Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28230
標題: 奈米零價鐵還原脫溴溴化阻燃劑-六溴環十二烷
Reductive debromination of hexabromocyclododecane by nanosized zerovalent iron
作者: 左致平
Tso, Chih-Ping
關鍵字: 六溴環十二烷
Hexabromocyclododecane
奈米級零價鐵
羥甲基纖維素鈉
雙金屬零價鐵
脫溴反應
nanoscale zero-valent iron
sodium carboxymethyl cellulose
bimetallic nanoparticles
particle size
debromination
出版社: 土壤環境科學系所
引用: Agrawal, A, and P.G. Tratnyek. 1995. Reduction of nitro aromatic compounds by zero-valent iron metal. Environ. Sci. Technol. 30:153-160. Ahn, S.C., S.Y. Oh, and D.K. Cha. 2008. Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. J. Haz. Nat. 156:17-22. Alessi, D.S. and Z. Li. 2001. Synergistic Effect of cationic surfactants on perchloroethylene degradation by zero-valent Iron. Environ. Sci. Technol. 36:4326-4333. Alowitz, M.J., and M.M. Scherer. 2002. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ. Sci. Technol. 36:299-306. Baalousha, M., A. Manciulea, S. Cumberland, K. Kendall, and J.R. Lead. 2008. Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ. Toxicol. Chem. 27:1875-1882. Barontini, F., V. Cozzani, and L. Petarca. 2003. The influence of aluminum on the thermal decomposition of hexabromocyclododecane. J. Anal. Appl. Pyrolysis. 70:353-368. Bi, E. I. Bowen, and J.F. Devlin. 2009. Effect of mixed anions (HCO3--SO42--ClO4-) on granular iron (Fe0) reactivity. Environ. Sci. Technol. 43: 5975-5981. Bokare, A.D., R.C. Chikate, C.V. Rode, and K.M. Paknikar. 2007. Effect of sueface chemistry of Fe-Ni nanoparticles on mechanistic pathways of azo dye degradation. Environ. Sci. Technol. 41:7437-7443. Bokare, A.D., R.C. Chikate, C.V. Rode, and K.M. Paknikar. 2008. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye orange G in aqueous solution. Appl. Catal., B. 79:270-278. Bremner, D. H., A.E. Burgess, D. Houllemare, and K.C. Namkung. 2006. Phenol degradation using hydroxyl radicals generated from zerovalent iron and hydrogen peroxide. Appl. Catal., B. 63:15-19. Brezonik, P.L. 1994. Chemical Kinetics and Process Dynamics in Aquatic Systems, Lewis Publishers. Bruno, J., W. Stumm, P. Wersin, and F. Brandberg. 1992. On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25 °C. Geochim. Cosmochim. Acta. 56:1139-1147. Buffle, J., K.J. Wilkinson, S. Stoll, M. Filella, and J. Zhang. 1998. A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ. Sci. Technol. 32:2887-2899. Chen, K.L., and M. Elimelech. 2007. Influence of humic acid on the aggregation kinetics of fullerence (C60) nanoparticles in monovalent and divalent electrolyte solusions. J. Colloid Interface Sci. 309:126-134. Cheng, S. F., and S.C. Wu. 2000. The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere. 41:1263-1270. Cheng, R., J. Wang, and W. Zhang. 2007. Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosozed Fe0. J. Hazard. Mater. 144:334-339. Cheng, R., J. Wang, and W. Zhang. 2008. Degradation of chlorinated phenols by nanoscale zero-valent iron. Front. Environ. Sci. Engin. China. 2:103-108. Choi, J.H., S.J. Choi, and Y.H. Kim. 2008. Hydrodechlorination of 2,4,6-trichlorophenol for a permeable reactive barrier using zero-valent iron and catalyzed iron. Korean J. Chem. Eng. 25:493-500. Davis, J.W., S. Gonsior, G. Marty, and J. Ariano. 2005. The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments. Water Res. 39:1075-1084. Davis, J.W., S.J. Gonsior, D.A. Marlman, U. Friederich, R.W. Hunziker, and J.M. Ariano. 2006. Biodegradation and product identification of [14C] hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment. Environ. Sci. Technol. 40:5395-5401. Devlin, J.F., and K.O. Allin. 2005. The effects of major anions on the reactivity of granular iron using a glass encased magnet (GEM) batch reactor. Environ. Sci. Technol. 39:1868-1874. Deng, J., L. Yu, C. Liu, K. Yu, X. Shi, L.W.Y. Teung, P.K.S. Lam, R.S.S. Wu and B. Zhou. 2009. Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquat. Toxicol. 93:29-36. Doong, R.A., and Y.J. Lai. 2005 Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid. Water Res. 39:2309-2318. Doong, R. and Y. Lai. 2006. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. Chemosphere. 64:371-378. Elliott, D.W., H.L. Lien, and W.X. Zhang. 2008. Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes. J. Environ. Qual. 37:2192-2201. Ema, M., S. Fujii, M. Hirata-Koizumi, and M. Matsumoto. 2008. Two-generation reproductive toxicity study of the flame retardant hexabromocyclododecane in rats. Reprod Toxicol. 25:335-51. Epolito, W., H. Yang, L.A. Bottomley, and S.G. Pavlostathis. 2008. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4. J. Hazard. Mater. 160:594-600. Fan, X., X. Guan, J. Ma, and H. Al. 2009. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. J. Environ. Sci. 21:1028-1035. Farrell, J., M. Kason, N. Melitas, and T. Li. 2000. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ. Sci. Technol. 34:514-521. Feng, J., and T.T. Lim. 2005. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn. Chemosphere. 59:1267-1277. Gerecke, A.C., W. Giger, P.C. Hartmann, N.V. Heeb, H.P.E. Kohler, P. Schmid, M. Zennegg, and M. Kohler. 2006. Anaerobic degradation of brominated flame retardants in sewage sludge. Chemosphere. 64:311-317. Giasuddin, A.B.M., S.R. Kanel, and H. Choi. 2007. Adsorption of humic acid into nanoscale zerovalent iron and its effect on arsenic removal. Environ. Sci. Technol. 41:2022-2027. Glavee, G.N., K.J. Klabunde, C.M. Sorensen, and G.C. Hadjipanayis. 1955. Chemistry of borohydride reduction of iron(I1) and iron(II1) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg. Chem. 34:28-35. Guzman, K.A.D., M.P. Finnegan, and J.F. Banfield. 2006. Influence of surface potential on aggregation and transport of titania nanoparticles. Environ. Sci. Technol., 40:7688-7693. Hao, Z.W., X.H. Xu, J. Jin, P. He, Y. Yiu, and D.H. Wang. 2005. Simultaneous removal of nitrate and heavy metals by iron metal. J. Zhejiang Univ. SCI. 6B(5). 307-310. Harendra, S., and C. Vipulanandan. 2008. Degradation of high concentrations of PCE solubilized in SDS and biosurfactant with Fe/Ni bi-metallic particles. Colloids Surf., A. 322:6-13. He, F., and D. Zhao. 2005. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 39:3314-3320. He, F., and D. Zhao. 2007a. Manipulating the size and dispersibility of zero-valent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ. Sci. Technol. 41:6216-6221. He, F., D. Zhao, J. Liu, and C.B. Roberts. 2007b. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. J. Ind. Eng. Chem. 46:29-34. He, F., and D. Zhao. 2008. Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: reaction mechanism and effect of stabilizers, catalysis and reaction conditions. Appl. Catal., B. 84:533-540. He, F., M, Zhang, T. Qian, and D. Zhao. 2009. Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. J. Colloid Interface Sci. 334:96-102. He, F., D. Zhao, and C. Paul. 2010. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Wat. Res. 44:2360-2370. Hernandez, R., M. Zappi, and C.H. Kuo. 2004. Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment. Environ. Sci. technol. 38:5157-5163. Hou, M., F. Li, X. Liu, X. Wang, and H. Wan. 2007. The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron. J. Hazard. Mater. 145:305-314. Hsu. T.F., T.L. Hsiung, J. Wang, H. Huang, and H.P. Wang. In press. In situ XANES studies of TiO2/Fe3O4@C during photocatalytic degradation of trichloroethylene. Nuclear Instruments and Methods in Physics Research A. Hsueh, C.L., Y.H. Huang, C.C. Wang, and C.Y. Chen. 2005. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere. 58:1409-1414. Huang, J.W., M.J. Blaylock, Y. Kapulnik, and B.D. Ensley. 1998. Phytoremediation of Uranium-Contaminated Soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Technol. 32. 2004-2008. Huang, Y.H., and T.C. Xhang. 2004. Effects of low pH on nitrate reduction by iron powder. Water Res. 38:2631-2642. Huang, Y.H., and T.C. Zhang. 2005. Effect of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Res. 39:1751-1760. Hyung, H., J.D. Forther, J.B. Hughes, and J.H. Kim. 2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Technol. 41:179-184. Illés, E., and E. Tombácz. 2006. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interface Sci. 295:115-123. Jekel, M.R. 1986. The stabilization of dispersed mineral particles by adsorption of humic substances. Water Res. 20:1543-1554. Joo, S.H., and D. Zhao. 2008. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere. 70:418-425. Kang, S.H., and W. Choi. 2009. Oxidative Degradation of Organic Compounds Using Zero-Valent Iron in the Presence of Natural Organic Matter Serving as an electron shuttle. Environ. Sci. Technol. 43:878-883. Kanel, S.R., D. Nepal, B. Manning, and H. Choi. 2007. Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J. Nanopart. Res. 9:725-735. KEMI (National Chemicals Inspectorate, Sweden). Risk assessment-hexabromocyclododecane (CAS-No. 25637-99-4; EINECS-No. 247-148-4). Final Draft; May 2008. Klausen, J., J. Ranke, and R.P. Schwarzenbach. 2001. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zerovalent iron. Chemosphere. 44:511-517. Klausen, J., P.J. Vikesland, T. Kohn, D.R. Burris, W.P. Ball, and A.L. Roberts. 2003. Longevity of granular iron in groundwater treatmentprocesses: solution composition effects on reduction of organohalides and nitroaromatic compounds. Environ. Sci. Technol. 37:1208-1218. Kling, P., and L. Förlin. 2009. Proteomic studies in zebrafish liver cells exposed to the brominated flame retardants HBCD and TBBPA. Ecotoxicol. Environ. Saf. 72:1985-1993. Kočí, K., L. Obalová, L. Matĕjová, D. Plachá, Z. Lacný, J. Jirkovský, and O. Šolcová. 2009. Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal., B. 89:494-502. Kohn, T., K.J.T. Livi, and P.J. Vikesland. 2005. Longevity of granular iron in groundwater treatment processes: corrosion product development. Environ. Sci. Techno. 39:2867-2879. Larese-Casanova, P., and M.M. Scherer. 2008. Abiotic transformation of hexahydro-1,3,5-trinitro-1.3.5-trizaine (RDX) by green rusts. Environ. Sci. Technol. 42:3975-3981. Law, R.J., C.R. Allchin, S. Morris, and P.D. Jepson. 2003. Persistent organohalogen compounds in marine mammals stranded or bycaught in the U.K. Organohalogen Compd. 62:224-227. Law, R., D. Herzke, S. Harrad, S. Morris, P. Bersuder, and C. Allchin. 2008. Levels and trends of HBCD and BDEs in the European and Asian environments, with some information for other BFRs. Chemosphere. 73:223-241. Law, R.J., M. Kohler, N.V. Heeb, A.C. Gerecke, P. Schmid, S. Voorspoels, A. Covaci, G. Becher, K. Janak, K, and C. Thomsen. 2005. Hexabromocyclododecane challenges scientists and regulators. Environ. Sci. Technol. 39: 281A-287A. Lien, H.L., D.W. Elliott, Y.P. Sun, and W.X. Zhang. 2006. Recent progress in zero-valent iron nanoparticles for groundwater remediation. J. Environ. Eng. Manage. 16:371-380. Lien, H.L., and W.X. Zhang. 2004. Effect of palladium on the reductive dechlorination of chlorinated ethylenes with nanoscale Pd/Fe particles. Water Sci. Tech. 4:297-303. Lien, H.L,, and W.X. Zhang. 2007. Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl. Catal., B. 77:110-116. Lim, T.T., and B.W. Zhu. 2008. Effect of anions on the kinetics and reactivity of nanoscale Pd/Fe in trichlorobenzene dechlorination. Chemophere. 73:1471-1477. Liu, Y., T. Phenrat, and G.V. Lowey. 2007. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ. Sci. Technol. 41:7881-7887. Liu, J., F. He, E. Durham, D. Xhao, and C.B. Roberts. 2008. Polysugar-stabilized Pd nanoparticles exhibition high catalytic activities for hydrodechlorination of environmentally deleterious trichloroethylene. Langmuir. 24:328-336. Luo, H., S. Jin, P.H. Fallgren, P.J.S. Colberg, and P.A. Johnson. 2010. Prevention of passivation and enhancement of nitrate reduction by electron supplementation. Chem. Eng. J. 160:185-189. MacDougall, B., and M.J. Graham. 1995. Growth and stability of passive films. 1995. In: Marcus, P. and Oudar, J., Editors, 1995. Corrosion Mechanisms in Theory and Practice, Marcel Dekker, New York, pp. 143-173. Marsh, G., M. Athanasiadou, Ǻ. Bergman, I. Athanassiadis, T. Endo, and K. Haraguchi. 2004. Identification of a novel dimethoxylated polybrominated biphenyl bioaccumulating in marine mammals. Organohalogen Compd. 66:3776-3782. Meijer, L., B. Brouwer, F.H.J. de Jong, Å. Bergman, P.J.J. Sauer. 2008. Influence of prenatal exposure to selected organohalogans on infant sexual and neurological development. Organohalogen Compounds. 70:658-661. Meng, Y.F., B.H. Guan, Z.B. Wu, and D.H. Wang. 2006. Enhanced degradation of carbon tetrachlorideby surfactant-modified zero-valent iron. J. Zhejiang. Univ. Science B. 7:702-707. Mishra, D., and J. Farrell. 2005. Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy. Environ. Sci. Techenol. 39:645-650. Nam, S., and P.G. Tratnyek. 2000. Reduction of azo dyes with zero-valent iron. Water Res. 34:1837-1845. Nurmi, J., P.Tratnyek, V. Sarathy, D.R. Bear, J.E. Amonette, K. Pecher, C. Wang, J.C. Linehan, D.W. Matson, R.L. Penn, and M.D. Driessen. 2005. Characterization and properties of metallic Iron Nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ. Sci. technol. 39:1221-1230 Patel, U.D., and S. Suresh. 2008. Effects of solvent, pH, salts and resin fatty acids on the dechlorination of pentachlorophenol using magnesium-silver and magnesium-palladium bimetallic systems. J. Hazard. Mater. 156:308-316. Parbs, A., M. Ebert, and A. Dahmke. 2007. Long-term effects of dissolved carbonate species on the degradation of trichloroethylene by zerovalent iron. Environ. Sci. technol. 41:291-296. Parshetti, G.K., and R. Doong. 2009. Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG PVDF and PEG nylon 66 membranes. Water Res. 43:3086-3094. Peck, A.M., K.J.S. Tuerk, J. Keller, J.R. Kucklick, and M.M. Schantz. 2005. Hexabromocyclododecane diastereomers and enaniomers in white-sided dolphin blubber and liver tissue. Organohalogen Compd. 67:1259-1262. Phenrat, T., N. Saleh, K. Sirk, H.J. Kim, R.D. Tilton, and G.V. Lowry. 2008. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanopart. Res. 10:795-814. Phenrat, T., N. Saleh, K. Sirk, R.D. Tilton, and G.V. Lowry. 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 41:284-290. Reardon, E.J., 1995. Anaerobic corrosion of granular iron-measurement and interpretation of hydrogen evolution rates. Environ. Sci. Technol. 29:2936-2945. Reinsch, B.C., B. Forsberg, R.L. Penn, C.A. Kim, and G.V. Lowry. 2010. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ. Sci. Technol. 44:3455-3461. Ronisz, D., E.F. Finne, H. Karlsson, and L. Forlin. 2004. Effects of the brominated flame retardants hexabromocyclododecane (HBCDD) andtetrabromobisphenol-A (TBBP-A)onhepaticenzymes and other biomarkers in juvenile rainbow trout and feral eelpout. Aquat. Toxicol. 69:229-245. Saegusa, Y., H. Fujimoto, G.H. Woo, K. Inoue, M. Takahashi, K. Mitsimori, M. Hirose, A. Nishikawa, and M. Shibutani. 2009. Developmetal toxicity of brominated flame retardants, tetrabromobisphenol A and 1,2,5,6,9,10-hexabromocyclododecane, in rate offspring after maternal exposure from mid-gestation through lactation. Reprod. Toxicol. 28:456-467. Saleh, N., K. Sirk, Y.Q. Liu, T. Phenrat, B. Dufour, K. Matyjaszewski, R.D. Tilton, and G.V. Lowry. 2007. Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ. Eng. Sci. 24:45-57. Scherer, M.M., S. Richter, R.L. Valentine, and P.J.J. Alvarez. 2000. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit. Rev. Environ. Sci. Technol. 26:221-264. Schrick, B., J.L. Blough, A.D. Jones, and T.E. Mallouk. 2002. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem. Mater. 14:5140-5147. Schrick, B., B.W. Hydutsky, J.L. Blough, and T.E. Mallouk. 2004. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem. Mater. 16:2187-2193. Schreier, C.G., and M. Reinhard. 1995. Transformation of chlorinated ethylenes by iron powder in 4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid (HEPES) buffer. Preprint Extended Abstracts, Div. Environ. Chem., American Chemical Society, 209th National Meeting Anaheim CA. 35:833-835. Scott Orth, W., and R.W. Gillham. 1996. Dechlorination of trichloroethene in aqueous solution using Fe0. Environ. Sci. Technol. 30:66-71. Shih, Y., Y. Chen, M. Chen, Y. Tai, and C. Tso. 2009. Dechlorination of hexachlorobenzene by using nanoscale Fe and nanoscale Pd/Fe bimetallic particles. Colloid Surf. A: Physicochem. Eng. Asp. 332:84-89. Shih, Y.H., C.P. Tso, and L.Y. Tung. 2010. Rapid degradation of methyl orange with nanoscale zerovalent iron particles. J. Environ. Eng. Manage. 20:137-143. Shih, Y. , and Y. Tai. 2010. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere. 78:1200-1206. Straub, K.L., M. Benz, and B. Schink. 2001. Iron metabolism in anoxic environments at near-neutral pH. FEMS Microbiol. Ecol. 34:181-186. Shu, H.Y., M.C. Chang, H.H. Yu, and W.H. Chen. 2007. Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles. J. Coll. Inter. Sci. 314:89-97. Sun, Y.P., X.Q, Li, J. Cao, W. Zhang, and H.P. Wang. 2006. Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci.120:47-56. Sun, Y.P., X.Q. Li, W.X. Zhang, and H.P. Wang. 2007. A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and surfaces A: Physicochem. Eng. Aspects. 308:60-66. Tai, Y., and Y. Shih. 2006. Debromination of decabrominated diphenyl ether by nanoscale zero-valent iron, In Proc. of the 5th international conference of remediation of chlorinated and recalcitrant compounds. Monterey, CA, U.S.A. 22-25 May. Tian, H., J. Li, Z. Mu, M. Li, and Z. Hao. 2009. Effect of pH on DDT degradation in aqueous solution using bimetallic NiFe nanoparticles. Sep. Purif. Technol. 66:84-89. Tso, C.P., C.M. Zhung, Y.H. Shih, Y.M. Tseng, S.C. Wu, and R.A. Doong. 2010. Stability of metal oxide nanoparticles in aqueous solutions. Water Sci. Technol. 61:127-133. U.S. EPA. December 2003. Expert panel on DNAPL remediation. The DNAPL remediation challenge: is there a case for source depletion?. EPA/600/R-03/143 U.S. Government Printing Office, Washington, DC. Wang, C.B., and W.X. Zhang. 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31:2154-2156. Wang, W., Z.H. Jin, T.L. Li, and H. Zhang. 2006. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal. Chemosphere. 65:1396-1404. Wang, X., C. Chen, H. Liu, and J. Ma. 2008. Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles. Ind. Eng. Chem. Res. 47:8645-8651. Wei, J., X. Xu, Y. Liu, and D. Wang. 2006. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters. Water Res. 40:348-354. Wu, L., and S.M.C. Ritchie. 2006. Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere. 63:285-292. Wu, Y., L.D. Slater, and N. Korte. 2006. Low frequency electrical properties of corroded iron barrier cores. Environ. Sci. Technol. 40:2254-2261. Xie, L., and C. Shang. 2005. Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron. Environ. Sci. Technol. 39:1092-1100. Xiong, Z., D. Zhao, and G. Pan. 2009. Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles. J. Nanopart. Res. 11:807-819. Xu, X., J Wo, J. Zhang, Y. Wu, and Y. Liu. 2009 Catalytic dechlorination of p-NCB in water by nanoscale Ni/Fe. Desalination. 242:346-354. Zawaideh, L.L., and T.C. Zhang. 1998. The effects of pH and addition of n organic buffer (HEPES) on nitrate transformation in Fe0-water system. Water Sci. Technol. 38:107-115. Zhang, W.X. 2003. Nanoscale iron particles for environmental remediation: An overview. J. Nanoparticle Res. 5:323-332. Zhang, W.H., X. Quan, J.X. Wang, Z.Y. Zhang, and S. Chen. 2006. Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound. Chemosphere. 65:58-64. Zhang, Z., N. Cissoko, J. Wo, and X. Xu. 2009. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid. J. Hazard. Mater. 165:78-86. Zhang, Y., Y. Chen, P. Westerhoff, K, Hristovski, J.C. Crittenden. 2008. Stability of commercial metal oxide nanoparticles in water. Water Res. 42:2204-2212. Zhang, W., X. Quan, J. Wang, Z. Zhang, and S. Chen. 2006. Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound. Chemosphere. 65:58-64. Zhu, B.W., and T.T. Kim. 2009. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: reactive sites, catalyst stability, particle aging, and regeneration. Environ. Sci. Technol. 41:7523-7529. Zhou, Y.Z., J.S. Chen, B.K. Tay, J.F. Hu, G.M. Chow, T. Liu, and P. Yang. 2007. Ni-NiO core-shell nanoclusters with cubic shape by nanocluster beam deposition. Appl. Phys. Lett. 90:043111(1-3).
摘要: 六溴環十二烷(Hexabromocyclododecane, HBCD)為一溴化阻燃劑,已廣泛使用於各種傢具及商業產品中以降低火災發生之風險。因HBCD化合物的物化性質使其具有環境持久性,加上高生產量所致,使HBCD大量分佈於環境中。此研究中使用實驗室合成之奈米級零價鐵(nanoscale zero-valent iron, NZVI)與兩種以羥甲基纖維素鈉(sodium carboxymethyl cellulose, CMC)穩定形奈米零價鐵顆粒 CMC-Fe及CMC-Ni/Fe雙金屬顆粒來探討HBCD移除之動力,並了解不同環境因子如溫度、pH、陰離子、腐植酸等的影響。5 g/L之NZVI與CMC-Ni/Fe皆可於30分鐘內完全移除HBCD,其反應速率常數分別為0.208與0.144 min-1,然而CMC-Fe在經過反應時間1小時後僅移除25.5 %,其可能由於鐵顆粒表面包覆之CMC阻礙了電子轉移所致。對NZVI及CMC-Ni/Fe而言,提高反應溫度則反應速率增加,計算其活化能分別可為18.0 與 7.10 kJ/mol。不同初始pH對NZVI與CMC-Ni/Fe降解影響不明顯。而不同陰離子對NZVI反應性皆有抑制的影響,在實驗條件下,反應速率由快至慢為純水>Cl- NO3->HCO3-,由於NZVI於陰離子溶液中快速聚集為團塊,致使顆粒粒徑超過奈米等級,降低其在含陰離子溶液中之反應性。HCO3-與Cl-陰離子對CMC-Ni/Fe降解HBCD影響不太大,低濃度之NO3-對CMC-Ni/Fe卻有促進的作用,然而高濃度之NO3-則抑制了零價鐵的活性,NO3-可與HBCD競爭零價鐵而轉化成NH4+,其轉換率為NZVI大於CMC-Ni/Fe,而降低零價鐵對HBCD之作用。腐植酸在低濃度下(1-5 mg/L)對NZVI與CMC-Ni/Fe似乎有一些促進作用,當增加腐植酸濃度至5 mg/L以上,NZVI速率則有明顯降低,過量的腐植酸可與零價鐵形成錯合物,減少鐵表面之反應位,然而對CMC-Ni/Fe而言,則沒有太大的促進或抑制作用。以土壤溶液中試驗NZVI及CMC-Ni/Fe對HBCD之移除能力,發現NZVI之反應性明顯降低,CMC-Ni/Fe之移除力則有促進現象,且其顆粒粒徑在土壤溶液中可穩定維持在65 nm左右。HBCD降解副產物以氣相層析儀串聯質譜儀偵測到脫溴產物,推測其降解反應為脫溴還原途徑。 因穩定型CMC-Ni/Fe雙金屬奈米顆粒可有效移除HBCD並維持其奈米等級的顆粒大小,此外其反應性較不受環境因子如溫度、pH、陰離子及腐植酸等影響,故具高潛力可應用於環境整治。
Hexabromocyclododecane (HBCD) belongs to the large family of brominated flame retardants (BFRs) and is widely used as additives in many household and commercial products to reduce their flammability. Because of its environmental persistence and high production volume in the past, HBCD has been widely detected in the environment. In this study we conducted to investigate the removal of HBCD by using nanoscale zero-valent iron (NZVI) particles and two stabilized NZVI suspensions, sodium carboxymethyl cellulose (CMC) stabilized NZVI (CMC-Fe) and CMC-Ni/Fe bimetallic nanoparticles. We also evaluate the effects of environmental factors such as temperature, pH, anions, and humic acid on the degradation kinetics. HBCD was almost removed from aqueous solutions by NZVI or CMC-Ni/Fe with 5 g/L iron loading in 30 min. The pseudo-first-order the rate constants were 0.208 min-1 and 0.144 min-1 for NZVI and CMC-Ni/Fe, respectively. However, only 25.5 % removal efficiency of HCBD with CMC-Fe nanoparticles was observed within 1 hr. The CMC could occupy the reactive sites on the iron surface then hinder the mass transfer of HBCD to the reactive sites of Fe. With the increase of temperature, the degradation kinetics of both NZVI and CMC-Ni/Fe increased. The activated energies of NZVI and CMC-Ni/Fe nanoparticles were 18.0 and 7.10 kJ/mol, respectively. The effect of pH was not obvious for these two particles. The removal rates in the presence of these three anions were observed in the order of: pure water>Cl- "≅" NO3->HCO3-, which may result from the quick aggregation of bare NZVI particles in the presence of these electrolytes and the possible complexation of anions with oxidized iron surface. In the contrary, for CMC-Ni/Fe nanoparticles, Cl- and HCO3- slightly affect degradation rates, whereas the high concentration of NO3- could inhibit the reactivity of CMC-Ni/Fe0. The transformation efficiency of NO3- to NH4+ decreased with increasing NO3- concentration, and less NO3- transformation in CMC-Ni/Fe system was observed as compared to bare NZVI. Degradation rates of NZVI or CMC-Ni/Fe nanoparticles slightly increased with humic acid (HA) concentration increased up to 5 mg/L. High concentration of HA (>5 mg/L) could inhibit the degradation kinetics of NZVI and CMC-Ni/Fe, possibly because the complexes of humic acid and dissolved iron species may compete for the reactive sites on the iron surface with HBCD and forming surface passivating layers; subsequently inhibited iron corrosion and reduce the HBCD reduction rate. The removal rate of NZVI particles declined in soil solution; however, for CMC-Ni/Fe nanoparticles, the fast removal efficiency can still be achieved in 5 minutes, and the particle size sustained in about 65 nm through the reaction. The less brominated byproducts of HBCD were identified by gas chromatography-mass spectroscopy to suggest the reductive debromination process. Because the stabilized CMC-Ni/Fe can maintain nanoscale size to transport through subsurface effectively to remove halogenated compounds and to be unaffected by the above discussed common environmental factors, we suggest CMC-Ni/Fe nanoparticles having a high application potential in the environmental treatments.
URI: http://hdl.handle.net/11455/28230
其他識別: U0005-0908201010322000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0908201010322000
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.