2000. Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl. Environ. Microbiol. 66: 5437-5447. Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802-805. Chalfie, M., and S. Kain. 1998. Green Fluorescent Protein Properties, Applications, and Protocols. John Wiley and Son, New York. Chatel, D. L., and C. A. Parker. 1973. Survival of field-grown rhizobia over the dry summer period in Western Australia. Soil. Biol. Biochem. 5: 415-423. Chen, B. Y., W. M. Chen, and J. S. Chang. 2007. Optimal biostimulation strategy for phenol degradation with indigenous rhizobium Ralstonia taiwanensis. J. Hazard. Mater. 139: 232-237. Chen, B. Y., and J. S. Chang. 2005. Phenol degradation and toxicity assessment upon Biostimulation to and indigenous rhizobium Ralstonia taiwanensis. Biotechnol. Prog. 21:1085-1092. Chen, W. M., E. K. James, A. R. Prescott, M. Kierans, and J. I. Sprent. 2003a. Nodulation of Mimosa spp. by the β-proteobacterium Ralstonia taiwanensis. Mol. Plant Microbe Interact. 16:1051-1061. Chen W. M., S. M. de Faria, R. Straliotto, R. M. Pitard, J. L. Simões-Araùjo, J. H. Chou, Y. J. Chou, E. Barrios, A. R. Prescott, G. N. Elliott, J. I. Sprent, J. P. W. Young, and E. K. James. 2005a. Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa-Nodulating Strains from South America. Appl. Environ. Microbiol. 71:7461-7471. Chen, W. M., E. K. James, J. H. Chou, S. Y. Sheu, S. Z. Yang, and J. I. Sprent. 2005b.b-Rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New. Phytol. 168:661-675. Chen, W. M., E. K. James, T. Coenye, J. H. Chou, E. Barrios, S. M. de Faria, G. N. Elliott, S. Y. Sheu, J. I. Sprent, and P. Vandamme. 2006. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int. J. Syst. Evol. Microbiol. 56: 1847-1851. Chen, W. M., L. Moulin, C. Bontemps, P. Vandamme, G. Béna, and C. Boivin-Masson. 2003b. Legume symbiotic nitrogen fixation by β-Proteobacteria is widespread in nature. J. Bacteriol. 185:7266-7272. Chen, W. M., J. S. Chang, C. H. Wu, and S. C. Chang. 2004. Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis. Res. Microbiol. 155:672-680. Chen, W. M., S. Laevens, T.M. Lee, T. Coenye, P. de Vos, M. Mergeay, and P. Vandamme. 2001. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int. J. Syst. Bacterol. 51:1729-1735. Chen, W. M., S. M. de Faria, E. K. James, G. N. Elliott, K. Y. Lin, J. H. Chou, S. Y. Sheu, M. Cnockaert, J. I. Sprent, and P. Vandamme. 2007. Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int. J. Syst. Evol. Microbiol. 57: 1055-1059. Chen W. M., S. M. de Faria, J. H. Chou, E. K. James, G. N. Elliott, J. I. Sprent, C. Bontemps, J. P. W. Young, and P. Vandamme. 2008. Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int. J. Syst. Evol. Microbiol. 58:2174-2179. Chen, W. X., G. H. Yan, and J. L. Li. 1988. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int. J. Syst. Bacteriol. 38: 392-397. Cheng, Q. 2008. Perspectives in biological nitrogen fixation research. J. Integr. Plant Biol. 50:786-798. Chung, A. P., F. Rainey, M. F. Nobre, J. Burghardt, and M. S. da Costa. 1997. Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids, Int. J. Syst. Bacteriol. 47: 1225-1230. Coenye, T., E. Falsen, M. Vancanneyt, B. Hoste, J. R. W. Govan, K. Kersters, and P. Vandamme. 1999. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int. J. Syst. Bacteriol. 49:405-413 Coenye, T., S. Laevens, A. Willems, M. Ohien, W. Hannant, J.R.W. Govan, M. Gillis, E. Falsen, and P. Vandamme. 2001. Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int. J. Syst. Evol. Microbiol. 51:1099-1107 Compant, S., J. Nowak, T. Coenye, C. Clément, and E. A. Barka. 2008. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 32: 607-626 Cooper, J.E. 2007. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J. Appl. Microbiol. 103:1355-1365. Currier, W. W., and G. A. Strobel. 1977. Chemotaxis of Rhizobium spp. to a glycoprotein produced by Birdsfoot trefoil roots. Science 196:434-436. Currier, W. W., and G. A. Strobel. 1976. Chemotaxis of Rhizobium spp. to plant root exudates. Plant Physiol. 57:820-823. Dart, P. J. 1974. Development of root-nodule symbioses. p. 381-429. In A. Quispel (Ed.) The biology of nitrogen fixation. North-Holland Publ. Co. Amsterdam, Netherlands. Dazzo, F. B., G. L. Truchet, L. E. Sherwood, E. M. Hrabak, M. Abe, and S. H. Pankratz. 1984. Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl. Environ. Microbiol. 128:1829-1838. Dazzo, F. B., C. A. Napoli, and D. H. Hubbell. 1976. Adsorption of bacteria to roots as related to host specificity in the Rhizobium-clover symbiosis. Appl. Environ. Microbiol. 127:351-360. de Faria, S. M., G. T. Hay, and J. I. Sprent. 1988. Entry of rhizobia into roots of Mimosa scabrella Bentham occurs between epidermal cells. J. Gen. Microbiol. 134:2291-2296. de Oliveira, L. A., and P. H. Graham. 1990. Speed of nodulation and competitive ability among strains of Rhizobium leguminosarum bv phaseoli. Arch Microbiol. 153:311-315. Denton, M. D., W. G. Reeve, J. G. Howieson, and D. R. Coventry. 2003. Competitive abilities of common field isolates and a commercial strain of Rhizobium leguminosarum bv. trifolii for clover nodule occupancy. Soil Biol. Biochem. 35:1039-1048. Djordjevic, M. A., C. L. Sargen, R. W. Innes, P. L. Keumpel, and B. G. Rolfe. 1985. Host range genes also affect strain competitiveness in Rhizobium trifolii. p. 117. In H. J. Evans et al. (ed.) Nitrogen Fixation Research Progress, Hingham, MA, U.S.A. Dharmatilake, A. J., and W. D. Bauer. 1992. Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl. Environ. Microbiol. 58:1153-1158. Dowling, D. N., and W. J. Broughton. 1986. Competition for nodulation of legumes. Ann. Rev. Microbiol. 40:131-157. Eardly, B. D., and P. van Berkum. 2004. Use of population genetic structure of define species limits in the Rhizobiaceae. Symbiosis. 38:109-122. Eaglesham, A. R. J., M. H. Ahmad, S. Hassouna, and B. J. Goldman. 1982. Cowpea rhizobia producing dark nodules: use in competition studies. Appl. Environ. Microbiol. 44:611-618. Eede, G. V.D., B. Dreyfus, K. Goethals, M. Van Montagu, and M. Holsters. 1986. Identification and cloning of nodulation genes from the stem-nodulating bacterium ORS571. Mol. Gen. Genet. 206:291-299. Elliott, G. N., W. M. Chen, C. Bontemps, J. H. Chou, J. P. W. Young, J. I. Sprent, and E. K. James. 2007. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann. Bot. 100:1403-1411. Elliott, G. N., J. H. Chou, W. M. Chen, G. V. Bloemberg, C. Bontemps, E. Martínez-Romero, E. Velázquez, J. P. Young, J. I. Sprent, and E.K. James. 2009. Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ. Microbiol. 11:762-778. Elliott, G. N., W. M. Chen, J. H. Chou, H. C. Wang, S. Y. Sheu, L. Perin, V. M. Reis, L. Moulin, M. F. Simon, J. M. Sutherland, R. Bessi, S. M. de Faria, M. J. Trinick, A. R. Prescott, J. I. Sprent, and E. K. James. 2007. Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol. 173:168–180. Ezaki, T., Y. Hashimoto, and E. Yabuuchi, 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229. Fening, J. O., W. Dogbe, and S. K. A. Danso. 2001. Competition for nodule occupancy on cowpea by effective and ineffective Bradyrhizobium strains. Trop. Sci. 41:62-67 Fisher, K., and W. E. Newton. 2004. Nitrogen fixation: an historical perspective. p. 1-27. In B. Smith et al. (ed.) Catalysts for nitrogen fixation. Springer. Kluwer Academic Publishers. Franssen, H. J., I. Vijn, W. C. Yang and T. Bisseling. 1992. Developmental Aspects of the Rhizobium-Legume Symbiosis.Plant Mol. Biol. 19:89-107. Garau, G., R. J. Yates, P. Deiana, J. G. Howieson. 2009. Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soil. Soil. Biol. Biochem. 41:125-134. Gage, D.J. 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68:280-300. Garg, N., and Geetanjali. 2007. Symbiotic nitrogen fixation in legume nodules: process and signaling- a review. Agron. Sustain. 27:59-68. Garrity, G. M., M. Winters, and D. B. Searles. 2001. Taxonomic Outline of the Procaryotic Genera. Bergey''s Manual of Systematic Bacteriology, second edition. 1.0: 1-39. Garrity G. M., J. A. Bell and T. Liburn. 2005. Family I. Burkholderiaceae fam. nov. p. 575. In D. J. Brenner et al., (ed.) Bergey’s Manual of Systematic Bacteriology, second edition, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), Springer, New York. Gibson, A. H., and P. S. Nutman. 1960. Studies on the physiology of nodule formation. VII. Areappraisal of the effect of preplanting. Ann. Bot. 24: 420-433. Goetz, R., N. Limmer, K. Ober, and R. Schmitt. 1982. Motility and chemotaxis in two strains of Rhizobium with complex flagella. J. Gen. Microbiol. 128: 789- 798. González, J. E., and M. M. Marketon. 2003. Quorum sensing in nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev. 67:574-592. Goris, J., P. de Vos, T. Coenye, B. Hoste, D. Janssens, H. Brim, L. Diels, M. Mergeay, K. Kersters, and P. Vandamme. 2001. Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int. J. Syst. Evol. Microbiol. 51:1773-1782. Goris, J., P. De Vos, J. Caballero-Mellado, J. Park, E. Falsen, J.F. Quensen III, J. M. Tiedje, and P. Vandamme. 2004. Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400(T) and relatives as Burkholderia xenovorans sp. nov. Int. J. Syst. Evol. Microbiol. 54: 1677-1681. Goris, J., W. Dejonghe, E. Falsen, E. de Clerck, B. Geeraerts, A. Willems, E. M. Top, P. Vandamme, and P. de Vos. 2002. Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst. Appl. Microbiol. 25: 340-352. Graham, P. H. 2008. Ecology of the root-nodule bacteria of legumes. p. 23-58 In: M. J. Dilworth et al. (ed.) Nitrogen-fixing Leguminous Symbioses volume 7, Springer Netherlands. Graham, P. H., and C. P. Vance, 2003. Legumes: importance and constraints to greater use. Plant. Physiol. 131:872-877. Graham, P. H., G. Ocampo, L. D. Ruiz, and A. Duque. 1980. Survival of Rhizobium phaseoli in contact with chemical seed protectants. Agron. J. 72: 625-627. Gross, D. C., and A. K. Vidaver. 1978. Bacteriocin like substances produced by Rhizobium japonicum and other slow growing rhizobia. Appl. Environ. Microbiol. 36: 936-943. Hadri, A.E., H. P. Spaink, T. Bisseling and N. J. Brewin. 1998. Diversity of root nodulation and rhizobial inection processes. P.347-359. In H. P. Spaink et al. (ed.). The rhizobiaceae molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, U.S.A. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95–98. Halverson, L. J., and G. Stacey. 1984. Host recognition in the Rhizobium-soybean symbiosis. Plant Physiol. 74:84-89. Handelsman, J., and W. J. Brill. 1985. Erwinia herbicola isolates from alfalfa plants may play a role in nodulation of alfalfa by Rhizobium meliloti. Appl. Environ. Microbiol. 49: 818-821. Hardy, R.W.F. 1993. Ecology and agricultural applications of nitrogen-fixing systems. p. 109-117. In C.J.R. Srivastarva, and H. Alderman (ed.) Agriculture and environmental challenges. World Bank, U.S.A. Harrison, S. P., L. R. Mytton, L. Skot, M. Dye, and A. Cresswell. 1992. Characterisation of Rhizobium isolates by amplification of DNA polymorphisms using random primers. Can. J. Microbiol. 38: 1009–1015. Hartel, P. G., and M. Alexander. 1984. Temperature and desiccation tolerance of cowpea Vigna unguiculata rhizobia. Can. J. Microbiol. 30: 820-823. Hafeez, F. Y., S. Hameed, T. Ahmad, K. A. Malik. 2001. Competition between effective and less effective strains of Bradyrhizobium spp. for nodulation on Vigna radiata. Biol Fertil Soils. 33:382-386. Hennecke, H., K. Kaluza, B. Thöny, M. Fuhrmann, W. Ludwig, and E. Stackebrandt. 1985. Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch. Microbiol. 142:342–348. Heimbrook, M. E., W. L. Wang, and G. Campbell. 1989. Staining bacterial flagella easily. J. Clin. Microbiol. 27: 2612-2615 Herridge, D. F., R. J. Roughly, and J. Brockwell. 1984. Effect of rhizobia and soil nitrate on the establishment and functioning of the soybean symbiosis in the field. Aust. J. Agric. Res. 35: 149-161. Herendeen, P. S., W. L. Crepet, and D.L. Dilcher. 1992. The fossil history of the Leguminosae: phylogenetic and biogeographic implications. p. 303-316. In P.S. Herendeenand and D.L. Dilcher (ed.) Advances in Legume Systematics, Volume 4, Royal Botanic Gardens, Kew, UK. Hodgson, A. L. M., W. P. Roberts, and J. S. Waid. 1985. Regulated nodulation of Trifolium subterraneum inoculated with bacteriocin producing strains of Rhizobium trifolii. Soil Biol. Biochem. 17: 475-478. Hunter, W. J., and C. J. Fahring. 1980. Movement by Rhizobium and nodulation of legumes. Soil Biol. Biochem. 12: 537-542. Hynes, M. F., and M. P. O’Connel, 1990. Host plant effect on competition among strains of Rhizobium leguminosarum. Can. J. Microbiol. 36: 864-869. Jensen, H. L. 1942. Nitrogen fixation in leguminous plants I. General characters of root-nodule bacteria isolated from species of Medicago and Trifolium in Australia. Proc. Linn. Soc. N.S.W. 66: 721-723. Kao, T. C., and C. C. Wang. 1981. Studies on the effect of herbicides on growth of rhizobia and development of root nodules. I Effect of herbicides on the growth and development of legumes. Mem. Coll. Agric Natl. Taiwan Univ. 21: 9. Kim, H.B., M. J. Park, H. C. Yang, D. S. An, H. Z. Jin and D. C. Yang. 2006. Burkholderia ginsengisoli sp. nov., a beta-glucosidase-producing bacterium isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 56: 2529-2533. Kleanthous, C. and W. V. Shaw. 1984. Analysis of the mechanism of chloramphenicol acetyltransferase by steady-state kinetics-evidence for a ternary-complex mechanism. Biochem. J. 223:211-220 Koch, B., and H. J. Evans. 1966. Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol. 41:1748-1750. Kosslak, R. M., B. B. Bonhlool, S. Dowdle, and M. J. Sadowsky. 1983. Competition of Rhizobium japonicum strains in early stages of soybean nodulation. Appl. Environ. Microbiol. 46:870-873. Kumar, S., J. Dudley, M. Nei, and K. Tamura. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinformatics 9: 299-306. Lambert, G. R., M. A. Cantrell, F. J. Hanus, S. A. Russell, K. R. Haddad, H. J. Evans. 1985. Intra- and interspecies transfer and expression of Rhizobium japonicum hydrogen untake genes and autotrophic growth capability. Proc. Nat. Acad. Sci. U.S.A. 82:3232-3236. Li, D. M., and M. Alexander. 1986. Bacterial growth rates and competition affect nodulation and root colonization by Rhizobium meliloti. Appl. Environ. Microbiol. 52:807-811. Lie, T.A. 1981. Environmental physiology of the legume-Rhizobium symbiosis. p. 108. In W. J. Broughton (ed.) Nitrogen fixation Vol. 1:Ecology. Oxford University Press, New York. Lieberman, M. T., R. M. Zablotowicz, and N. P. Davis-Omholt. 1986. Improved method of typing Bradyrhizobium japonicum in soybean nodules. Appl. Environ. Microbiol. 51:715-719. Lindström, K., M.-L. Sarsa, J. Polkunen, and P. Kansanen. 1985. Symbiotic nitrogen fixation of Rhizobium (Galega) in acid soil, and its survival in soil under acid and cold stress. Plant Soil. 87:293-302. Liu, X. Y., E. T. Wang, Y. Li, and W. X. Chen. 2007. Diverse bacteria isolated from root nodules of Trifolium, Crotalaria and Mimosa grown in the subtropical regions of China. Arch. Microbiol. 188:1-14. Lloret, L., and E. Martínez-Romero. 2005. Evolution and phylogeny of rhizobia. Rev Latinoam Microbiol. 47:43-60. Lodeiro, A. R., and G. Favelukes. 1999. Early interactions of Bradyrhizobium japonicum and soybean roots: specificity in the process of adsorption. Soil Biol. Biochem. 31:1405-1411. Long, S. A. 1996. Rhizobium symbiosis: nod factors in perspective. Plant Cell. 8:1885-1898. López-García, S. L., T .E. E. Vázquez, G. Favelukes, and A. R. Lodeiro. 2001. Improved soybean root association of N-starved Bradyrhizobium japonicum. J. Bacteriol. 183:7241-7252. Makkar, N. S., and L.E. Casida Jr. 1987. Cupriavidus necato r gen. nov., sp. nov.: a nonobligate bacterial predator of bacteria in soil. Int. J. Syst. Bacteriol. 37: 323-326. Marbet, M., R. Mhamdi, F. Tajini, R. Tiwari, M. Trabelsi, and M. E. Aouani. 2005. Competitiveness and symbiotic effectiveness of a R. gallicum strain isolated from root nodules of Phaseolus vulgaris. Europ. J. Agronomy. 22:209-216. Materon, L.A., and L. Zibilske. 2001. Delayed inoculation and competition of nitrogen-fixing strains in Medicago noeana (Boiss.) and Medicago polymorpha (L.) Appl. Soil Ecol. 17:175-181 Materon L.A., and L.M. Zibilske. 2003. Remedial inoculation of Rhizobium meliloti strains and nodule occupancy on Medicago rigidula (L.) All., and M. truncatula Gaertn. Appl. Soil Ecol. 23:155-163. Matthysse, A.G., S. Stretton, C. Dandie, N. C. McClure, A. E. Goodman. 1996. Construction of GFP vectors for use in Gram-negative bacteria other than Escherichia coli. FEMS Microbiol. Lett. 145: 87 - 94 Menna, P., M. Hungria, F. G. Barcullos, E. V. Bangel, P. N. Hess, and E. Martínez-Romero. 2006. Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst. Appl. Microbiol. 29:315-332. Miller, J. H. 1972. Experiments in molecular genetics. p.466. Cold Spring Harbor Laboratory, Cold Spring Harbor, NewYork. Miller, S. H., R. M. Elliot, J. T. Sullivan, and C. W. Ronson. 2007. Host-specific regulation of symbiotic nitrogen fixation in Rhizobium leguminosarum biovar trifolii. Microbiol. 153:3184-3195. Moawad, H., and B. B. Bohlool. 1984. Competition among Rhizobium spp. for nodulation of Leucena leucocephala in two tropical soils. Appl. Environ. Microbiol. 48:5-9. Morin, J. G., and J. W. Hastings. 1971. Energy transfer in a bioluminescent system. J. Cell. Physiol. 77:313-318. Morise, H., O. Shimomura, F. H. Johnson, and J. Winant. 1974. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry. 13: 2656-2662. Moulin, L., A. Munive, B. Dreyfus, and C. Boivin-Masson, 2001. Nodulation of legumes by members of the b-subclass of proteobacteria. Nature 411:948-950. Murphy, P. J., N. Heycke., Z. Banfalvi, M. E. Tate, F. de Brujin, A. Kondorosi, J. Tempe, and J. Schell. 1987. Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked on the Sym plasmid. Proc. Natl. Acad. Sci. U.S.A. 84:493-497. Murphy, P. J., W. Wexler, W. Grzemski, J. P. Rao, and D. Gordon. 1995. Rhizopines-their role in symbiosis and competition. Soil Biol. Biochem. 27: 525-529. Mylona, P., K. Pawlowski, and T. Bisseling. 1995. Symbiotic nitrogen fixation. Plant Cell 7:869-885 Normander, B., N. B. Hendriksen, and O. Nybroe. 1999. Green fluorescent protein-marked Pseudomonas fluorescens: Localization, viability, and activity in the natural barley rhizosphere. Appl. Environ. Microbiol. 65:4646-4651. Okazaki, S., K. I. Yuhashi, and K. Minamisawa. 2003. Quantitative and time-course evaluation of nodulation competitiveness of rhizobitoxine-producing Bradyrhizobium elkanii. FEMS Microbiol. Ecol. 45:155-160 Ormeño-Orrillo, E., M. Rosenblueth, E. Luyten, J. Vanderleyden, and E. Martínez-Romero. 2008. Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899. Environ. Microbiol. 10:1271-84 Oresnik, I.J., S. Twelker, and M.F. Hynes. 1999. Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Appl. Environ. Microbiol. 65: 2833-2840. Oresnik, I.J., L. A. Pacarynuk, S. H. P. O’Brien, C. Yost, and M. F. Hynes. 1998. Plasmid-encoded cetabolic genes in Rhizobium leguminosarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol. Plant Microbe Interact. 11: 1175-1185 Paker. C. A., and P. L.Grove. 1970. Bdellovibrio bacteriovirus parasitizing Rhizobium in Western Australia. J. Appl. Bacteriol. 33: 253-255. Palleroni, N. J. 1976. Chamber for bacterial chemotaxis experiments. Appl. Environ. Microbiol. 32:729-730. Patel, J. J., and A. S. Craig. 1984. Isolation and characterization of bacteriophages actives against strains of Rhizobium trifolii used in legume inoculants in New Zealand. N. Z. J. Sci. 27: 81-86. Patriarca, E. J., R. Tatè, and M. Iaccarino. 2002. Key role of bacterial NH4+ metabolism in Rhizobium-plant symbiosis. Microbiol. Mol. Biol. Rev. 66:203-222. Pepper, I. L., K. L. Josephson, C. S. Nautiyal, and D. P. Bourque. 1989. Strain identification of highly-competitive bean rhizobia isolated from root nodules: Use of fluorescent antibodies, plasmid profiles and gene probes. Soil Biol. Biochem. 21:749–753. Perin, L., L. Martinez-aguilar, G. Paredes-Valdez, J. L. Baldani, P. Estrada-De Los P. Santos, V. M. Reis, and J. Caballero-Mellado. 2006. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int. J. Syst. Evol. Microbiol. 56 :1931-1937. Perin, L., L. Martinez-Aguilar, P. Castro-Gonzalez, P. Estrada-de Los Santos,T. Cabellos-Avelar, H.V. Guedes,V. M. Reis and J. Caballero-Mellado. 2006. Dizaotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl. Environ. Microbiol. 72:3103-3110 Perret, X., C. Staehelin, and W. J. Broughton. 2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64:180-201. Philips, D. A., and W. R. Streit. 1996. Legume signals to rhizobial symbionts: a new approach for defining rhizosphere colonization. p. 236-271. In G. Stacey and N.T. Keen (ed.): Plant-Microbe Interactions. Chapman and Hall, New York. Polcyn, W., and R. Lucinzki. 2003. Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus). FEMS Microbiol. Lett. 226: 331-337. Polhill, R.M., and P. H. Raven. 1981. Advances in Legume Systematics, Royal Botanic Gardens, Kew, UK. Pot, B., P. Vandamme, and K. Kersters. 1994. Analysis of electrophoretic whole-organism protein fingerprints. p493-520. In M. Goodfellow and A. G. O’Donnell (ed.) Chemical Methods in Prokaryotic Systematics. John Wiley and Sons Ltd, New York Rai, R. 1983. The salt tolerance of Rhizobium leguminosarum strains and lentil Lens esculenta genotypes and the effect of salinity on aspects of symbiotic nitrogen fixation. J. Agric. Sci. 100: 81-86. Ramirez, C., and M. Alexander. 1980. Evidence suggesting protozoan predation on Rhizobium associated with germinating the seed in the rhizosphere of beans (Phaseolus vulg
摘要: 在台灣、委內瑞拉和巴西地區的Mimosa pigra、M. scabrella、M. bimucronata、M. caesalpiniifolia根瘤中,分離了三群根瘤菌,從16S rDNA序列的相似性,所有的根瘤菌都屬於Burkholderia菌屬,根據細菌多相分類學(polyphasic taxonomy)分析,包括了16S rDNA序列親緣關係演化樹、生理生化特性、脂肪酸組成和DNA雜合數值等反應,給予正式的新種學名,分別為Burkholderia mimosarum PAS44T、Burk. nodosa Br3437T與Burk. sabiae Br3407T。在台灣與法屬圭亞那地區的含羞草屬與軍刀豆屬植物根瘤所分離Cupriavidus taiwanensis 184、Burk. mimosarum PAS44和Burk. phymatum STM815三株b-根瘤菌,此三株b-根瘤菌能與台灣三種含羞草屬植物(M. pudica、M. diplotricha和M. pigra)共生結瘤固氮。本研究為了進行b-根瘤菌與含羞草屬植物進行競爭結瘤試驗,將C. taiwanensis 184和Burk. phymatun STM815轉殖gfp基因,而Burk. mimosarum PAS44轉殖gus基因,並利用此三株報導基因標誌根瘤菌,以不同比例接種於三種含羞草屬植物,比較其競爭結瘤能力。在水耕的情況下,觀察三株根瘤菌的競爭結瘤試驗中,結果顯示不同的根瘤菌與宿主間的親和性不同,Burk. mimosarum PAS44比C. taiwanensis 184有絕對競爭優勢,將C. taiwanensis 184接種菌量比例提高到10000倍的情況下,Burk. mimosarum PAS44仍然佔有92.2%以上的根瘤數。在土耕的情況下,Burk. mimosarum PAS44與C. taiwanensis 184接種於M. pigra,結果顯示Burk. mimosarum PAS44結瘤仍佔有絕對的優勢,而接種於M. pudica和M. diplotricha,Burk. mimosarum PAS44結瘤僅佔部份的優勢。本研究結果顯示測試接種比例、根瘤菌生長速率、根瘤菌間生長相互抑制與結瘤速率等均無相關性。在水耕情況下,探討b-根瘤菌在M. pigra和M. pudica的根部吸附速率之試驗中,顯示在接種後4小時,Burk. mimosarum PAS44在根部上的吸附菌量比C. taiwanensis 184高於100倍。經測試根瘤菌的運動性,顯示C. taiwanensis 184僅呈現緩慢的運動性,而Burk. mimosarum PAS44呈現快速的直線運動,移動速度約高於C. taiwanensis 184十倍以上。測試根瘤菌對碳源利用的種類,顯示Burk. mimosarum PAS44比C. taiwanensis 184多了12種碳源可利用。從根部吸附、根瘤菌移動性與碳源利用性的結果,顯示在水耕的情況下,Burk. mimosarum PAS44比C. taiwanensis 184有較佳的競爭力;在植物培養液中添加0.5 mM KNO3和1.25 mM (NH4)2SO4,會使C. taiwanensis 184對M. pudica的根瘤百分比會提升至59.1%和83.3%,但共生根瘤數目會減少,推測環境中的氮濃度會影響b-根瘤菌的結瘤競爭力。
Three groups of strains were isolated from nitrogen-fixing root nodules of M. pigra, M. scabrella, M. bimucronata, M. caesalpiniifolia from Taiwan, Venezuela and Brazil. On the basis of 16S rDNA sequence similarities, all the strains were shown previously to belong to the genus Burkholderia. A polyphasic approach, including 16S rDNA phylogenetic tree, extensive biochemical characterization, fatty acid methyl ester analysis, and DNA-DNA hybridizations, was used to clarify the taxonomic position of these strains further; the three groups of strains are here classified within a novel species, for which the name Burk. mimosarum PAS44T, Burk. nodosa Br3437T, and Burk. sabiae Br3407T is proposed. The b-rhizobial strains Cupriavidus taiwanensis 184, Burkholderia mimosarum PAS44 and Burk. phymatun STM815 were originally isolated from root nodules of Mimosa spp. and Machaerium lunatum in Taiwan and French Guiana. C. taiwanensis 184, Burk. mimosarum PAS44 and Burk. phymatun STM815 formed effective symbioses with the common invasive species Mimosa pudica, M. diplotricha, and M. pigra. In order to competition studies were performed three of the β-rhizobial symbionts for nodulation of these invasive Mimosa species. C. taiwanensis 184 and Burk. phymatun STM815 conjugated with the gfp gene and Burk. mimosarum PAS44 conjugated with the gus gene were co-inoculated into the three Mimosa spp. plant. Under the hydroponic condition, results were showed different host-affinity that inoculant different ratio of three strains. Especially Burk. mimosarum PAS44 showed complete dominance in nodule occupation compared to C. taiwanensis 184, and it occupied almost all the nodules on M. pudica, M. diplotricha and M. pigra, even with a negative inoculation ratio of 1:10000, Burk. mimosarum PAS44 still occupied 92.2% nodules. However, under soil conditions, although Burk. mimosarum PAS44 still showed dominance in occupation of M. pigra nodules over C. taiwanensis 184. It only showed partially dominance in occupation of M. pudica and M. diplotricha nodules. Results were not due to initial inoculum ratio, rates of bacterial growth, rhizobia-rhizobia growth inhibition or individual nodulation rate. Under Mimosa spp. (M. pigra and M. pudica) adsorption rate, Burk. mimosarum PAS44 showed adsorption up to one hundred times quicker than C. taiwanensis under root in liquid nutrient culture. In motility test, C. taiwanensis 184 showed moving very slowly, but Burk. mimosarum PAS44 showed moving quickly and straight, motility speed of Burk. mimosarum PAS44 about ten times higher than the C. taiwanensis 184. Burk. mimosarum PAS44 was also able to utilize more than twelve carbon and energy sources. According with adsorption rate, motility, and carbon utilization thus indicate that Burk. mimosarum PAS44 is more competitive than C. taiwanensis 184 at nodulating Mimosa spp., especially under root in liquid nutrient culture. The largest significant effect was for M. pudica, in which C. taiwanensis 184 formed 59.1% and 83.3% of the nodules in the presence of 0.5 mM KNO3 and 1.25 mM (NH4)2SO4 in liquid nutrient culture, but symbiosis root nodules became lesser. Environmental N concentration is therefore suggested as a factor in the competitive success of the b-rhizobial symbiosis.
URI: http://hdl.handle.net/11455/28182
其他識別: U0005-1507200909365400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1507200909365400
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.