Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28248
標題: 腐植酸與醣類之反應
Reaction of humic acid and carbohydrates
作者: 潘瑩芳
Pan, Ying-Fang
關鍵字: humic acid
腐植酸
carbohydrates
corn starch
glucose
eaction
醣類
澱粉
葡萄糖
反應
出版社: 土壤環境科學系所
引用: 郭魁士。1990。土壤學。中國書局,p.127-129。 張為憲。1978。高等食品化學。華香原出版社。 楊秋忠。1999。土壤與肥料(第七版)。農世股份有限公司,台中。 蘇秋華、楊秋忠。1997。從植物殘體到腐植物植。土壤肥料通訊, 62:26-29。 陳立夫、王昭敏。1992。台灣兩種主要農耕土壤腐植酸之光譜及其 他特性分析。中國農業化學會誌30:441-453。 林晉卿。2008。應用製紙廢水及製味素廢水增加掩埋綠肥土壤的有機碳。國立中興大學土壤環境科學系研究所博士論文。 蘇秋華。1999。腐植酸與氮氣反應之研究。國立中興大學土壤環境科學系研究所博士論文。 陳立夫。1995。腐植酸中類似荷爾蒙成分及其相關特性之研究。國立中興大學土壤環境科學系研究所博士論文。 趙士維。2005。固態核磁共振於有機無機複合式電解質之結構鑑定與動力學研究。國立中央大學化學系研究所碩士論文。 王淳弘。2007。前氧化劑對於藻體胞外物作用之影響。國立成功大學環境工程系研究所碩士論文。 簡道南。2006。泥炭及腐植酸在農業上的應用。台肥季刊,47:4。http://www.taifer.com.tw/search/047004/56.html Aoyama, M. 1991. Properties of fine and water-soluble fraction of several composts. II. Organic forms of nitrogen, neutral sugars, and muramic acid in fractions. Soil Sci. Plant Nutr. 37(4):629-637. Aiken, G. R., D. M. Mcknight, and R. L. Wershaw. 1985. Humic Substances in Soil, Sediment, and Water-Geochemistry, Isolation, and Characterization. John Wiley & Sons. New York. Baes, A.U., and P.R. Bloom. 1989. Disffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acid. Soil Sci. Soc. Am. J. 53:695-700. Bartoszek, M., W.W. Sułkowski, and J. Polak. 2008. NMR study of the humification process during sewage sludge treatment. Chemosphere 73:1465–1470. Bohn, H. L., B. L. McNeal, and G. A. O’Conner. 1985. Soil Chemistry. John Wiley & Sons, New York. Bongiovanni, M.D., and J.C. Lobartini. 2006. Particulate organic matter, carbohydrate, humic acid contents in soil macro- and microaggregates as affected by cultivation. Geoderma 136: 660–665. Brady, N. C., and R. R. Weil. 2004. Elements of the Nature and Properties of Soils. 2nd ed. p. 316-384. Pearson Prentice Hall, New Jersey. Brown, W., and T. Poon. 2005. Introduction to Organic Chemistry. (3 ed.) p.304-364. John Wiley & Sons, Inc. Cavanagh, J., W. J. Fairbrother, A. G. Palmer III, and N. J. Skelton. 1996. Protein NMR Spectroscopy: Principles and Practice. p.1-587. Academic Presss. Celi, L., M. Schnitzer, and M. Negre. 1997. Analysis of carboxyl groups in soil humic acids by a wet chemical method, Fourier-transform infrared spectrophotometry, and solution-state carbon-13 nuclear magnetic resonance. A comparative study. Soil Sci. 162:189-197. Chefetz, B., A.P. Deshmukh, and P.G. Hatcher. 2000. Pyrene sorption by natural organic matter. Environ. Sci. Technol. 34:2925-2930. Chefetz, B., M.J. Salloum, A.P. Deshmukh, and P.G. Hatcher. 2002. Structural components of humic acids as determined by chemical modifications and carbon-13 NMR, pyrolysis-, and thermochemolysis-gas chromatography/mass spectrometry. Soil Sci. Soc. Am. J. 66:1159-1171. Chen, N. J. Y, and J. M. Bollag. 1992. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am. J. 56:135-140. Felbect, G..T. 1971. Structural Hypotheses of Humic Acids. Soil Sci. 111:42-48. Flaig, W., H. Beutelspacher, and E. Rietz. 1975. Chemical composition and physical properties of humic substances. p. 1-207. In J.E. Gieseking(ed.) Soil Components. Vol. 1. Organic Components. Springer-Verlag, New York. Flaig, W. 1971. Organic compounds in soil. Soil Sci. 111:19-33. Flaig, W. 1984. Soil organic matter as a source of nutrients In Organic Matter and Rice. p. 73-92. Elsevier Appliied Science, London. Frund, R., H.-D. Ludemann, F.J. Gonzalez-Vila, and G. Almendros. 1989. Structural differences between humic fractions from different soil types as determined by FT-IR and 13C-NMR studies. Sci. Total Environ. 81/82:187-194. Gagnon, B., R. Robitaille, and R.R. Simard. 1998. Characterization of several on-farm and industrial composted materials. Can. J. Soil Sci. 201-210. Gee, G. W., and J. W. Bauder. 1986. Particle size analysis. In A. Klute (ed.) Methods of Soil Analysis. Part 1. 2nd ed. Madison, Wis. p. 383-411. Gerasimowicz, W.V., and D.M. Byler. 1985. Carbon-13 CPMAS NMR and FTIR Spectroscopic studies of humic acids. Spil Sci. 139:270-278. Gerzabek, M.H., R Pichlmayer, H. Kirchmann, and G. Haberhauer. 1997. The response of soil organic matter to manure amendments in a long-term experiment at Ultuna, Sweden. Eur. J. Soil Sci. 48:273-282. Gómez, X., A. Morán, M. C. Diaz, M. Cooper, D. Blanco, and C. E. Snape. 2007. Study of biological stabilization processes of cattle and poultry manure by thermogravimetric analysis and 13C NMR. Chemosphere 68:1889–1897. González-Prieto, S.J., M. Carballas, M.C. Villar, M.C. Beloso, A. Cabaneiro, and T. Carballas. 1993. Carbon- and nitrogen- containing compounds in composted urban refuses. Bioresour. Tech. 45:115-121. González-Vila, F.J., G. Almendros, and F. Madrid. 1999. Molecular alterations of organic fractions from urban waste in the course of composting and their further transformation in amended soil. Sci. Total Environ. 236:215- 229. Ghosh, K. and M. Schnitzer. 1980.Macromolecular Structures of Humic Substances. Soil Sci. 129:266-276. Griffiths, S.M., and M. Schnitzer. 1989. Oxidative degradation of soil humic substances., p. 69-98, In M. H. B. Hayes, ed. Humic substances II. In search of structure. John Wiley & Sons, New York. Haider K., J.P. Martin, and Z. Filip. 1975. Humus chemistry. p.195-244. In E.A. Paul and A.D. McLaren. (eds.) Soil Biochemistry. Vol. 4. Marcel Dekker, New York. Haider, K., and J.P. Martin. 1976. Synthesis and transformation of phenolic compounds by epicoccum nigrum in relation to humic acid formation. Soil Sci. Am. Proc. 31:766-772. Harada, Y., A., Inoko, M. Tadaki, and T. Izawa. 1981. Maturing process of city refuse compost during piling. Soil Sci. Plant Nutr. 27(3):357-364. Harpstead M.I., Sauer T.J., Bennett W.F. 2001. Soil Science Simplified. 4nd ed. Iowa State University Press. Iowa. Hatcher, P.G., I.A. Breger, and M.A. Mattingly. 1980. Structural characteristics of fulvic acid from continental shelf sediments. Nature 285:560-562. Hatcher, P.G., M. Schnitzer, L.W. Dennis, and G.E. Maciel. 1981. Aromaticity of humic substances in Soils. Soil Sci. Soc. AM. J. 45:1098-1093. Hayes, M.H.B. 1985. Extraction of humic substances from soil. p. 329-361. In G.R. Aiken et al.(ed.) Humic substances in soil, sediment and water. Geochemistry, isolation and characterization. Wiley Intersci., New York. Hayes, M.H.B., and C.E. Clapp. 2001. Humic substances: considerations of composition, aspects of structure and environmental influences. Soil Sci. 166:723-737. Hayes, M.H.B., and R.S. Swift. 1978. The chemistry of soil organic colloids. p. 179-320. In D.J. Greenland and M.N.B. Hayes (eds.) The Chemistry of Soil Constituents. John Wiley & Sons, New York. Hsu, J.H., and S.L. Lo. 1999. Recycling of separated pig manure: Characterization of maturity and chemical fractionation of elements during composting. Wat. Sci. Tech. 40:121-127. Inbar, Y., Y. Chen, and Y. Hadar. 1989. Soil-state carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Sci. Soc. Am. J. 53:1695-1701. Inbar, Y., Y. Chen, Y. Hadar, and H.A.J. Hoitink. 1990. New approaches to compost maturity. Biocycle 31:64-69. Indian, J. 1984. Molecular sieve chromatography and infrared spectra offulvic and humic acid ractions extracted from soil and poultry litter. Soc. Soil Sci. 32:364-365. Kononova, M. M. 1966. Soil Organic Matter. p. 13-256. Pergamon Press, New York. Kosshaven, M., J.O. Bjorgum, J. Krane, and Z. Steinnes. 1990. Chemical structure of terrestrial humus materials foumed from different vegetation characterizd by solid-state 13C NMR with CPMAS techniques. J. Soil Sci. 41:371-377. Kang, S., D. Amarasirwardena, P. Veneman, and B. Xing. 2003. Characterization of ten sequentially extraed humic acids and a humin from a soil in western massachusetts. Soil Sci. 168:880-887. Leenheer, J.A. 1985. Fractionation techniques for aquatic humic substances. p. 409-429. In G.R. Aiken et al.(ed.) Humic substances in soil, sediment and water. Johu Wiley & Sons, New York. Lin, C.C., A.B. Arun, P.D. Rekha, and C.C. Young. 2007. Application of wastewater from paper and food seasoning industries with green manure to increase soil organic carbon : A laboratory study. Bioresour Technol. 99 :6190-6197. Martin, J.P., K. Haider., W.J. Farmer, and E. Fuster-Mathon. 1974. Decomposition and distribution of residusl activity of some carbon-14-microbial polysaccharides and cells, glucose, cellulose, and wheat straw in soil. Soil Biol. Biochem. 6:221-230. Martin, J.P., and K. Haider. 1971. Microbial activity in relation to soil humus formation. Soil Sci. 111:54-63. Martin, J.P., K. Haider., and D. Wolf. 1972. Synthesis of phenols and phenolic polymers by Hendersonula toruloidea in relation to humic acid formation. Soil Sci. Soc. Am. Proc. 36:311-315. Miikki, V., N. Senesi, and K. Hanninen. 1997. Characterization of humic Material formed by composting of domestic and industrial biowastes. Chemosphere 34:1639-1651. MacCarthy, P., and J.A. Rice. 1985. Spectroscopic methods (other than NMR) for determining functionality in humic substances, p.527-559. In G.R. Aiken, D.M. McKnight, R.L. Wershaw, and P. MacCarthy (ed.) Humic Substances in Soil, Sediment, and Water. John Wiley & Sons, New York. MacCarthy, P., R.L. Malcolm, C.E. Clapp, and P.R. Bloom. 1990. An introduction to soil humic substances. p. 1-12. In P. MacCarthy et al. (ed.) Humic Substances in Soil and Crop Sciences: Selected Readings. ASA and SSSA, Madison, Wisconsin, USA. Mecozzi, M., and E. Pietrantonio. 2006. Carbohydrates proteins and lipids in fulvic and humic acids of sediments and its relationships with mucilaginous aggregates in the Italian seas. Marine Chem. 101: 27–39. Meissl, K., E. Smidt, and M. Schwanninger. 2007. Prediction of humic acid content and respiration activity of biogenic waste by means of Fourier transform infrared (FTIR) spectra and partial least squares regression (PLS-R) models. Talanta 72:791-799. Nardi, S., A. Muscolo, S. Vaccaro, S. Baiano, R. Spaccini, and A. Piccolo. 2007. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biol. Bioch. 39: 3138–3146. Newman, R.H., and K.R. Tate. 1991. 13C NMR characterization of humic acids from soils of a development sequence. J. Soil Sci. 42:39-46. Niemeyer, J., Y. Chen, and J.-M. Bollag. 1992. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am. J 56:135-140. Oades, J.M. 1989. An introduction to organic matter in mineral soils. p.89-159. In J.B. Dixon and S.B. Weed (ed.) Minerals in Soil Environments. 2nd ed. Soil Sci. Soc. Am., Madison, Wis. Oades, J.M., J.B. Dixon, and S.B.Weeds. 1995. An introduction to organic matter in mineral soils. In Minerals in Soil Environment. 2nd ed. p. 89-159. Soil Sci. Soc. Am., Madison, Wis. Pavia, D. L., G. M., Lampman, and G. S. Kriz. 2001. Introduction to Spectroscopy. 3nd ed. Brooks/Cole Thomson Learning. Washington. Perminova, I.V., N.Y. Grechishcheva, and V.S. Petrosyan. 1999. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: relevance of molecular descriptors. Environ. Sci. Technol. 33:3718-3787. Peuravuori, J., A.J. Simpson, B. Lam, P. Žbánková, and K. Pihlaja. 2007. Structural features of lignite humic acid in light of NMR and thermal degradation experiments. J. Mol. Str. 826:131–142. Plaza, C., N. Senesi, A. Polo, and G. Brunetti. 2005. Acid-base properties of humic acid and fulvic acid formed during composting. Environ. Sci. Technol. 39 :7147-7146. Said-Pullicino, D., G. Gigliotti, and F. G. Erriquens. 2007. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour. Technol. 98:1822-1831. Schnitzer, M. 1977. Recent findings on the characterization of humic substances extracted from soils from widely differing climatic zones. p. 117-132. In IAEA-SM-221/7. Soil organic matter studies II. Vienna. Schnitzer, M., and S.U. Khan. 1978. Soil Organic Matter. Elsevier North-Holland, New York. Schnitzer, M., and C.M. Preston. 1983. Effect of acid hydrolysis on the 13C NMR spectra of humic substances. Plant Soil. 75:201-211. Schnitzer, M. 1984. Nature of nitrogen in humic substances, p. 303-325. In Aiken et al. (ed.) Humic Substances in Soils, Sediment, and Water. Wiley-Interscience, New York. Schnitzer, M., and C.M. Preston. 1986. Analysis of humic acids by solution and solid-state carbom-13 nuclear magnetic resonance. Soil Sci. Soc. Am. J. 50:326-331. Schoenau, J. J., and J. R. Bettany. 1987. Organic matter leaching as a component of carbon, nitrogen, phosphorus, and sulfur cycles in a forest, grassland, and gleyed soil. Soil Sci. Am. J. 51:645-651. Schulten, H.R., and M. Schnitzer. 1997. Chemical model structures for soil organic matter and soils. Soil Sci. 162:115-130. Sheen, S. Y., and C. M. Hong. 1996. Composting of animal waste. In:International Training Workshop on Microbial Fertilizers and Composting. Food and Fertilizer Technology Center & Taiwan Agricultural Research Institute. Taichung. Taiwan ROC. p.14.1-14.10. Shindo, H. 1991. Elementary composition, humus composition, and decomposition in soil of charred grassland plants. Soil Sci. Plant Nutr. 37: 651-657. Silverstein, R.M., G.C. Bassler, and T.C. Morrill. 1991. Spectrometric Identification of Organic Compounds. 5nd ed. p. 91-164. John Wiley and Sons, New York. Skjemstad, J.O., L.J. Janik, and J.A. Taylor. 1998. Non-living soil organic matter: what do we know about it. Aust. J. Exp. Agric. 38:667-680. Sposito, G.. 1989. The Chemistry of Soils. p.42-65. Oxford University Press, New York. Stearman, G.K., R.J. Lewis, L.J. Tortrtelli, and D.D. Tyler. 1989. Characterization of humic acid from no-tilled and tilled soils using carbon-13 nuclear magnetic resonance. Soil Sci. Soc. Am. J. 53:744-749. Steelink, C.1985. Implications of elemental characteristics of humic substances. p. 457-476. In G.R. Aiken, D.M. McKnight, R.L. Wershaw, and P. ManCarthy.(eds.) Humic Substances in Soil, Sediment, and Water. John Wiley & Sons, New York. Stevenson, F.J. 1982. Humus Chemistry. Gensis, Composition, Reaction. John Wiley & Sons. New York. Stevenson, F.J.1994. Humuc Chemistry:Genesis, Composition, Reaction. 2nd ed. John Wiley, New York. Stott, D.E., and J.P. Martin. 1990. Synthesis and degradation of natural and synthetic material in soil. p. 37-58. In McCarthy. et al. (ed.) Humic Substances in Soil and Crop Sciences: Selected Readings. SSSA, Inc., Madison, WI. Swift, R.S. 1985. Fractionation of soil humic substances. p. 387-408. In G.R. Aliken, D.M. McKnight, R.L. Wershaw, and P. MacCarthy.(eds.) Humic Substances in Soil, Sediment, and Water. John Wiley & Sons, New York. Tate III, R.L. 1987. Soil Organic matter. Biological and Ecological Effects. John Wiley & Sons. New York. Tan, K. H. 2003. Humic Matter in Soil and the Environment. Marcel Dekker, Inc. New York. Tejada, M., A. M. Garcia-Martinez, and J. Parrado. 2009. Relationships between biological and chemical parameters on the composting of a municipal solid waste. Bioresour. Technol. 100:4062-4065. Terashima, M., S. Tanaka, and M. Fukushima. 2007. Coagulation characteristics of humic acid modified with glucosamine or taurine. Chemosphere 69:240–246. Thompson, W., P. Leege, P. Millner, and M.E. Watson. 2003. Test Methods for the Examination of Composts and Composting. The US Composting Council, US Government Printing Office http://tmecc.org/tmecc/index.html. Trubetskoj, O., C. Richard, M. Grigatti, C. Ciavatta, and O. Trubetskaya. 2008. Evaluation of photochemical properties of compost humic-like materials. Bioresour Technol. 99 :5090-5093. Tsutsuki, K., and S. Kuwatsuka. 1984. Molecular size distribution of humic acids as affected by the ionic strength and the degree of humification. Soil Sci. Plant Nutr. 30(2):151-162. Vergnoux, A., M. Guiliano, Y. L. Dréau, J. Kister, N. Dupuy, and P. Doumenq. 2009. Monitoring of the evolution of an industrial compost and prediction of some compost properties by NIR spectroscopy. Sci Total Environ. 407:2390-403. Villar, M.Q, M.C. Beloso, MJ.Acea.A. Cabaneiro, SJ. Gonzalez-Prieto, M. Carballas, M. Diaz-Ravina, and T. Carballas. 1993. Physical and chemical characterization of four composted urban refuses. Bioresour. Technol. 45:105- 113. Jr. Wade, G.L. 1991. Organic Chemistry. 2nd ed. Prentice-Hall, Inc. New Jersey, USA. Wang, T.S.C., and S.W. Li. 1977. Clay minerals as heterogeneous catalysis in preparation of model humic substance. Z. Pflanzenemaehr. Bodenkd. 140:669-676. Wang, T.S.C., M.C. Wang, Y.L. Femg, and P.M. Huang. 1983. Catalytic synthesis of humic substances by natural clays, silts, and soils. Soil Sci. 135:350-360. Wang, T.S.C., S.W. Li, and Y.L. Femg. 1978. Catalytic polymerization of phenolic compounds by clay minerals. Soil Sci. 126:15-21. Wershaw, R.L. 1985. Applications of nuclear magnetic resonance spectroscopy for determining functionality in humic substances. p. 561-582. In G.R. Aiken, D.M. McKnight, R.L. Wershaw, and P. MacCarthy (ed.) Humic Substances in Soil, Sediment, and Water. John Wiley & Sons, New York. Wilson, M.A. 1981. Applications of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter. J. Soil Sci. 32:167-186. Wilson, M.A. 1987. NMR techniques and applications in geochemistry and soil chemistry. Pergamon, Oxford, UK. Young C.C., and L.F. Chen. 1997. Polyamines in humic acid and their effect on radical growth of lettuce seedlings. Plant Soil. 195:143-149. Young, C.C., C.H. Su, G.C. Li, M.C. Wang, and A.B. Arun. 2004. Prospects for nitrogen incorporation into humic acid as evidenced by alkaline extraction method. Curr. Sci. 87:1704-1709. Zibilsje, L. M., 1994. Carbon mineralization. p. 835-859. In R. W. Weaver et al. (ed.) Methods of Soil Analysis, Part 2. 2nd ed. Agron. Monoger. 9. ASA and SSSA, Madison, WI, USA.
摘要: 腐植質於土壤中為不定形及非均質性的有機化合物,係由於微生物新陳代謝死亡的細胞資材的產物,基於以上發現到目前為止,顯示有多種對植物新陳代謝的影響,可依它們的來源、分子量大小、化學特性和濃度而定。然而在自然環境中不斷有許多的路徑造成土壤中有機物質的累積,故本研究欲探討土壤中穩定的有機物直接與新鮮的有機資材接觸所產生之變化,是否可由此生成存於土壤中穩定的有機物質。因此本研究以腐植酸(humic acid)分別與醣類葡萄糖(glucose)與玉米澱粉(corn starch)進行反應,並研究反應產物以了解有機物的變化的特性。主要的分析方法為元素分析(EA)、傅立葉散反射紅外光譜(FTIR-DRIFT)與衰減式全反射紅外光譜分析(FTIR-ATR)、固態核磁共振光譜分析(13C-NMR)以及二氧化碳釋放速率之穩定性分析。由EA可知腐植酸含有高量的羧酸基(-COOH),而FTIR與13C-NMR光譜顯示反應產物的架構變化很明顯,腐植酸與醣類反應之後,醣類會受到腐植酸之羧酸基團的修飾,可使反應產物成為穩定的有機物質。依據13C-NMR光譜分析結果,計算可得腐植酸的芳香度為56.2%,腐植酸與澱粉反應產物之芳香度可達53.4%。反應產物的二氧化碳釋放速率(42.09-44.20 mg g-1 d-1)均低於澱粉(47.25 mg g-1 d-1),顯示與腐植酸與澱粉反應後的產物,確實有趨於穩定的性質。本研究結果顯示腐植酸與新鮮的有機物質直接接觸時,可藉由本身之特性官能基修飾,並且使得有機物質穩定化,此種反應將有助增加土壤中的有機碳含量的累積。
The humic substance (HS) is heterogeneous organic compounds formed in the soil as by-products of microbial metabolism on dead cell materials, were found up to now to exhibit a range of different effects on plant metabolism. It is depending on their organic, molecular size, chemical characteristics and concentration. However, there are many ways by which organic matter can be accumulated in natural soil environment. The objective of this research is to investigate the stable organic matter in the soil, which is change in direct contact with the fresh organic matter, whether stable of organic matter was formed. For this reason, through the reaction of humic acid (HA) and carbohydrate (corn starch and glucose), and reaction products were studied in order to characterize the variation of organic matter. The main analytical methods were elemental analyzer (EA), Fourier transform infrared spectroscopy (FTIR) connected with diffuse reflectance Fourier transform infared (DRIFT) and attenuated total reflectance (ATR), respectively; and solid state 13C nuclear magnetic resonance spectroscopy (13C-NMR), and stability analysis of the release speed of carbon dioxide. The EA demonstrated that HA contain a high amount of carboxyl (-COOH), as well FTIR and 13C-NMR spectra of reaction products were indicated that a high rate of change in structure. The reaction products were modified by carboxyl from HA which was become stable organic matter. Accordingly to the integration of quantitative analysis of 13C-NMR spectra, the value of aromaticity of HA was 56.2%, and the reaction products were reached 53.4%. The stability analysis part of the carbon dioxide release speed, the reaction products were (42.09-44.20 mg g-1 day) lower than corn starch (47.25 mg g-1 day) that show in tending become to stable matter. In conclusion, carbohydrate could be modified by function groups of HA, and which can increase the organic carbon accumulation in the soil.
URI: http://hdl.handle.net/11455/28248
其他識別: U0005-1608201010493000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1608201010493000
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.