Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28242
標題: 探討纖維素、半纖維素、幾丁質以及木質素對溶液中六價鉻的反應機制
Reaction mechanism of hexavalent chromium with cellulose, hemicellulose, chitin and lignin
作者: 林郁錡
Lin, Yu-Chi
關鍵字: Chromium(VI)
六價鉻
Cellulose
Hemicellulose
Chitin
Lignin
纖維素
半纖維素
幾丁質
木質素
出版社: 土壤環境科學系所
引用: Abbas, M., R. Nadeem, M.N. Zafar, and M. Arshad. 2008. Biosorption of chromium (III) and chromium (VI) by untreated and pretreated cassia fistula biomass from aqueous solutions. Water Air Soil Pollut. 191: 139-148. Agarwal, G.S., H.K. Bhuptawat, and S. Chaudhari. 2006. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresour. Technol. 97: 949-956. Altundogan, H.S. 2005. Cr(VI) removal from aqueous solution by iron(III) hydroxide-loaded sugar beet pulp. Process Biochem. 40: 1443-1452. Amacher, M.C., and D.A. Baker. 1982. Redox reactions involving chromium, plutonium and manganese in soils. Final report DE-ASO8-77DPO4515, Inst. For Research on Land and Water Resources, Penn. State University. Anderson, R.A. 1989. Essentiality of chromium in humans. Sci. Total Environ. 86: 75-81. Antonio P.P., and L.T. Eduardo. 1999. Treatment of an industrial effluent by reverse osmosis. Desalination. 126: 219-226. Aydın, Y.A., and N.D. Aksoy. 2009. Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics. Chem. Eng. J. 151: 188-194. Bai, S.R., and T.E. Abraham. 2001. Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans. Bioresour. Technol. 79: 73-81. Bartlett, R.J., and J.M. Kimble. 1976a. Behavior of chromium in soils: I. Trivalent forms. J. Environ. Qual. 5: 379-382. Bartlett, R.J., and J.M. Kimble. 1976b. Behavior of chromium in soils:Ⅱ. Trivalent forms. J. Environ. Qual. 5: 383-386. Barlett, R.J., and B. James. 1979. Behavior of chromium in soils: Ⅲ: Oxidation. J. Environ. Qual. 8: 31-35. Boddu V.M., K. Abburi, J.L. Talbott, and E.D. Smith. 2003. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ. Sci. Technol. 37: 4449-4456. Boehm, H. P. 2002. Surface oxides on carbon and their analysis: a critical assessment. Carbon 40: 145-149. Bowman, S.M., and S.J. Free. 2006. The structure and synthesis of the fungal cell wall. Bioessays. 28:799-808. Bozell, J.J. 2008. Feedstocks for the future - biorefinery production of chemicals from renewable carbon. Clean - Soil, Air, Water. 36: 641-647. Ca'rdenas, G., G. Cabrera, E. Taboada, and S.P. Miranda. 2004. Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. J. Appl. Polym. Sci. 93: 1876-1885. Cary E. E., W.H. Allaway, and O.E. Olson. 1977. Control of chromium concentration in food plants. 1. Absorption and translocation of chromium by plants. J. Agric. Food. Chem. 25: 300-304. Cheshire, M.V., M.L. Berrow, B.A. Goodman, and C.M. Mundie. 1977. Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochim. Cosmochim. Acta. 41: 1131-1138. Chun, L., C. Hongzhang, and L. Zuohu. 2004. Adsorptive removal of Cr(VI) by Fe modified steam exploded wheat straw. Process Biochem. 39: 541-545. Chun, Y., G. Sheng, C.T. Chiou, and B. Xing. 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 38: 4649-4655. Cohen, M.D., B. Kargacin, C.B. Klein, and M. Costa. 1993. Mechanisms of chromium carcinogenicity and toxicity. Crit. Rev. Toxicol. 23: 255-281. Crini, G. 2005. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30: 38-70. Crini, G. 2006. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Techno. 97: 1061-1085. Demirbas, A. 2008. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 157: 220-229. Deng, S., and Y.P. Ting. 2005. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: Sorption capacity and uptake mechanisms. Environ. Sci. Technol. 39: 8490-8496. Drobniak, A., and M. Mastalerz. 2006. Chemical evolution of miocene wood: Example from the belchatow brown coal deposit, central Poland Int. J. Coal Geol. 66: 157-178. Dupont, L., and E. Guillon. 2003. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environ. Sci. Technol. 37: 4235-4241. Eary, L.E., and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22: 972-977. Eary, L.E., and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous iron. Environ. Sci. Soc. Am. J. 55: 676-683. Elangovan, R., L. Philip, and K. Chandraraj. 2008. Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies. J. Hazard. Mater. 152: 100-112. Elovitz, M.S., and W. Fish. 1994. Redox interactions of Cr(VI) and substituted phenols: products and mechanism. Environ. Sci. Technol. 28: 2161-2169. Eromosele, I.C., C.O. Eromosele, J.O. Orisakiya, and S. Okufi. 1996. Binding of chromium and copper ions from aqueous solutions by shea butter (Butyrospermum parkii) seed husks. Bioresour. Technol. 58: 25-29. Ertugay, N., and Y.K. Bayhan. 2008. Biosorption of Cr(VI) from aqueous solutions by biomass of Agaricus bisporus. J. Hazard. Mater. 154: 432-439. Fendorf, Scott E. 1995. Surface reactions of chromium in soils and waters. Geoderma. 67: 55-71. Gaberell, M., Y.P. Chin, S.J. Hug and B. Sulzberger. 2003. Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron. Environ. Sci. Technol. 37: 4403-4409. Gad, C.S. 1989. Acute and chronic systemic chromium toxicity. Sci. Tot. Environ. 86: 149-157. Gao, H., Y. Liu, G. Zeng, W. Xu, T. Li, and W. Xia. 2008. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste—rice straw. J. Hazard. Mater. 150: 446-452. Garg, U.K., M.P. Kaur, V.K. Garg, and D. Sud. 2007. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J. Hazard. Mater. 140: 60-68. Gokhale, S.V., K.K. Jyoti, and S.S. Lele. 2008. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour. Technol. 99: 3600-3608. Gonzalez, M.H., G.C.L. Araújo, C.B. Pelizaro, E.A. Menezes, S.G. Lemos, G.B. Sousa, and A.R.A. Nogueira. 2008. Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater. J. Hazard. Mater. 159: 252-256. Gosselink R.J.A., E. de Jong, B. Guran, and A. Abächerli. 2004. Co-ordination network for lignin—standard isolation, production and applications adapted to market requirements Eurolignin. 20: 121-129. Gu, B., and J. Chen. 2003. Enhanced microbial reduction of Cr(VI) and U(VI) by different natural orangic matter fractions. Geochim. Cosmochim. Acta 67: 3575-3582. Gupta V.K., C.K. Jain, I. Ali, M. Sharma and V.K. Saini. 2003. Removal of cadmium and nickel from wastewater using bagasse fly ash-a sugar industry waste. Water Res. 37: 4038-4044. Guertin J., J.A. Jacobs, and C.P. Avakian. 2005. Independent environmental technical evaluation group. Chromium(VI) Handbook: 66-67. Hergert, H.L. 1971. Infrared Spectra: In lignins occurrence, formation, structure and reactions. (Sarkanen, K.V., and C.H. Ludwig, Eds.) Wiley Interscience: New York, London, Sidney, Toronto. Hien, N.Q., D.V. Phu, N.H. Duy, and H.T. Huy. 2005. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent. Nucl. Instrum. Methods Phys. Res., Sect. B. 236: 606-610. Hsu, N.H., S.L. Wang, Y.H. Liao, S.T. Huang, Y.M. Tzou, and Y.M. Huang. 2009a. Removal of hexavalent chromium from acidic aqueous solutions using rice-straw-derived carbon. J. Hazard. Mater. 171: 1066-1070. Hsu, N.H., S.L. Wang, Y.C. Lin, G.D. Sheng and J.F. Lee. 2009b. Reduction of Cr(VI) by crop-residue-derived black carbon. Environ. Sci. Technol. 43: 8801-8806. James, B.R., and R.J. Bartlett. 1983a. Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms. J. Environ. Qual. 12: 177-181. James, B.R., and R.J. Bartlett. 1983b. Behavior of chromium in soils: V. Fate of organically complexed Cr(III) added to soil. J. Environ. Qual. 12: 169-172 James, B.R., and R.J. Bartlett. 1988. Mobility and bioavailability of chromium in soil. Chromium in natural and human environments. New York, Wiley Interscience: 265-305 Jorge, F.S., T.M. Santos, J.P. de Jesus, and W.B. Banks. 1999. Reactions between Cr(VI) and wood and its model compounds. Part 2: Characterisation of the reaction products by elemental analysis, magnetic susceptibility and FTIR. Wood Sci. Technol. 33: 501-517. Kacuralova, M., P.S. Belton, R. H. Wilson, J. Hirsch, and A. Ebringerova. 1998. Hydration Properties of Xylan-type structures: an FTIR study of xylooligosaccharides. J Sci Food Agric. 77: 38-44 Kapoor, A., and T.Viraraghavan. 1995. Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol. 53: 195-206. Khezami, L., A. Chetouani, B. Taouk, and R. Capart. 2005. Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technol. 157: 48-56. Kim, C., Q . Zhou, B. Deng, E.C. Thornton, and A. Xu. 2001. Chromium(VI) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics. Environ. Sci. Technol. 35: 2219-2225. Kimbrough, D.E., Y. Cohen, A.M. Winer, L. Creelman, and C. Mabuni. 1999. A critical assessment of chromium in the environment. Crit. Rev. Environ. Sci. Technol. 29:1-46. Kotas, J., and Z. Stasicka. 2000. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 107: 263-283. Kubo, S., and J.F. Kadla. 2005. Hydrogen bonding in lignin: A Fourier Transform Infrared model compound study. Biomacromolecules. 6: 2815-2821. Kuhad, R.C., and A. Singh. 1993. Lignocellulosic biotechnology: current and future prospects. Crit. Rev. Biotechnol. 13: 151-172. Lalvani, S.B., A.A. Hubner, and T.S. Wiltowski. 2000. Chromium adsorption by lignin. Energy Sources. 22: 45-56. Lee, B.G., and R.M. Rowell. 2004. Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers. J. Natural Fibres. 1: 97-108. Lee, K.P., C.E. Ulrich, R.G. Geil, and H.J. Trochimowicz. 1989. Inhalation toxicity of chromium dioxide dust to rats after two years exposure. Sci. Tot. Environ. 86: 83-108. Li, J., B. Li, and X. Zhang. 2002. Comparative studies of thermal degradation between larch lignin and manchurian ash lignin. Polym. Degrad. Stabil. 78: 279-285. Lin, Y.C., S.L. Wang, W.C. Shen, P.M. Huang, P.N. Chiang, J.C. Liu, C.C. Chen, and Y.M. Tzou. 2009. Photo-enhancement of Cr(VI) reduction by fungal biomass of Neurospora crassa. Applied Catalysis B: Environmental. 92: 294-300. Liu, C.C., Wang, M.-K., Chiou, C.-S., Li, Y.-S., Lin, Y.-A., Huang, S.-S. 2006. Chromium removal and sorption mechanism from aqueous solutions by wine processing waste sludge. Ind. Eng. Chem. Res. 45: 8891-8899. Liu, O., S. Wang, K. Wang, Z. Luo, and K. Cen. 2009. Pyrolysis of wood species based on the compositional analysis. Korean J. Chem. Eng. 26: 548-553. Liu, R., H. Yu and Y. Huang. 2005. Structure and morphology of cellulose in wheat straw. Cellulose. 12: 25-34. Lopez-Ramon, M.V., F. Stoeckli, C. Moreno-Castilla, and F. Carrasco-Marin. 1999. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon. 37: 1215-1221. Masiello, C.A., and E.R.M. Druffel. 1998. Black carbon in deep-sea sediments. Science. 280: 1911. Masscheleyn, P.H., J.H. Pardue, R.D. DeLaune, and Jr W.H. Patrick. 1992. Chromium redox chemistry in a lower mississippi valley bottomland hardwood wetland. Environ. Sci. Technol. 26: 1217-1226. Mathias E.V., and U.P. Halkar. 2004. Separation and characterization of lignin compounds from the walnut (Juglans regia) shell oil using preparative TLC, GC-MS and 1H NMR. J. Anal. Appl. Pyrolysis 71: 515-524. Mohan, D., K.P. Singh, and V.K. Singh. 2005. Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Ind. Eng. Chem. Res. 44: 1027-1042. Mohan, D., and C.U.J. Pittman. 2006. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137: 762-811. Mungasavalli, D.P., T. Viraraghavan, and Y.-C. Jin. 2007. Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: Batch and column studies. Colloid Surf. A-Physicochem. Eng. Asp. 301: 214-223. Nishiyama, Y., P. Langan, and H. Chanzy. 2002. Crystal structure and hydrogen-bonding system in cellulose 1β from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124: 9074-9082. Nakayama, E., T. Kuwamoto, S. Tsurubo, and T. Fujinaga. 1981. Chemical speciation of chromium in sea water. Part2. Effects of manganese oxides on reducible organic materials on the redox processes of chromium. Anal. Chim. Acta. 130: 401-404. Palmer, C., and R. Puls. 1994. Natural attenuation of hexavalent chromium in ground water and soils, EPA/540/S-94/505. U.S. Environmental Protection Agency Ground Water Issue. Park, D., Y.-S. Yun, J.H. Jo, J.M. Park. 2005a. Effects of ionic strength, background electrolytes, heavy metals and redox-active species on the reduction of hexavalent chromium by Ecklonia biomass, J. Microbiol. Biotechnol. 15: 780-786. Park, D., Y.-S. Yun, J.H. Jo, and J.M. Park. 2005b. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res. 39:533-540. Park, D., Y.S. Yun, and J.M. Park. 2008a. XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. J. Colloid Interface Sci. 317: 54-61. Park, D., S.-R. Lim, Y.-S. Yun, and J.M. Park. 2008b. Development of a new Cr(VI)-biosorbent from agricultural biowaste. Bioresour. Technol. 99: 8810-8818. Pasquali, C.E.L., H. Herrera. 1997. Pyrolysis of lignin and IR analysis of residues. Thermochim. Acta. 293: 39-46. Patterson, R.R., S.E. Fendorf, and M. Fendorf. 1997. Reduction of hexavalent chromium by amorphous iron sulfide. Environ. Sci. Technol. 31: 2039-2044. Pehlivan, E., and T. Altun. 2008. Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. Hazard. Mater. 155: 378-384 Peterson, M.L., G.E. Jr. Brown, G.A. Parks, and C.L. Stein. 1997. Differential redox and sorption of Cr (III/VI) on natural silicate and oxide minerals: EXAFS and XANES results. Geochim. Cosmochim. Acta. 61: 3399-3412. Qiu, Y., H. Cheng, C. Xu, and G.D. Sheng. 2008. Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Res. 42: 567-574. Qian, Y., C. Zuo, J. Tan, and J. He. 2007. Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass. Energy. 32: 196-202. Radovic, L.R. 2000. Chemistry and Physics of Carbon. Marcel Dekker Inc. 30: 227-405. Rai, D., J.M. Zachara, L.E. Eary, D.C. Girvin, D.A. Moore, C.T. Resch, B.M. Sass, and R.L. Schmidt. 1986. Geochemical behavior of chromium species, Interim Report Electric Power Research Institute (EPRI) EA EA-4544, EPRI, Palo Alto, CA. Rai, D., B.M. Sass, and D.A. Moore. 1987. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 26: 345-349. Rai, D., J.M. Zachara, L.E. Eary, C.C. Ainsworth, J.E. Amonette, C.E. Cowan, R.W. Szelmeczka, C.T. Resch, R.L. Schmidt, D.C. Girvin, and S.C. Smith. 1988. Chromium reactions in geological materials. Interim Report, Electric Power Research Institute (EPRI) EA-5741, EPRI. Palo Alto, CA. Rai, D., L.E. Eary, and J.M. Zachara. 1989. Environmental chemistry of chromium. Sci. Tot. Environ. 86: 15-23. Richard, F.C., and A.C.M. Bourg. 1991. Aqueous geochemistry of chromium: A review. Water Res. 25: 807-816. Sağ, Y. 2001. Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Sep. Purif. Methods 30:1-48. Sanghi, R., N. Sankararamakrishnan, and B,C, Dave. 2009. Fungal bioremediation of chromates: Conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions. J. Hazard. Mater. 169: 1074-1080. Sarin, V., and K.K. Pant. 2006. Removal of chromium from industrial waste by using eucalyptus bark. Bioresour. Technol. 97: 15-20. Sawalha, M.F., J.R. Peralta-Videa, G.B. Saupe, K.M. Dokken, and J.L. Gardea-Torresdey. 2007. Using FTIR to corroborate the identity of functional groups involved in the binding of Cd and Cr to saltbush (Atriplex canescens) biomass. Chemosphere. 66: 1424-1430. Schroeder, D.C., and G.F. Lee. 1975. Potential transformation of chromium in natural waters. Water Air Soil Pollut. 4: 355-365. Seaman, J.C., P.M. Berttsch, and L. Schwallie. 1999. In situ Cr(VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(II) solutions. Environ. Sci. Technol. 33: 938-944. Shen, Y.S., S.L. Wang, S.T. Huang, Y.M. Tzou and J.H. Huang. 2010. Biosorption of Cr(VI) by coconut coir: Spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material. J. Hazard. Mater. 179: 160-165. Singh, D.K., and A. R. Ray. 2000. Biomedical applications of chitin, chitosan, and their derivatives. J.M.S.—Rev. Macromol. Chem. Phys. 40: 69 - 83. Stollenwerk, K.G., and D.B. Grove. 1985. Adsorption and desorption of hexavalent chromium in an alluvial aquifer near telluride, Colorado. J. Environ. Qual. 14: 150-155. Strandberg, G.W., S.E. Shumate, and J.R. Parrott. 1981. Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 41: 237-245. Sua´ rez-Garcı´a, F., A. Martı´nez-Alonso, and J.M.D. Tasco´ n. 2002. A comparative study of the thermal decomposition of apple pulp in the absence and presence of phosphoric acid. Polym. Degrad. Stab. 75: 375-383. Subbaiah, M.V., S. Kalyanis, G.S. Reddy, V.M. Bodou, and A. Krishnaiah. 2008. Biosorption of Cr(VI) from aqueous solutions using Trametes Versicolor Polyporus fungi. E-Journal of Chemistry. 5: 499-510. Sud, D., G. Mahajan, and M.P. Kaur. 2008. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review. Bioresour. Techno. 99: 6017-6027. Suhas Carrott, P.J.M., and M.M.L. Ribeiro Carrott. 2007. Lignin - from natural adsorbent to activated carbon: A review. Bioresour. Technol. 98: 2301-2312. Suksabye P., P. Thiravetyan, W. Nakbanpote, and S. Chayabutra. 2007. Chromium removal from electroplating wastewater by coir pith. J. Hazard. Mater. 141: 637-644. Sun Y., L. Lin, H. Deng, J. Li, B. He, R. Sun, and P. Ouyang. 2008. Structure changes of bamboo of cellulose in formic acid. Bioresources. 3: 297-315. Theander, O. in: R.P.Overand, T.A. Mile, L.K. Mudge (Eds.), Fundamentals of Thermochemical Biomass Conversion, Elsevier Applied Science Publisher, New York, 1985. Tuman R.W., J.T. Bilbo, and R.J. Doisy. 1978. Comparison and effects of natural and synthetic glucose tolerance factor in normal and genetically diabetic mice. Diabetes 27: 49-56. USEPA. 1998. Toxicological review for hexavalent chromium (CAS Mo. 18540-20-9). United States Environmental Protection Agency. Volesky, B. 2001. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy. 59: 203-216. Wan Ngah, W.S., and M.A.K.M. Hanafiah. 2008. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Techno. 99: 3935-3948. Weng, C.H., and C. Yuan. 2001. Removal of Cr(III) from clay soils by electrokinetics. Environ. Geochem. Health. 23: 281-285. Wittbrodt, P.R., and C.D. Palmer. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic acid. Environ. Sci. Technol. 29: 255-263. Wittborodt, P.R., C.D. Palmer. 1996. Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances. Environ. Sci. Technol. 30: 2470-2477. Yang, H., R. Yan, H. Chen, D.H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86: 1781-1788. Zachara, J.M., D.C. Girvin, R.L. Schmidt, and C.T. Reseh. 1987. Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environ. Sci. Technol. 21: 589-594. Zachara, J.M., C.E. Cowan, R.C. Schmidt, and C.C. Ainsworth. 1988. Chromate adsorption on kaolinite. Clay Clay Miner. 36: 317-326. Zayed, A., C.M. Lytle, J.H. Qian, and N. Terry. Chromium accumulation, translocation and chemical speciation in vegetable crops. 1998. Planta 206: 293-299. Zhang, Z.G., O. Rapaud, N. Bonasso, D. Mercs, C. Dong, and C. Coddet. 2008. Control of microstructure and properties of dc magnetron sputtering deposited chromium nitride films. Vacuum. 82: 501-509. Zhao, D., A.K. SenGupta, and L. Stewart. 1998. Selective removal of Cr(VI) oxyanions with a new anion exchanger. Ind. Eng. Chem. Res. 37: 4383-4387.
摘要: Biomaterials and their degraded derivatives in nature (i.e., natural organic matter, NOM) play a critical role in reducing toxic Cr(VI) to less toxic Cr(III) in the environment. Because of the complicated compositions of these materials, the mechanism of Cr(VI) reaction with these materials have not been fully understood. Therefore, the aims of this work were to investigate the reaction mechanisms of Cr(VI) with cellulose, hemicellulose, chitin and lignin, which are the major components of NOM and biomaterials. The materials before and after Cr(VI) reaction were analyzed using FTIR and Cr K-edge XAS to identify the functional groups governing Cr(VI) reduction and the oxidation state and local structure of Cr bound to the materials, respectively. The results showed that the Cr(VI) was sorbed and reduced to Cr(III) on the surfaces of hemicellulose, chitin and lignin, while sorption and reduction of Cr(VI) on cellulose were not noticeable. The Cr K-edge XAS results indicated that Cr(III) resulting from Cr(VI) reduction is bound to the surfaces through surface complexation and precipitation. The reaction of the materials with Cr(VI) resulted in the formation of carbonyl and carboxyl groups on the surfaces of these materials, which subsequently provide binding sites for the resultant Cr(III). The results of this work will be helpful in clarifying the mechanisms of Cr(VI) reactions with NOM and biomaterials and understanding the roles of these materials in the fate of Cr(VI) in the environment.
由於Cr(VI)具有高毒性及致癌性,經由工業廢水排放後容易淋洗至深層的土壤與地下水中,對於人體與環境有極大的危害。土壤有機質與有機資材已被證實能夠使Cr(VI)還原成毒性危害較低的Cr(III)。然而其組成均相當複雜,不易釐清個別組成與Cr(VI)之間的作用機制。因此本研究利用有機資材中的主要成分─纖維素、半纖維素、木質素以及幾丁質,探討其對溶液中Cr(VI)的反應速率,並利用FTIR分析反應後的官能基之變化以推論參與反應之官能基為何,利用Cr K-edge XAS光譜分析鉻在固體上的氧化價數以及鉻與周圍原子的鍵結情形,以進一步推論纖維素、半纖維素、木質素和幾丁質對Cr(VI)反應之機制。結果顯示,半纖維素、幾丁質和木質素能夠吸附Cr(VI),並將Cr(VI)還原成Cr(III),而纖維素對Cr(VI)的吸附及還原能力則不顯著。利用Cr K-edge XAS分析發現還原後的Cr(III)能夠同時以錯合物及表面沉澱的方式鍵結在固體表面。由FTIR測定反應前後官能基變化可知Cr(VI)還原的同時造成吸附劑表面產生-C=O與-COOH的增加,而這些官能基進一步提供還原後的Cr(III)鍵結之位置。
URI: http://hdl.handle.net/11455/28242
其他識別: U0005-1407201017192200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1407201017192200
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.