請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/28197
標題: Electroanalysis of Clay Modified Copper-Plated Screen Printed Carbon Electrode
作者: Yao, Kai-Yuan
關鍵字: Clay modified copper-plated screen printed electrode
Clay mineral
出版社: 土壤環境科學系所
引用: 陳品誌。1997。利用黏粒修飾電極偵測尿酸及多巴胺之研究。國立中興大學化學 系博士論文。 陳鴻基、李國欽、莊作權。1995。利用黏粒修飾電極探討巴拉刈在黏土礦物膜層中的移動性。中華民國雜草學會會刊 16: 1-13。 陳鴻基、曾志明。2003a。銅錳離子的吸附對巴拉刈在黏粒膜層中電化學活性的影響。中華農學會報4: 429-446。 陳鴻基、曾志明。2003b。銅錳離子的競爭吸附對巴拉刈在黏粒膜層中移動性的影響。興大農林學報52: 1-19。 陳鴻基、楊庭豪、曾志明。2003。利用方波伏安法探討不同離子對巴拉刈在土壤中移動的影響。興大農林學報 52: 19-31。 楊庭豪、陳鴻基、曾志明。2003。利用網版印刷碳電極探討巴拉刈在黏土礦物表面上的鍵結。土壤與環境6: 193-206。 楊庭豪。2005。利用化學修飾電極法探討不同離子及堆肥對巴拉刈在土壤中移動性的影響。國立中興大學土壤環境科學系碩士論文。 鄭世堃。2007。黏土礦物層面電荷特性之電化學分析。國立中興大學土壤環境科學系碩士論文。 鍾協訓。2002。網版印刷電極在分析化學上的應用與發展。國立中興大學化學研究所博士論文。 鍾協訓、曾志明。2000。網版印刷電極在分析化學上的製作與應用。科儀新知22(3): 72-82。 簡淑華。1995。黏粒修飾電極對巴拉刈及過氧化氫的行為之研究。國立中興大學化學研究所碩士論文。 廖俊彥‧2008。可拋棄式環盤電極電化學分析方法之開發。國立中興大學化學研究所博士論文。 高衛聖。2003。利用普魯士藍修飾電極探討三價砷在土壤中的吸附與脫附。中興大學土壤環境科學系碩士論文。 Ali. S. R., Y. Ma, R. R. Parajuli, Y. Balogun, Y. C. Lai and H. He. 2007. A nonoxidative sensor based on self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal. Chem. 79: 2583-2587. Bayens, B. and M. H. Bradbury. 1997. A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I: Titration and sorption measurements. J. Contam. Hydrol. 27:199-222. Bard, A. J., amd L. R. Faulkner. 1980. Electrochemical methods. Wiley and Sons, New York. Chen, B., N.K. Goh and L. S. Chia. 1996. Determination of copper by zeolite molecular sieve modified electrode. Electrochim. Acta. 42: 595-604. Chen, C. C., and K. F. Hayes. 1999. X-ray absorption spectroscopy investigation of aqueous Co(II) and Sr(II) sorption at clay-water interfaces. Geochim. Cosmochim. Actz. 63:3205-3215. Darchen, A., and R. Drissi-Daoudi. 1996. Electrochemical investigations of copper etching by Cu(NH3)4Cl2 in ammoniacal solution. J. Appl. Electrochem. 27: 448-454. Diaz, T. G., A. G. Cabanillas and F. Salinas. 2000. Square-wave and differential pulse oxidative voltammetric determination of diquat and paraquat in alkaline medium. Electroanalysis 12: 616-621. Ding, Z., and R. L. Frost. 2002. Controlled rate thermal analysis of nontronite. Thermochimica Acta 389: 185-193. Dursun, Z., and G. Nisli. 2004. Voltammetric behavior of copper(I)oxide modified carbon paste electrode in the presence of cysteine and ascorbic acid. Talanta 63:873-878. Falat, L., and H. Y. Cheng. 1982. Voltammetric differentiation of ascorbic acid and dopamine at an electrochemically treated graphite/epoxy electrode. Anal. Chem. 54: 2108-2111. Fitch, A. 1990. Clay modified electrodes : a review. Clay and Clay Miner. 38: 391-400. Fitch, A., J. Du, H. Gan and J. W. Stucki. 1995. Effect of clay charge on swelling: A clay-modified electrode study. Clays and Clay minerals. 43: 607-614. Fletcher P. amd G. Sposito. 1989. The chemical modeling of clay/electrolyte interaction for montmorillonite. Clay Miner. 24: 375-391. Garcia-Miragaya, J., R. Cardenas and A. Page. 1986. Surface loading effect on Cd and Zn sorption by kaolinite and montmorillonite from low concentration solutions. Water, Air, Soil pollut. 27: 181-190. Gerischer, H., 1977. On the stability of semiconductor electrodes against photodecomposition. J. Electroanal. Chem. Interfacial Electrochem. 82: 33-43. Ghosh, P. K. and A. J. Bard.1983. Clay-modified electrodes. J. Am. Chem. Soc.105: 5691-5693. Gu, T., and Y. Hasebe. 2005. DNA-Cu(II) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric detection of hydrogen peroxide. Biosens. Bioelectron. 21:2121-2128. Huertas, F. J., L. Chou and R. Wollast. 1998. Mechanism of kaolinite dissolution at room temperature and pressure: Part 1. Surface speciation. Geochim. Cosmochim. Acta 62:417-431. Hsu, C. T., H. J. Lyuu, T. H. Yang, E. D. Conte and J. M. Zen. 2006. Profiling clinically important metabolites in human urine by an electrochemical system containing disposable electrodes. Sensors and Actuators B 113: 22-28. Inskeep, W. P., and Baham, J. 1983. Adsorption of Cd(II) and Cu(II) by Na-Montmorillonite at Low Surface Coverage. Soil. Sci. Soc. Am. J. 47: 660-665. Jaynes, W. F. and J. M. Bigham. 1986. Multiple cation-exchange capacity measurements on standard clays using a commercial mechanical extractor. Clays Clay Miner. 34: 93-98. Jongh, P. E., D. Vanmaekelbergh and J. J. Kelly, 1999. Cu2O: a catalyst for the photochemical decomposition of water? Chem. Commun.12: 1069-1070. Joo, P., A. Fitch, and S. H. Park. 1997. Transport in hydrophobized montmorillonite thin flims. Environ. Sci. Technol. 31: 2186-2192. Komadel, P., J. Madejova and J. W. Stucki. 2006. Structural Fe(III) reduction in smectites. Appl. Clay Sci. 34: 88-94. Kula, P., Z. Navratilova, P. Kulova and M. Kotoucek. 1999. Sorption and determination of Hg(II) on clay modified carbon paste electrodes. Anal.Chim. Acta 385: 91-101. Letaief, S., P. Aranda and E. Ruiz-Hitzky. 2005. Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Appl. Clay Sci. 28: 183-198. Macha, S. M., and A. Fitch. 1998. Clay as architectural units at modified-electrodes. Mikrochim. Acta. 128: 1-18. Madeid, L., E., Diza-Barrientos, E., Contreras and M. C. Aust. 1991. Relationships between zinc and phosphate adsorption on montmorillonite and an iron oxyhydroxide. J. Soil Res. 29: 239-247. Maldonado. S., S. Morin and K. J. Stevenson. 2005. Electrochemical oxidation of catechoamines and catechols at carbon nanotibe electrodes. Analyst. 131: 262-267. Manisankar, P., G. Selvanathan and C. Vedhi.2006. Determination of pesticides using heteropolyacid montmorillonite clay-modified electrode with surfactant. Talanta 68: 686-692. Martinez, C.E., and M. B. McBride$2000. Aging of coprecipitated Cu in Alumina. Changes in the structural location, chemical from, and solubility. Geochim. Cosmochim. Acta 64: 1729-1737. Morton, J. D., J. D. Semrau and K. D. Hayes. 2001. An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed to montmorillonite clay. Geochim. Cosmochim. Acta 65: 2709-2722. Mousty, C. 2004. Sensors and biosensors based on clay-modified electrodes-new trends. Appl. Clay Sci. 27: 159-177. Navratilova, Z. and P. Kula. 2003. Clay modified electrodes: present application and prospects. Electroanalysis. 15: 837-846. Nagasubramanian, G., A. S. Gioda and A. J. Bard. 1981. Semiconductor electrodes - 37. Photoelectrochemical behavior of p-type Cu2O in acetonitrile solutions J. Electrochem. Soc. 128: 2158-2164.. Papelis, L. P., and K. F. Hayes. 1996. Distinguishing between interlayer and external sorption site of clay minerals using x-ray absorption spectroscopy. Coll. Surf. 107: 89-96. Penner, R. M. 2000. Hybrid electrochemical/chemical synthesis of quantum dots Acc. Cgem. Res. 33: 78-86. Peacock, C. L., and D. M. Sherman. 2004. Surface complexation model for multisite adsorption of copper(II) onto Kaolinite. Geochim. Cosmochim. Acta 693733-3745. Prasad, K. S., G. Muthuraman and J. M. Zen. 2008. The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid. Electrochem. Commun. 10: 559-563. Qiu, J., and G. Villemure. 1995. Anionic clay-modified electrodes: electrochemical activity of nickel (II) sites in layered couble hydroxide films. J. Electroanal. Chem. 395: 159-166. Qiu, J., and G. Villemure. 1997. Anionic clay modified electrodes: electron transfer mediated by electroactive nickel. Cobalt or manganese sites in layered double hydroxides films. J. Electroanal. Chem. 428: 165-172. Selvaraju, T., and R. Ramaraj. 2007. Simultaneous detection of ascorbic acid, uric acid and homovanillic acid at copper modified electrode. Electrochimica Acta 52: 2998-3005. Solomon, D. H. 1968. Clay minerals as electron acceptors and/or electron donors in organic reactions. Clays Clay Miner. 16: 31-39. Song, S., Q. Gao, K. Xia and L. Gao. 2008. Selective determination of dopaminein the presence of ascorbic acid at porous-carbon-modified glassy carbon electrodes. Electroanalysis. 11: 1159-1166. Strawn, D. G., and D. L. Spark. 1999. The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. J. Coll. Int. Sci. 216: 257-269. Stucki, J. W., G.. W. Bailey and H. Gan. 1996. Oxidation-reduction mechanisms in iron-bearing phyllosilicates. Appl. Clay Sci. 10: 417-430. Stucki, J. W., K. Lee, L. Zhang and R. A. Larson. 2002. Effects of iron oxidation state on the surface and structural properties of smectites. Pure Appl. Chem. 74: 2145-2158. Sujaritvanichpong, S., K. Aoki, K. Tokuda and H. Matsuda. 1986. Electrochemical behavior of dopamine at carbon fiber electrodes. J. Electroanal. Chem.198: 195-203. Švegl, I. G., M. Kolaz, B. Ogorevc and B. Pihhar. 1998. Vermiculite clay mineral as an effective carbon paste electrode modifier for the preconcentration and voltammetric determination of Hg(II) and Ag(II) ions. Fresenius J. Anal. Chem. 361: 358-362. Tachibana, Y., R. Muramoto, H. Matsumoro and S. Kuwabata. 2006. Photoelectrochemistry of p-type Cu2O semiconductor electrode in ionic liquid. Res. Chem. Intermed. 32: 575–583. Talibudeen, O. 1981. Cation exchange in soils. In The Chemistry of Soil Processes :115-117. Tennakone, K., G. S. S. Pushpa, S. Punchihewa and G. Epa. 1986. Stability of cuprous thiocyanate coated cuprous oxide photocathode in aqueous thiocyanate. Electrochim. Acta. 31: 315-318. Theng, B. K. G. 1971. Mechanisms of formation of colored clay-organic complexes. A review. Clays Clay Miner. 19: 383-390. Thompson, H. A., G. A. Parks amd G. E Jr. Brown. 2000. Formation and release of cobalt(II) and precipitation products in aging kaolinite-water slurries. J. Coll. Int. Sci 187: 62-82. Undabeitia, T., S., Nir, G., Rytwo, C., Serban, E., Morillo and C., Maqueda. 2002 Modleing adsorption-desorption processes of Cu on edge and planar sites of montmoriilonite. Environ. Sci. 36: 2677-2683. Undabeytia, T., E. Morillo and C. Maqueda. 1996. Adsorption of Cd and Zn on montmorillonite in the presence of a cationic pesticide. C. Clay Miner. 31: 485-490. Vanlentini, F., V, Biagiotti, C. Lete, G. Palleschi and J Wang. 2007. The electrochemical detection of ammonia in drinkingwater based on multi-walled carbon nanotube/copper nanoparticle composite paste electrodes. Sens. Actuator B-Chem.128: 326-333. Van Olphen, H., and J. J. Fripiat. 1979. Data handbook for clay minerals and other non-metallic minerals. Oxford, England: Pergamon Press. Vazquez-Arenas, J., I. Lazaro and R. Cruz. 2007. Electrochemical studyof binary and ternary copper complexes in ammonia-chloride medium. Electrochim. Acta. 52: 6106-6117. Walcarius, A., and L. Lamberts. 1996. Square wave voltammetric determination of paraquat and diquat in aqueous solution. J. Electroanal. Chem. 406: 59-68. Wightman, R. M., E. C. Paok, S. Borman and M. A. Dayton. 1978. Evaluation of the basal plane of pyrolytic graphite as and electrochemical detector for liquid chromatography. Anal. Chem. 50: 1410-1414. Xiang, Y., and G. Villemure. 1992. Electron transport in clay-modified electrodes: study of electron transfer between electrochemically oxidized tris(2,2’ –bipyridyl)iron cations and clay structural iron(II) sites. Can. J. Chem. 70: 1833-1837. Xiang, Y., and G. Villemure. 1995. Electordes modified with synthetic clay minerals: evidence of direct electron transfer from structural iron sites in the clay lattice. J. Electroan. Chem. 381: 21-27. Xiang, Y., and G. Villemure. 1996. Electrodes mofified with synthetic clay minerals: electron transfer between absorbed tris(2,2’ –bipyridyl) metal cations and electroactive cobaltcenters in synthetic smectites. J. Phys. Chem. 100: 7143-7147. Xiao, J. and G. Villemure. 1998. Preparation, characterization and electrochemistry of synthetic copper clays. Clays. Clay Miner. 46:195-203. Zachara, J. M., and J. P. McKinley. 1993. Influence of hydrolysis on the sorption of metal cations by smectites: Importance of edge coordination reactions. Aquat.Sci. 55: 250-261. Zachara, J. M., S. Smith, J. P. McKinley and J. T. Resch. 1993. Cadmium sorption on specimen and soil smectites in sodium and calcium electrolytes. Soil Sci. Soc. Am. J. 57:1491-1505. Zen, J. M., A. Senthil Kumar and D. M. Tsai. 2003. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15: 1073-1087. Zen, J. M., and A. S. Kumar. 2004. The prospects of clay mineral electrodes. Anal. Chem. 76: 205A-211A. Zen, J. M., C. T. Hsu, A. Senthil Kumar, H. J. Lyuu and K. Y. Lin. 2004. Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst 129: 841-845. Zen, J. M., H. F. Wang, A. S. Kumar, H. H. Yang and V. Dharuman. 2002. Preconcentration and electroanalysis of copper(II) in ammoniacal medium on nontronite/cellulose acetate modified electrodes. Electroanalysis.14: 99-105. Zen, J. M., Y. Song, H. H. Chung , C. T. Hsu, and A. Senthil Kumar. 2002. Photoelectrochemical Oxygen Sensor Using Copper-Plated Screen-Printed Carbon Electrodes.Anal. Chem. 74: 6126-6130. Zhang L., J. Li, Z. Chen, Y. Tang and Y. Yu. 2006. Preparation of Fenton reagent with H2O2 generated by solar light-illuminated nano-Cu2O/MWNTs composites. Applied Catalysis A: General 299: 292–297.
摘要: 黏粒修飾電極過去已經應用在電化學分析、光催化性與生化感測器等各方面,也有研究探討合成具催化性的金屬離子於黏粒膜層後再修飾於電極表面以達到催化與分析等用途,但過去鮮少有文獻報導結合金黏土礦物與金屬電極的研究。本試驗研究以不同黏土礦物修飾於鍍銅電極上(Copper screen-printed carbon electrode, CuSPE)探討其電化學行為,試驗結果指出不同黏土礦物種類修飾於鍍銅電極上於銅的氧化還原行為有著顯著的影響,四種黏土礦物修飾鍍銅電極在pH 7磷酸緩衝溶液環境下對銅的氧化還原訊號上都有促進的作用,其中多鐵蒙特石與綠脫石在八面體層中含多量同構代換的三價鐵,對銅氧化還原波峰電流量上的增大作用較大於鈉蒙特石與高嶺石,多鐵蒙特石與綠脫石修飾鍍銅電極在還原波峰處發現兩價銅的還原訊號消失而一價銅的還原訊號則不變,且其具有相當大的氧化波峰。礦物晶格的三價鐵在銅的氧化還原行為扮演了電子傳遞者的角色,並能穩定Cu2IO於修飾電極表面。多鐵蒙特石修飾鍍銅網版印刷電極所量測到的氧化還原訊號隨著pH值增加而急遽下降,銅離子於鹼性環境下吸附在礦物晶格邊緣並形成錯合物後電化學活性降低導致電流值變小;在光電化學的應用方面我們利用多鐵蒙特石能吸附並透過電子傳遞作用將銅離子轉換成一價銅的特性,碘離子直接與一價銅反應生成具有光電半導體特性的CuI。在pH7、0.1M磷酸緩衝溶液與KI濃度5mM條件下,當施予光照強度20flux到300flux光還原電流隨著光照強度增加電流訊號呈現穩定與線性關係。 在生化物質的微量分析方面我們發現多鐵蒙特石修飾電極在多巴胺氧化訊號上具有電催化作用,且其用於多巴胺偵測的氧化波峰電流量不會隨循環圈數的增加而衰減,其搭配流動注入系統對0.5–10μM多巴胺的偵測具有良好的線性關係(R2 = 0.9995),顯示有良好的偵測結果。多鐵蒙特石修飾鍍銅網版印刷電極在鹼性環性下銅離子吸附在礦物晶格邊緣形成錯合物並失去電活性,添加入NH3與吸附的銅錯合物形成具有電活性的銅銨複合物,在pH10的磷酸溶液中隨著NH3濃度的增加銅銨複合物的氧化還原電流值也隨之增加。搭配i-t法將電位定在-0.4V對於200μM到4000μM的NH3偵測也具有良好的線性關係。未來期望能結合超微電極技術提升靈敏度與開發成氣體感測器等目標。
Clay-modified electrode was applied in electroanalysis, photocatalysis biosensor, and catalysis and analysis of synthesis catalytic metal in clay structure. We studied electroanalysis of copper screen-printed carbon electrode (CuSPE) modified by different clay minerals. The experimental results indicated four clay minerals amplified copper redox currents in 0.1M pH7 phorsphate buffer. Furthermore, Ferruginous smectite (SWa-1) and nontronite (NG-1) with octahedral Fe(III) had larger redox currents than Na-montmorillonite (SWy-1) and Kaolinite (KG-1). We observed decreasing reductive peak current of CuII in SWa-1 and NG-1 modified copper-plated electrode, and peak current of CuI was same. That implied octahedral Fe(III) of clay mineral play important role on electron transfer between clay mineral and copper on electrode. Reductive and oxidative currents of SWa-1CuSPE decreased apparently with increasing pH due to formation of electroinactive copper complex on clay mineral edges in alkaline solution. SWa-1CuSPE could be transferred to a photoelectric and semiconductive CuI in in pH7 0.1M phorsphate buffer with 5mM KI. That had stable and linear relationships between photoelectric currents and light intensity from 20 to 300flux. As biosensor, Electrocatalysis of dopamine can be observed at the ferruginous smectite modified copper-plated electrode with a linear range of 0.5 μM - 10 μM (R2 = 0.9995) by flow injection analysis. Complexed copper of SWa-1 modified copper-plated electrode could be transferred to electroactive copper-ammonia complex in alkaline solution. Reductive currents of copper-ammonia complex increased with increasing ammonia concentration in pH10 phosphate buffer solution. We could obtained a good linear relationship from 200-4000μM NH3 using i-t method. We respect combine screen-printed edge band ultramicroelectrode (SPUME) and application of ammonia gas sensor in future.
URI: http://hdl.handle.net/11455/28197
其他識別: U0005-2007200913193800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2007200913193800


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。