Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28256
標題: Screening and evaluating the phosphate-solubilizing ability of bone-solubilizing microorganisms
骨粉磷溶菌篩選與溶磷能力之評估
作者: Huang, Yi
黃翊
關鍵字: pig-bone meal
豬骨粉
goat-bone meal
phosphate solubilizing microorganism
羊骨粉
溶磷微生物
出版社: 土壤環境科學系所
引用: 行政院農委會農糧署。2004。網站資料http://www.afa.gov.tw/。 行政院農委會動植物防疫檢疫局。2009。九十八年防檢局屠檢頭數總計(豬、牛、羊)。 張仲民。1996。普通土壤學。國立編譯館。 許獻鴻。2003。廚餘油分解菌篩選與除油效益評估。國立中興大學碩士論文。 黃璋如。1997。「中德兩國有機農業之發展」,國立宜蘭技術學院應用經濟系,農委會委託研究計畫報告。 蔡雲鵬。1991。台灣植物病害名彙。中華植物保護協會,中華民國植物病理學會。 Ahn, P.M. 1993. Tropical soils and fertilizer use. In: Intermediate Tropical Agriculture Series. Longman Scientific and Technical, Malaysia. Allyn, W. P., and I. L. Baldwin. 1931. Oxidation-reduction potentials in relation to the frowth of an aerobic form of bacteria. Journal of Bacteriology vol. XXIII, 369-398. Barber, S. A. 1984. Soil Nutrient Bioavailability: a Mechanistic Approach, Wiley, New York, p. 398. Barroso1, C. B., G. T. Pereira, and E. Nahas. 2006. Solubilization of CaHPO4 and AlPO4 by Aspergillus niger in culture media with different carbon and nitrogen sources. Brazilian Journal of Microbiology 37:434-438. Bill, G. F., and J. D. Polishook. 1994. Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia 86:187-198. Biswas, D.R., and G. Narayanasamy. 2006. Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate. Bioresour. Technol. 97, 2243–2251. Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-total. In A. L. page et al. (ed.) Methods of soil analysis. Part 2. 2ed edition. Agronomy. 9: 595-624. ASA and SSSA, Madisn, WI. Cameselle, C., J. T. Bohlmann, M. J. Nunez, and J. M. Lema. 1998. Oxalic acid production by Aspergillus niger. Part I: Influence of sucrose and milk whey as carbon source. Bioprocess Engineering 19 247-252. Chuang, C. C., Y. L. Kuo, C. C. Chao, and W. L. Chao. 2007. Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol Fertil Soils (2007) 43:575–584 DOI 10.1007/s00374-006-0140-3. Cunningham, J. E., and C. Kuiack. 1992. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458. Delvasto, P., A. Valverde, A. Ballester, J. M. Igual, J. A. Munoz, F. Gonzalez, M. L. Blazquez, and C. Garcia. 2006. Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures. Soil Biol. Biochem. 38, 2645–2654. Deydier, E., R. Guilet, S. Sarda, and P. Sharrock. 2005. Physical and chemical characterisation of crude meat and bone meal combustion residue: “waste or raw material?”. Journal of Hazardous Materials B121 (2005) 141–148. Dibble, K. G. and R. Bartha. 1979. Effect of environmental parameters on the biodegradation of oil sludge. Appl. Environ. Microbial. 37: 729-739. Doyle, J. J. 1979. Toxic and essential elements in bone—a review. J Anim Sci 49:482–497. Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. In A.L. page et al. (ed.) Methods of soil analysis. Part 1. 2ed edition. Agronomy. 9:383-411. ASA and SSSA, Madison, WI. Goldstein, R. M., L. M. Mallor, and M. AlexXander. 1985. Reasons for possible failure of inoculation to enhance biodegration. Appl. Environ. Microbiol. 50: 977-983. Gregory P. J. 2006. Root and the biological environment. Plant Roots. Chapter 6, 174–215. Illmer, P., and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol. Biochem. 24: 389-395. Knudsen, O., G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. P. 225-246. In A. L. Page (ed. ) Methods of Soil Analysis Part 2. 2nd edition. Agronomy. ASA. Madison. WI. Kohri, M., K. Miki, D. E. Waite, H. Nakajima, T. Okabe. 1993. In witro stability of biphasic calcium phosphate ceramics. Biomaterial. Vol. 14 No.4. Kpomblekou, A.K., and M. A. Tabatabai. 1994. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci 158:442– 453. Lal L. 2002. Phosphatic biofertilizers. Agrotech, Publ. Academy,Udaipur, India, 224p. Magnuson, J. K., and Linda L. L. 2004. Organic Acid Production by Filamentous Fungi. Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Edited by Jan and Lene Lange, Kluwer Academic/Plenum Publishers. 12, 307-340. Mandels, M. and R. E. Andreotti. 1978. Process. Biochem. 13: 6. Mclean, E. O. 1982. Soil pH and lime requirement. In A. L. page et al. (ed.) Methods of soil analysis. Part 2. 2ed edition. Agronomy. 9: 199.224. ASA and SSSA, Madison, WI. Monod, J. 1949. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949.3:371-394. Murphy, J., and J. D. Riley. 1962. A modified single solution method for the determination of phosphorus in natural waters. Anal. Chem. Acta. 27:31-36. Nahas, E. 1996. Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J. Microbiol. Biotechnol. 12: 567–572. Olsen, S. R. and L. E. Sommers. 1982. Phosphorus. In A. L. page et al. (ed.) Methods of soil analysis. Part 2. 2ed edition. Agronomy. 9: 403-430. ASA and SSSA, Madisn, WI. Omar, S. A. 1998. The role of rock-phosphate-solubilizing fungi and vesicular-arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotech. 14 : 211– 218. Ouahmane, L., J. Thioulouse, M. Hafidi, Y. Prin, M. Ducousso, A. Galiana, C. Plenchette, M. Kisa, and R. Duponnois. 2007. Soil functional diversity and P solubilization from rock phosphate after inoculation with native or allochtonous arbuscular mycorrhizal fungi. For. Ecol. Manage. 241, 200–208. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 17 : 362–370. Reiss, J. 1986. Schimmelpilze. Lebensweise, Nutzen, Schaden, Bekämpfung. Springer, Berlin Heidelberg New York, pp 33–41. Reyes, I., L. Bernier, R. R. Simard, and H. Antoun. 1999. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290. Rodriguez, H., R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339. Rudresh, D.L., M. K. Shivaprakash, and R. D. Prasad. 2005. Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Can. J. Microbiol. 51, 217– 222. Schuster, E., N. Dunn-Coleman, J. C. Frisvad, and P. W. M. van Dijck. 2002. On the safety of Aspergillus niger — a review. Appl Microbiol Biotechnol 59:426–435 DOI 10.1007/s00253-002-1032-6. Sharon, C.A., C. L. C. Halliday, and M. Wieland. 2002. A review of nucleic acid-based diagnostic tests for systemic mycoses with an emphasis on polymerase chain reaction-based assays. Medical Mycology, Vol. 40, No. 4: 333–357. Srividya, S., S. Soumya, and K. Pooja. 2009. Influence of environmental factors and salinity on phosphate solubilization by a newly isolated Aspergillus niger F7 from agricultural soil. African Journal of Biotechnology Vol. 8 (9), pp. 1864-1870. Stevenson, F. J. 1986. Cycles of soil. Carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, Inc. Sylvia, D. M., J. J. Fuhrmann, P. G. Hartel, and D. A. Zuberer. 1998. PRINCIPLES and APPLICATIONS of SOIL MICROBIOLOGY. 90-91. Takahashi, S., and M. R. Anwar. 2007. Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol. Field Crops Res. 101, 160–171. Thomas, G. W. 1982. Exchangeable cation. In Page, A. L. (ed.) Methods of Soil Analysis. Part 2. 2nd ed., ASA ans SSSA, Wisconsin, USA. P. 159-165. Turenne, C. Y., S. E. Sanche, D. J. Hoban, J. A. Karlowsky, and A. M. Kabani. 1999. Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J. Clin. Microbiol. 37:1846-1851. Vaccari, D. A. 2009. 磷礦耗竭的危機。科學人雜誌2009年第89期7月號。98-103頁。 Van Kauwenbergh, S. J. 1997. Cadmium and other minor elements in world resources of phosphate rock. In: Proceedings No. 400 International Fertiliser Society, York, UK pp 1–40. Viel, M., D. Sayag, A. Peyre, and L. André. 1987. Optimization of in-vessel co-composting through heat recovery. Biol. Wastes 20, pp. 167–185. Warren, G. P., J. S. Robinson, and E. Someus. 2009. Dissolution of phosphorus from animal bone char in 12 soils. Nutr Cycl Agroecosyst (2009) 84:167–178. Whitelaw, M. A., T. J. Harden, and K. R. Helyar. 1999. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665. Wilson, S. C., and K. C. Jones. 1993.Bioremediation od soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a view. Environ Pollut. 81: 229-249. Zayed, G., and H. Abdel-Motaal. 2005a. Bio-active composts from rice straw enriched with rock phosphate and their effect on the phosphorous nutrition and microbial community in rhizosphere of cowpea. Bioresour. Technol. 96, 929–935. Zayed, G., and H. Abdel-Motaal. 2005b. Bio-production of compost with low pH and high soluble phosphorus from sugar cane bagasse enriched with rock phosphate. World J. Microbiol. Biotechnol. 21, 747–752.
摘要: Phosphate fertilizer has been recognized as the most limiting element in agriculture production. Its natural resource, unfortunately, is also limited. The recycle of animal bone meal will be increased its importance for most country prohibiting it used as animal feed. The aim of this thesis was to screen microorganisms which can directly dissolve phosphate from the raw bone meal with no fat removal. The fat contained in raw bone meal is assumed to be the carbon source for the phosphate solubilizing microorganism. Aspergillus niger is evaluated as the only microorganism which meets the requiring that the microorganism can directly release the phosphorus from the raw bone meal of pig and goat, after screened 62 calcium phosphate solubilizing microorganisms from different resources. The main mechanism of A. niger dissolves the raw bone meal is the release of oxalic acid. In liquid media, A. niger dissolved more phosphate from the goat bone than from pig bone. The addition of extra nitrogen to lower the C/N ratio can improve the release of phosphate from goat bone, but no significant increase from pig bone. In pot experiment, although, the inoculation of A. niger increased soil available phosphate concentration of addition of all bone meal treatments, no positive effect of maize dry weight and phosphate uptake in maize shoot. These results are due to the high C/N ratio of both raw bone meals and there was no fertilizers applied except the addition of bone meals. The lower ammonium and nitrate concentrations of the bone meal addition treatments evidenced the assumption.
隨著農業的發展,肥料的用量也逐年提升。尤其是磷肥,不像氮肥能夠從大氣中直接獲得,只能靠磷礦石的開採提煉而得。但是世界上的磷礦石存量大約只夠我們再使用90年,故尋求可用的替代品以讓農業能夠永續經營是當務之急。骨頭為常見的農業及食品加工業廢棄物,其成分主要為磷酸三鈣Ca3(PO4)2與氫氧基磷灰石Ca10(PO4)6(OH)2,具有與過磷酸鈣Ca(H2PO4)含量相當的磷,但骨頭於自然環境中的溶解度極低,因此不易當作肥料使用。因此若能找出將骨頭中所含的磷利用於農業生產上的方法,將能夠為農業省下可觀的成本,也使農業能夠永續發展。本研究乃利用骨粉作為養分來源以培養出能夠利用並溶解骨粉的微生物,並從中篩選出可能能夠溶出骨粉磷的菌株共 62株。經過骨粉孵育及溶骨粉磷能力測定後得到菌株Aspergillus niger為環境中最常見之黑麴菌,常被用來進行工業發酵以取得檸檬酸,對於人體與植物的致病力皆不強,其對於磷的溶出有很強的能力,在純化環境中A. niger對於骨粉磷比起其他篩選所得到菌株也有最強的溶出能力。而在液體培養基環境中能看出A. niger對羊骨粉與豬骨粉之溶磷情形不同,羊骨粉由於具有較高的碳氮比,使得磷的溶出量在初期較快速,但隨著孵育時間變長卻有減慢的情形;而豬骨粉碳氮比較低,磷溶出量緩慢上升,但經過C/N的調整試驗後發現羊骨粉磷的溶出速度在較低碳氮比時會有較大的溶出量,但豬骨則幾乎不受影響。最後將A. niger與骨粉同時或孵育後施用於盆栽中,發現無論是何種處理對於盆栽植體的磷含量影響皆不大,但會稍微提高土壤的有效性磷含量,添加羊骨粉的處理則會造成土壤裡的氮含量下降。 A. niger在土壤中雖然能夠將骨粉裡的磷溶出,但也會與植物競爭土壤裡的養分(如氮肌餓),造成植物對於土壤養分吸收上的阻礙。
URI: http://hdl.handle.net/11455/28256
其他識別: U0005-1908201017122500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201017122500
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.