Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2820
標題: 原子層沉積氧化鋅的光學與結構特性之研究
Study on the Optical and Structural Characteristics of ZnO Fabricated by Atomic Layer Deposition
作者: 江東源
Chiang, Tun-Yuan
關鍵字: 極薄膜
Ultrathin films
氧化鋅
矽奈米柱
多孔矽奈米結構
原子層沉積
光激螢光。
ZnO
Nanopillars
Porous silicon nanostructures
Atomic layer deposition
Photoluminescence.
出版社: 機械工程學系所
引用: 〔1〕 S. Takata, T. Minami, and H. Nanto, “The stability of aluminium-doped ZnO transparent electrodes fabricated by sputtering,” Thin Solid Films 135 (1986) 183. 〔2〕 C. W. Nahm, “Electrical properties and stability of praseodymium oxide-based ZnO varistor ceramics doped with Er2O3,” J. Eur. Ceram. Soc. 23 (2003) 1345. 〔3〕 N. K. Zayer, R. Greef, K. Rogers, A. J. C. Grellier, and C. N. Pannell, “In situ monitoring of sputtered zinc oxide films for piezoelectric transducers,” Thin Solid Films 352 (1999) 179. 〔4〕 N. J. Dayan, S. R. Sainkar, R. N. Karekar, and R. C. Aiyer, “Formulation and characterization of ZnO:Sb thick-film gas sensors,” Thin Solid Films 325 (1998) 254. 〔5〕 K. J. Chen, F. Y. Hung, S. J. Chang, and S. J. Young, “Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films,” J. Alloys Compd. 479 (2009) 674. 〔6〕 S. Krishnamoorthy , and A. A. Iliadis, “Development of high frequency ZnO/SiO2/Si Love mode surface acoustic wave devices,” Solid-State Electronics 50 (2006) 1113. 〔7〕 C. R. Wuethrich , C. A. P. Muller, G. R. Fox , and H. G. Limberger, “All-fibre acousto-optic modulator using ZnO piezoelectric actuators,” Sensors and Actuators A 66 ( 1998) 114. 〔8〕 A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Kunst, N. Allsop, M. C. Lux-Steiner, and S. Gavrilov, “ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber,” Sol. Energy Mater. Sol. Cells 93 (2009) 1033. 〔9〕 D. W. Wanga, M. S. Caoa, J. Yuanb, R. Lua, H. B. Li, H. B. Linc, Q. L. Zhaoa, and D. Q. Zhang, “Effect of sintering temperature and time on densification, microstructure and properties of the PZT/ZnO nanowhisker piezoelectric composites,” J. Alloys Compd. 509 (2011) 6980. 〔10〕 T. J. Hsueh, and C. L. Hsu, Sens. “Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles,” Actuators B 131 (2008) 572. 〔11〕 A. B. Djurisic, A. M. C. Ng, and X. Y. Chen, “ZnO nanostructures for optoelectronics: Material properties and device applications,” Prog. Quantum Electron. 34 (2010) 191. 〔12〕 Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, and M. A. Reshchikov, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(2005)041301. 〔13〕 T. K. Chaudhuri, and B. Pathak, “A non-vacuum method for synthesis of ZnO films by thermal oxidation of ZnS films in air,” Mater. Lett. 61 (2007) 5243. 〔14〕 B. M. Ataev, A. M. Bagamadova, V. V. Mamedov , and A. K. Omaev, “Thermally stable, highly conductive, and transparent ZnO layers prepared in situ by chemical vapor deposition,” Mater. Sci. Eng. B 65 (3–4) (1999) 159. 〔15〕 M. C. Jeong, B. Y. Oh, W. Lee, and J. M. Myoung, “Comparative study on the growth characteristics of ZnO nanowires andthin films by metalorganic chemical vapor deposition (MOCVD),” J. Cryst. Growth 268 (2004) 149. 〔16〕 H. J. Ko, Y. Chen, S. K. Hong, and T. Yao, “MBE growth of high-quality ZnO "lms on epi-GaN,” J. Cryst. Growth 209 (2000) 816. 〔17〕 D. G. Yoo, S. H. Nam, M. H. Kim, S. H. Jeong, H. G. Jee, H. J. Lee, N. E. Lee, B. Y. Hong, Y. J. Kim, D. Jung, and J. H. Boo, “Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) devices,” Surf. Coat. Technol. 202 (2008) 5476. 〔18〕 P. T. Hsieh, Y. C. Chena, K. S. Kaob, M. S. Lee, and C. C. Cheng, “The ultraviolet emission mechanism of ZnO thin film fabricated by sol–gel technology,” J. Eur. Ceram. Soc. 27 (2007) 3815. 〔19〕 V. Vaithianathan, B. T. Lee, and S. S. Kim, “Preparation of As-doped p-type ZnO films using a Zn3As2 /ZnO target with pulsed laser deposition,” Appl. Phys. Lett. 86 (2005) 062101. 〔20〕 C. S. Ku , J. M. Huang , C. M. Lin, and H. Y. Lee, “Fabrication of epitaxial ZnO films by atomic-layer deposition with interrupted flow,” Thin Solid Films 518 (2009) 1373. 〔21〕 M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86 (2005) 151113. 〔22〕 D. Li, Y. H. Leung, A. B. Djurišiæ, Z. T. Liu, M. H. Xie, S. L. Shi, and S. J. Xu, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85 (2004) 1601. 〔23〕 W. T. Lim, C. H. Lee, “Highly oriented ZnO thin films deposited on Ru/Si substrates,” Thin Solid Films 353 (1999) 12. 〔24〕 J. Yang, J. Lang, L. Yang, Y. Zhang, D. Wang, H. Fan, H. Liu, Y. Wang, and M. Gao, “Low-temperature growth and optical properties of ZnO nanorods,” J. Alloys Compd. 450 (2008) 521. 〔25〕 J. Wang, V. Sallet, F. Jomard, A. M. B. D. Rego, E. Elamurugu, R. Martins, and E. Fortunato, “Influence of substrate temperature on N-doped ZnO films deposited by RF magnetron sputtering,” Thin Solid Films 515 (2007) 8785. 〔26〕 L. Chen, C. Li, W. Yin, J. Liu, L. Hei, and F. Lu, “Effect of deposition temperature and quality of free-standing diamond substrates on the properties of RF sputtering ZnO films,” Diamond and Related Materials 20 (2011) 527. 〔27〕 X. H. Li, A. P. Huang, M .K. Zhu, S. L. Xu, J. Chen, H. Wang, B. Wang, and H. Yan, “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films,” Mater. Lett. 57 (2003) 4655. 〔28〕 M. Liu, X. Q. Wei, Z. G. Zhang, G. Sun, C. S. Chen, C. S. Xue, H. Z. Zhuang, and B. Y. Man, “Effect of temperature on pulsed laser deposition of ZnO films,” Appl. Surf. Sci. 252 (2006) 4321. 〔29〕 J. Lim, and C. Lee, “Effects of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition,” Thin Solid Films 515 (2007) 3335. 〔30〕 S. Monticone, R. Tufeu, and A.V. Kanaev, “Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles,” J. Phys. Chem. B 102 (1998) 2854. 〔31〕 H. He, Q. Yang, J. Wang, and Z. Ye, “Layer-structured ZnO nanowire arrays with dominant surface- and acceptor-related emissions,” Mater. Lett. 65 (2011) 1351. 〔32〕 L. Z. Peia, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, and Q. F. Zhang, “Single crystalline ZnO nanorods grown by a simple hydrothermal process,” Materials Characterization 60 (2009) 1063. 〔33〕 L. J. Bie, X. N. Yan, J. Yin, Y. Q. Duan, and Z. H. Yuan, Sens. “Nanopillar ZnO gas sensor for hydrogen and ethanol,” Actuators B 126 (2007) 604. 〔34〕 X. H. Wanga, R. B. Li a, and D. H. Fan, “Control growth of catalyst-free high-quality ZnO nanowire arrays on transparent quartz glass substrate by chemical vapor deposition,” Appl. Surf. Sci. 257 (2011) 2960. 〔35〕 P. G. Lia, W. H. Tanga, and X. Wang, “Synthesis of ZnO nanowire arrays and their photoluminescence property,” J. Alloys Compd. 479 (2009) 634. 〔36〕 Y. Du, and F. Zeng, “Aging effects on the optical properties of an individual Zn-rich ZnO nanowire,” J. Alloys Compd. 509 (2011) 1275. 〔37〕 K. J. Chena, F. Y. Hungb, S. J. Changa, and S. J. Young, “Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films,” J. Alloys Compd. 479 (2009) 674. 〔38〕 N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of preferred orientation for ZnOx films:control of self-texture,” J. Cryst. Growth 130 (1993) 269. 〔39〕 金巨達國際股份有限公司譯,“原子層沉積之綜合概述:原子層沉積之原理及運用,” 電子月刊第十五卷第三期, (2009) p.106. 〔40〕 李政達, 李耀仁, 潘同明, “淺談原子層沉積法,” 電子月刊第十四卷第三期, (2008) p.158. 〔41〕 M. Leskela, and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films 409 (2002) 138. 〔42〕 F. Lee, S. Marcus, E. Shero, G. W. J. Swerts, and J. W. Maes, Tom Blomberg ASM America Inc., “Atomic Layer Deposition:An Enabling Technology for Microelectronic Device Manufacturing,” 3440 East University Drive, Phoenix, Arizona, 85034-7200, USA, 2007. 〔43〕 E. Granneman, P. Fischer, D. Pierreux, H. Terbert, and P. Zagwijn, “Batch ALD: Characteristics, comparison with single wafer ALD, and examples,” Surface Coatings Tech., 201 (2007) 8899. 〔44〕 蘇俊榮, “原子層沉積技術與應用,” 電子月刊第十七卷第九期, (2011) p.94. 〔45〕 M. Leskelä, and M. Ritala, “Atomic Layer Deposition Chemistry: recent developments and future challenges,” Angew. Chem. Int. Ed. 42 (2003) 5548. 〔46〕 L. Niinistö, J. Päiväsaari, J. Niinistö, M. Putkonen, and M. Nieminen, “Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials,” Phys. Status Solidi A 201 (2004) 1443. 〔47〕 R. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys. 97 (2005) 121301. 〔48〕 J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater. 15 (2003) 3507. 〔49〕 R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett. 81 (2002) 3864. 〔50〕 C. F. Hermann, F. H. Fabreguette, D. S. Finch, R. Geiss, and S. M. George, “Multilayer and functional coatings on carbon nanotubes using atomic layer deposition,” Appl. Phys. Lett. 87 (2005) 123110. 〔51〕 B. M. Knez, K. Nielsch, and L. Niinisto, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19 (2007) 3425. 〔52〕 F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfolda, and J. H. Harding, “Growth of ZnO thin films—experiment and theory,” J. Mater. Chem. 15 (2005) 139. 〔53〕 Y. W. Heo, D. P. Nortona, L. C. Tiena, Y. Kwon, B. S. Kangb, F. Renb, S. J. Pearton and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R 47 (2004) 1. 〔54〕 H. Kim, A. Piqu´, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films 377-378 (2000) 798. 〔55〕 Y. Liu, H. Zhang, X. An, C. Gao, Z. Zhang, J. Zhou, M. Zhou, and E. Xie, “Effect of Al doping on the visible photoluminescence of ZnO nanofibers,” J. Alloys Compd. 506 (2010) 772. 〔56〕 T. V. Vimalkumar, N. Poornima, K. B. Jinesh, C. S. Kartha, and K. P. Vijayakumar, “On single doping and co-doping of spray pyrolysed ZnO films: Structural, electrical and optical characterization,” Appl. Surf. Sci. 257 (2011) 8334. 〔57〕 X. Li , Y. Chang , and Y. Long, “Influence of Sn doping on ZnO sensing properties for ethanol and acetone,” Mater. Sci. Eng. C 32 (2012) 817. 〔58〕 劉博文, “光電元件導論,” 權威圖書有限公司, (2007) p.1-13. 〔59〕 S. M. Sze, “Semiconductor Device 2nd,” Jo hn Wiley and Sons Inc., New York, (2001) p.283. 〔60〕 謝嘉民, 賴一凡, 林永昌, 枋志堯,“奈米通訊,”第十二卷第二期, (2005) p.28. 〔61〕 黃明義, 黃哲勳, 李虹儀,“激發光光譜分析,”台灣大學化學系報告, (2000). 〔62〕 P. T. Hsieh, Ph.D. thesis (National Sun Yat-Sen University, 2008). 〔63〕 Y. C. Huang, Master thesis (Feng-Chia University, 2003). 〔64〕 C. C. Hu, Master thesis (National Sun Yat-Sen University, 2005). 〔65〕 羅光耀, “固態光學實習—三、螢光光譜量測原理及實驗,” 嘉義大學電子物理學系, p.1. 〔66〕 郭行健, 張柳春等譯, “材料科學與工程,” 學銘圖書有限公司, 歐亞書局有限公司, (2005) p.113. 〔67〕 Y. M. Chang, Ph.D. thesis (National Chung Hsing University, 2009). 〔68〕 張福榮, 張立, “場發射穿透式電子顯微鏡,” 科儀新知, 第十六卷第四期, (1995) p.4. 〔69〕 馬振基, “奈米材料科技原理與應用,” 全華科技圖書股份有限公司, (2003) p.3-50. 〔70〕 E. Guziewicz, I. A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wójcik, S. Yatsunenko, E. Łusakowska, W. Paszkowicz, and M. Guziewicz, “Extremely low temperature growth of ZnO by atomic layer deposition” J. Appl. Phys. 103 (2008) 033515. 〔71〕 J. Lim, K. Shin, H. W. Kim, and C. Lee, “Photoluminescence studies of ZnO thin films grown by atomic layer epitaxy,” J. Lumin. 109 (2004) 181. 〔72〕 E. Janocha, C. Pettenkofer, “ALD of ZnO using diethylzinc as metal-precursor and oxygen as oxidizing agent,” Appl. Surf. Sci. 257 (2011) 10031. 〔73〕 Y. M. Chang, C. L. Dai, T. C. Cheng, and C. W. Hsu, “Effect of annealing temperature for Si0.8Ge0.2 epitaxial thin films,” Appl. Surf. Sci. 254 (2008) 3105. 〔74〕 A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality,” Appl. Phys. Lett. 85 (2004) 2815. 〔75〕 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nat. Lett. 451 (2007) 163. 〔76〕 L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. 42 (2003) 3031. 〔77〕 M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, “Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD),” Thin Solid Films 403–404 (2002) 485. 〔78〕 J. Weng, Y. Zhang, G. Hana, Y. Zhang, L. Xu, J. Xu, X. Huang, and K. Chen, “Electrochemical deposition and characterization of wide band semiconductor ZnO thin film,” Thin Solid Films 478 (2005) 25. 〔79〕 A. Mitra, and R. K. Thareja, “Photoluminescence and ultraviolet laser emission from nanocrystalline ZnO thin films,” J. Appl. Phys. 89 (2001) 2025. 〔80〕 D. Li, Y. H. Leung, A. B. Djuriˇsic, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85 (2004) 1601. 〔81〕 S. Monticone, R. Tufeu, and A. V. Kanaev, “Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles,” J. Phys. Chem. B 102 (1998) 2854. 〔82〕 J. Yang, J. Lang, L. Yang, Y. Zhang, D. Wang, H. Fan, H. Liu, Y. Wang, and M. Gaoa, “Low-temperature growth and optical properties of ZnO nanorods,” J. Alloys Compd. 450 (2008) 521. 〔83〕 I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B 69 (2004) 245401. 〔84〕 Y. M. Chang, J. Shieh, P. Y. Chu, H. Y. Lee, C. M. Lin, and J. Y. Juang, “Enhanced free exciton and direct band-edge emissions at room temperature in ultrathin ZnO films grown on Si nanopillars by atomic layer deposition,” ACS Appl. Mater. Interfaces 3 (2011) 4415. 〔85〕 J. A. Jacquez, and H. F. Kuppenheim, “Theory of the integrating sphere,” J. Opt. Soc. Am. 45 (1955) 460. 〔86〕 G. R. Lin, Y. C. Chang, E. S. Liu, H. C. Kuo, and H. S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett. 90 (2007) 181923. 〔87〕 A. Bondi, “The spreading of liquid metals on solid surfaces,” Chem. Rev. 52 (1953) 417. 〔88〕 S. J. Park, S. W. Lee, K. J. Lee, J. H. Lee, K. D. Kim, J. H. Jeong, and J. H. Choi, “An antireflective nanostructure array fabricated by nanosilver colloidal lithography on a silicon substrate,” Nanoscale Res. Lett. 5 (2010) 1570. 〔89〕 P. Lalanne, and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8 (1997) 53. 〔90〕 Y. Lee, K. Koh, H. Na, K. Kim, J. J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett. 4 (2009) 364. 〔91〕 L. I. Maissel, and R. Glang, Handbook of Thin Film Technology, McGraw-Hill: New York, 1970; Chapter 8. 〔92〕 J. Shieh, C. H. Lin, and M. C. Yang, “Plasma nanofabrications and antireflection applications,” J. Phys. D: Appl. Phys. 40 (2007) 2242. 〔93〕 J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9 (2009) 279. 〔94〕 J. Hiller, J. D. Mendelsohn, and M. F. Rubner, “Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers,” Nat. Mater. 1 (2002) 59. 〔95〕 H. Hattori, “Anti-reflection surface with particle coating deposited by electrostatic attraction,” Adv. Mater. 13 (2001) 51. 〔96〕 M. Cao, X. Song, J. Zhai, J. Wang, and Y. Wang, “Fabrication of highly antireflective silicon surfaces with superhydrophobicity,” J. Phys. Chem. B 110 (2006) 13072. 〔97〕 P. B. Clapham, and M. C. Hutley, “Reduction of lens reflexion by the〝Moth Eye〞principle,” Nature 244 (1973) 281. 〔98〕 E. Byon, T. W. H. Oates, and A. Anders, “Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition,” Appl. Phys. Lett. 82 (2003) 1634. 〔99〕 Y. M. Chang, S. R. Jian, H. Y. Lee, C. M. Lin, and J. Y. Juang, “Enhanced visible photoluminescence from ultrathin ZnO films grown on Si-nanowires by atomic layer deposition,” Nanotechnology 21 (2010) 385705. 〔100〕 A. Janotti, and C. G. V. D. Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87 (2005) 122102. 〔101〕 T. Y. Chiang, C. L. Dai, and D. M. Lian, “Influence of growth temperature on the optical and structural properties of ultrathin ZnO films,” J. Alloys Compd. 509 (2011) 5623. 〔102〕 R. Chen, Y. Q. Shen, F. Xiao, B. Liu, G. G. Gurzadyan, Z. L. Dong, X. W. Sun, and H. D. Sun, “Surface Eu-treated ZnO nanowires with efficient red emission,” J. Phys. Chem. C 114 (2010) 18081. 〔103〕 D. Li, Y. H. Leung, A. B. Djurišic, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85 (2004) 1601. 〔104〕 C. W. Hsu, T. C. Cheng, C. H. Yang, Y. L. Shen, J. S. Wu, and S. Y. Wu, “Effects of oxygen addition on physical properties of ZnO thin film grown by radio frequency reactive magnetron sputtering,” J. Alloys Compd. 509 (2011) 1774. 〔105〕 D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, “Temperature dependent exciton photoluminescence of bulk ZnO,” J. Appl. Phys. 93 (2003) 3214. 〔106〕 Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, “Plasma assisted modecular beam epitaxy of ZnO on c-plane sapphire:growth and characterization,” J. Appl. Phys. 84 (1998) 3912. 〔107〕 W. Y. Liang, and A. D. Yoffe, “Transmssion spectra of ZnO single crystals,” Phys. Rev. Lett. 20 (1968) 59.
摘要: 本研究之目的在探討生長溫度對於氧化鋅極薄膜之光學與結構特性的影響。氧化鋅極薄膜係利用原子層沉積法沉積於矽基板上,並且分別於不同的矽基板溫度(25~200 ℃)下製備而成,而薄膜厚度約為10 nm。隨後,應用高解析度X-光繞射儀、穿透式電子顯微鏡、原子力顯微鏡及光激螢光分光儀等量測,藉以描述氧化鋅極薄膜之材料結構與光激螢光特性。根據實驗量測結果顯示,沉積於矽基板上之氧化鋅極薄膜的結構品質隨著沉積溫度的升高而大幅改善。於200 ℃時有良好的結晶結構,尤其本實驗並未經熱處理程序。此外,應用原子力顯微鏡量測,隨著沉積溫度的增加,氧化鋅極薄膜之表面粗糙度也由0.91 nm(25 ℃)降至0.26 nm(200 ℃)。由於沉積溫度的升高而降低原子缺陷密度,因而提升薄膜的表面品質。經由光激螢光(PL)量測結果顯示,於較高的沉積溫度(200 ℃)下,氧化鋅極薄膜具有強烈的紫外線放射光譜;而室溫(25 ℃)下,在540 nm波長處得到強烈的可見光(綠光)訊號。這顯示高溫沉積可獲得較佳的結晶品質,而低溫沉積則具有相當的晶格缺陷。 另外,透過Volmer-Weber島型薄膜成長模式沉積銀於矽基板上,經由自組式銀奈米島及網格結構當作金屬遮罩,經短時間(1~10 min)乾蝕刻,將矽基板製成奈米柱陣列與多孔矽奈米結構。經檢測結果顯示,經過10 min蝕刻後的兩種結構,從紫外線至紅外線波長區(300~1000 nm)具有0.65~0.69%的極低抗反射率。相較於文獻報告,本實驗樣本結構具有良好的抗反射特性,有效降低反射指數及提升光的吸收率,有利於光電伏特的應用。 另一方面,利用原子層沉積法在矽奈米柱上沉積氧化鋅極薄膜(10 nm)形成氧化鋅/矽奈米柱的異質結構,而沉積溫度為200 ℃。經光激螢光量測,氧化鋅極薄膜沉積於矽奈米柱上比沉積於矽基板上之結構,所發出之紫外線光強度高出約五倍之譜。這結果顯示,此種奈米柱結構提高了體表面積比,允許更多氧化鋅的沉積,相對地提升紫外線光的發光效率。
This study investigates the effect of growth temperature on the optical and structural properties of ultrathin ZnO films on the polished Si substrate. Thickness of the ultrathin ZnO films deposited by atomic layer deposition (ALD) method was about 10 nm. Photoluminescence (PL), X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM) techniques were used to measure the properties of ultrathin ZnO films. Experimental results showed that the ultrathin ZnO film deposited at 200 ◦C had excellent ultraviolet emission intensity, and the average roughness of the film surface was about 0.26 nm. Moreover, using a lithography-free approach fabricates silicon nanopillars (Si-NPs) and biomimetics porous silicon (P-Si) with excellent antireflective properties. The self-assembled silver nanostructures (nanoislands and disordered nanogrids) were formed by the Volmer_Weber (island growth) mode during the deposition process, which, in turn, serve as a metal-nanomask for the subsequent dry etching process carried out for fabricating the Si-NPs and P-Si on Si substrates. Reflectivity of about 0.65% was obtained over the spectral region ranging from deep-ultraviolet to infrared light (300~1000 nm). The remarkable antireflective characteristics are attributed to the drastic decrease of effective index of refraction and the enhanced matching effect between air and substrate resulting from the Si nanostructures and suggesting an interesting alternative route for producing nanostructures that might be useful for photovoltaic applications. On the other hand, high efficient room temperature ultraviolet (UV) luminescence is obtained in heterostructures consisting of 10 nm thick ultrathin ZnO films grown on Si-nanopillars fabricated by using self-assembled silver nanoislands as natural metal-nanomask during subsequent dry etching process. Atomic layer deposition was applied for depositing ZnO films on the Si-nanopillars under the ambient temperature of 200 �C. Based on measurements of photoluminescence (PL), an intensive UV emission corresponding to free-exciton recombination (~ 3.31 eV) was observed with a nearly complete suppression of the defect-associated broad visible range emission peak. As compared to the ZnO/Si-substrate, the almost 5 times of magnitude enhancement in the intensity of PL, which peaked around 3.31 eV in the present ultrathin ZnO/Si-nanopillars, is presumably attributed to the high surface/volume ratio inherent to the Si-nanopillars. This allowed considerably more amount of ZnO material to be grown on the template and led to markedly more efficient intrinsic emission.
URI: http://hdl.handle.net/11455/2820
其他識別: U0005-1001201314171300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1001201314171300
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.