Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28226
標題: 研究蔗糖及無機養分添加對復育重金屬污染土壤之影響
The reclamation effect of heavy metal polluted soil by adding with sugar and inorganic nutrients
作者: 陳世擇
Chen, Shih-Ze
關鍵字: Heavy metals
重金屬
Organic acid
redox potential
sucrose
inorganic nutrients
有機酸
氧化還原
蔗糖
無機養分
出版社: 土壤環境科學系所
引用: 林良平,1987。土壤微生物學。南山堂出版社。 林炎昌,1988。有機物影響土壤吸附重金屬之特性。國立台灣大學環 境工程系碩士論文。 戴國邦,1991。彰化縣花壇鄉水稻田土壤重金屬污染物分佈之研究。 礦冶,第35卷,第111-121頁。 張簡水紋。1995。電鍍廢水對土壤重金屬聚積型態與作物生長之影響。 國立中興大學土壤環境科學系碩士論文。 黃文成,1997。磷酸鹽對土壤中重金屬移動之影響。國立中興大學環 境工程系碩士論文。 黃富美,2002。重金屬污染土壤對作物生長與根圈土壤低分子量有機 酸之影響。國立中興大學生命科學系碩士論文。 王雅真,2004。低分子量有機酸影響金屬離子氧化還原反應之密度泛 涵理論計算。國立中興大學土壤環境科學系碩士論文。 蔡永曍,2005。台灣農家要覽農作篇(一)。行政院農委會。第465 ~472 頁。 江致民,2006。中性及鹼性污染土中重金屬和磷酸根結合及酸洗型態 之研究。國立中興大學土壤環境科學系碩士論文。 林志豪,2008。污染土壤浸水環境下之重金屬釋出。國立中興大學土 壤環境科學系碩士論文。 邱建中,2008。蔗糖在改良重金屬污染土壤可行性研究。國立中興大 學土壤環境科學系學士論文。 呂依憲,2009。探討化學添加劑對浸水環境下之污染土壤重金屬溶解 度的影響。國立中興大學土壤環境科學系碩士論文。 Alloway, B. J. 1995. Heavy metals in soils, 2nd ed., Blackie Academic and Professional, Glasgow, UK. Ayyasamy, P. M., S. Chun, and S. Lee. 2008. Desorption and dissolution f heavy metals from contaminated soil using Shewanella sp.(NH-41) amened with various carbon sources and synthwtic soil organic matter. J. Hazard. Mater. doi:10.1016/j.jhazmat. Brummer, G. W. 1986. In the importance of chemical speciation in environmental processes. Springer-Verlag. p. 169 – 192. Christensen, T. H. 1984. Cadmium soil sorption at low concentrations:I. Effect of time, cadmium load, pH, and cadmium. Wat. Air soil pollut. 21:105 - 114. Chen, Y., and F. J. Stevenson. 1986. In the role of organic matter in modern agriculture, eds., Martinus nijhoff, Dordrecht, Netherland. p.195 – 205. Chen, H. M., and H. L. Carios. 1989. Preparation of fecal samples for assay of volatile fatty acids by gas-liquid chromatography and high-performance liquid chromatography. Clin. Chem. 35:74 -76. Calmano, W., J. Hong, and U. Forstner. 1993. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Wat. Sci. Technol. 28:223 – 235. Chuan, M. C., G. Y. Shu, and J. C. Liu. 1996. Solubility of heavy metals in a contaminated soil:effects of redox potential and pH. Water, Air, and soil pollut. 90:543-556. Chen, L. C., X. Y. Gu, J. W. C. Wang. 2003. Comparison of bioleaching of heavy metals form sewage sludge using iron- and sulfur-oxidizing bacteria. Adv. Environ. Res. 7:603-607. Chen, S. Y., and J. G. Lin. 2004. Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria:effect of sludge solids concentration. Chemosphere. 54:283-289. Chen, Y. X., Y. M. Hua, S. H. Zhang, and G. M. Tian. 2005. Transformation of heavy metal forms during sewage sludge bioleaching. J. Hazard. Mater. B123:196-202. Dacera, D. D. D., and S. Babel. 2008. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes. Bioresour. Technol. 99:1682 - 1689. Flores, L., G. Blas, G. Hernandez, and R. Alcala. 1997. Distribution and sequential extraction of some heavy metals from soils irrigated with wastewater from Mexico city. Water, air, and soil pollut. 98:105 - 117. Fischer, H., J. Ingwersen, and Y. Kuzyakov. 2010. Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil. Eur. J. S. Sci. 61:504-513. Gupta, S. K., and K. Y. Chen. 1975. Partitioning of trace metals in selective chemical fractions of nearshore sediments. Environ. Lett. 10:129 – 158. Gorby, Y., and D. R. Lovley. 1991. Electron transport in the dissimilatory iron reducer GS-15. Appl. Environ. Microbiol. 57:867 – 870. Hu, H., H. ji-zheng, and Li X. 2001. Competitive adsorption of phosphate and several organic acids on Al(OH)x surface. Plant nutrision and fertilizer science. 7 (1) :50 ~ 55. Hammer, D., and C. Keller. 2002. Changes in the Rizosphere of metal accumulating plants evidenced by chemical extractants. J. Environ. Quality. 31:1561 -1569. Kenney, D. R. 1979. Encyclopaedia of soil science, eds., Hutchinson & Ross, Stroudsburg, Pa. Krishnamuti, G. S. R., P. M. Huang, K. C. J. Van Ress, L. M. Kozak, and H. P. W. Rostad. 1995. Speciation of particulate-bound cadmium of soil and it’s bioavailability. The analyst. 120:659 – 665. Krishnamurti, G. S. R., G. Cieslinski, P. M. Huang, and K. C. J. Van Rees. 1997. Kinetics of cadmium release from soil as influenced by organic acids:Implication in cadmium availability. J. Eviron. Qual. Vol. 26 No. 1, p. 271 - 277. Kaasalainen, M., and M. Y. Halla. 2003. Use of Sequential extraction to assess metal partitioning in soil. Environ. Pollut. 126:225-233. Kelderman, P., and A. A. Osman. 2007. Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delfr(The Netherlnd). Water research. 41:4251 - 4261. Lindsay, W. L. 1979. Chemical equilibrium in soils. Wiley interscience, New York. Lovely, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) eduction.Microbiol. Review. p.259 - 287. Lovely, D. R. 1995. Microbial Reduction if iron, Manganese, and other Metals. Adv. of Agron. volume54 p.175 - 231. Mele`ne, T., J. P. Schwitzgue`bel, P. Pe`ringer. 2000. Anaerobic thermophilic fermentation for acetic acid production from milk permeate. J. Biotechnl. 76:83 – 92. Nealson, K. H. and D. Saffarini. 1994. Iron and manganese in anaerobic respiration:environmrntal significance, physiology, and regulation. Annu. Rev. Microbiol. 48:311 - 343. Patrick, W. H. Jr., and I. C. Mahapatra. 1968. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv. Agron. 20:323 – 359. Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Adv. Agron. 24:29 – 96. Palma, L. D., and R. Mecizzi. 2007. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. J. Hazard. Mater. 147:768 - 775. Quevauviller, Ph. A. Ure. H. Muntal, and B. Griepink. 1993. Speciation of heavy metals in soils and sediment. An account of the improvement and harmonization of extraction techniques under the auspices of the BCR of the commission of the European communities. Inter. J. Environ. Anal. Chem. 51:135 – 151. Qin, F., X. Q. Shan, and B. Wei. 2004. Effect of low-molecular-weight organic acids and residemce time om desorption of Cu, Cd, and Pb from soil. chemosphere. 57:p.253 - 263. Subrahmanyan, V. 1929. Biochemistry of waterlogged Soils.partIII. Decomposition of carbohydrates with special reference to formation of organic acids. J. of Agric. Sci. 19:627 - 648. Stover, R. C., L. E. Sommers, and D. J. Silviera. 1976. Evaluation of metals in waste water sludge. J. Water Pollut. Control Fed. 48:2165 – 2175. Sposito, G. 1983. Applied Environmental Geochemistry ed., Tornton, I. Academic Press. p.123 -170. Sposito, G., and A. L. Page. 1985. Metal ions in biological systems Vol.18 Circulation of metals in the environment, ed., Marcel Dekker, New York. Scott, J. H., and K. H. Nealson. 1994. A biochemical study of the intermediary carbon metabolism of Shewalla putre faciens. J. Bacteriol. 176:3408 – 3411. Seidel, H., R. Wennrich, P. Hoffmann, and C. Loser. 2006. Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments. Chemosphere. 62:1444 - 1453. Tessier, A., Campbell, P. G. C., Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace metal. Anal. Chem. 51: 844 – 851. Tingzong Guo, R. D., and W. H. Patrick. 1997. The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environ. Int. NO.3 p305 - 316. Tsai, L. J., K. U. Yu, S. F. Chen, and P. Y. Kung. 2003. Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching. Water Res. 37:2449 - 2457. Wiklander, L. 1964. Chemistry of the soil, 2nd edn. ed. Reinhold, New York. Wasay, S. A., S. F. Barrington, and S. Tokunaga. 1998. Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environ. Technol. Vol.19. p.369 - 380. Wong, J. W. C., L. Xiang, X. Y. Gu, and L.X. Zhou. 2004. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere. 55:101 - 107.
摘要: Heavy metal pollution in arable land has been a serious problem in Taiwan. Many reclamation methods like acid extraction or soil removing all cost lots of money. The most of the polluted heavy metals are deposited and associated with soil amorphus and crystal iron and manganese oxides which cause the low removal efficiency in acid extracting systems. Four experiments were conducted by supplying sugar carbon source, inorganic nutrients (ammonium sulphate and monopotasium sulphate), and yeast to two multi-heavy metals polluted soils to activate soils microorganism activites to lower soil pH and Eh for reducing soil iron and manganese oxides. The results showed that the addition of sugar dramatically decreased soil pH and Eh and cuased substantial amouts of soil inorganic components releases including fertility components, P, K, Ca, Mg, Fe, and Mn and heavy metals, Cu, Ni, and Zn. The results showed that during the incubation soil pH can be decreased to 4.3, and the system redox potential lowered down to - 200 mV. The removal part of Ni, Zn, and Cu even reached 83.6 %, 66.6 %, and 46.7 %, respectively. All results also evidenced by the reduced of heavy metals in forms with amorphus and crystal iron and manganese oxides and increased the more removal forms such as exchangeable and acid extractable forms. The removal efficeincy was increased with the addition of inorganic nutrients in addtion to the addition of sugar. The use of yeast reduced the removal efficiency of heavy metals by the higher soil pH and Eh, and lower chelating organic acids concentrations companying companying higher acetic acid concentration. The concentration of chelating organic acids can reach: citric acid, 0.9 mM; oxalic acid, 0.7 mM; malic acid, 2 mM; succinic acid 21 mM, Tartaric acid 3.2 mM. The concentration of acetic acid in treatments adding with yeast reached 40 mM, the highest concentration for no yeast treatemnts reached 20 mM. Another evidence for supporting that the increasing the release of soil inorganic components release by addtion of sugar and inorganic nutrients are the decreases of soil organic matter content and cation exchangeable capacity. Results also illustrated that the removal efficieny of heavy metals is highest in static system, follwing the shaking system, the vacuum sucking system is lowest.
早期工業發展造成重金屬污染農田是不爭的事實。以往各項工程式的重金屬污染農田復育方式,酸洗、翻轉稀釋,均要花費大量金錢。但對於台灣中部受電鍍廢水污染農地的中酸性土壤,所含之重金屬以鐵錳氧化物結合型態存在,酸洗移除不易。試以提供碳源活化土壤中微生物相,並以厭氣孵育方式促進鐵、錳還原。 本論文以四個試驗研究:一、探討碳源、無機養分及外來酵母添加對重金屬移除效果與土壤性質變化;二、比較震盪均勻混合與靜置處理上對重金屬型態變化之差異;三、以管柱試驗模擬現地處理重金屬型態與抽出量;四、土壤微生物所代謝之有機酸產量對土壤重金屬抽出量之影響。兩種試驗土壤取自彰化縣北部兩處受多種重金屬污染農田。 結果顯示單獨添加蔗糖及再添加無機養分皆可降低土壤pH及氧化還原電位 (Eh),而促進重金屬及一些無機養分溶出,無機養分磷、鉀、鈣、鎂、鐵及錳溶出量高於一般肥力測定值。土壤pH在孵育其間下降至4.3,系統也處於還原狀態200 mV~ - 200 mV,足以使鐵錳還原。重金屬的溶出以銅、鋅及鎳最顯著經由四星期孵育分別溶出可達46.7 %、66.6 %、83.6 %。加入蔗糖及無機養分 (氮、磷、鉀) 之處理結果優於只添加蔗糖處理。C/N 100與C/N 50之配方重金屬抽出量與有機酸產量略高。震盪與靜置比較試驗中發現,靜置處理對重金屬的溶出量較高,尤其磷、鐵及錳最明顯,鋅、銅及鎳次之。主要將與無定型(AmFe)或結晶型(CyFe)鐵錳結合之重金屬隨孵育試驗過程釋出,或形成交換態 (EC) 等弱鍵結態。管柱試驗因氧化與還原反覆交替,其重金屬溶出量遠比密閉處理低。添加酵母菌處理其土壤pH及Eh程度低於未添加處理,其重金屬及土壤養分成分釋出量亦較低。由有機酸測定顯示添加蔗糖及無機養分具有鉗合能力之有機酸含量個別高達:citric acid, 0.9 mM; oxalic acid, 0.7 mM; malic acid, 2 mM; succinic acid 21 mM, Tartaric acid 3.2 mM。添加酵母菌處理其具鉗合力有機酸濃度較低而acetic acid濃度最高可達40 mM,未添加酵母菌處理acetic acid也可高達20 mM。經過四週孵育發現土壤有機質及土壤陽離子交換容量也明顯降低。
URI: http://hdl.handle.net/11455/28226
其他識別: U0005-0902201116304500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0902201116304500
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.