Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28263
標題: 不同改良資材對銅和鎘污染之強酸性土壤的改良
Studies on the remediation effects of copper and cadmium contaminated strongly acidic soil using different amendments
作者: 廖婉岑
Liao, Wan-Tsen
關鍵字: strongly acidic soil
強酸性土壤
amendments
Cu
Cd
mobility
bioavailability
改良劑


移動性
生物有效性
出版社: 土壤環境科學系所
引用: 王一雄。土壤環境污染與農藥。民文書局印行。 王銀波、劉黔蘭、吳論、林宴夙。1986。銅、鋅、鎘及鉻對土壤為生物與作物生長的影響。農林學報。35: 97-109。 行政院環保署。2004。土壤及地下水整治雙年報。行政院環保署土壤及地下水整治基金管理委員會。 江致民。2006。中性及鹼性污染土中重金屬和磷酸跟結合及酸洗型態之研究。國立中興大學土壤學研究所碩士論文。 吳振記、陳仁炫。2005。台灣地區強酸性土壤石灰需要量模式之建立。台灣農業化學與食品科學。43:428-436。 李玉英。1985。重金屬銅、鋅和鎘在土壤中的移動。國立中興大學土壤學研究所碩士論文。 李承玹、邱志郁、鄒裕民、江博能、王明光。2002。重金屬汙染土壤中的鎘與鋅。土壤與環境,4:301-308。 林勇偉。2005。資材的施用對強酸性土壤剖面陽離子及鋅污染之改善研究。國立中興大學土壤環境科學研究所碩士論文。 林紫慧、洪崑煌。1992。土壤酸性的認識。酸性土壤之特性及改良研討會論文集。中華土壤肥料學會p.1-7。 徐琳媛。2001。質材之添加對酸性土壤肥力的改良效應。國立中興大學土壤環境科學系碩士論文。 莊佩棋。2003。土壤種金屬污染物化合物型態分佈之影響因子探討。逢甲大學環境工程與科學學系碩士論文。 許振宏。1999。豬糞堆肥之重金屬及有機物化學特性與其於土壤之應用研究。國立台灣大學環境工程學系博士論文。 陳仁炫、丁美幸。1993。土壤pH及磷肥施用對酸性土壤和石灰質土壤磷生物有效性之影響。中國農業化學會誌。31:653-666。 陳仁炫、徐琳媛。2004。改良資材之表層施用對強酸性土壤剖面及鉀有效性的影響。台灣農業化學與食品科學。42:52-60。 陳仁炫。1995。有機質肥料的添加對土壤磷吸附及礦化作用之影響。中國農化會誌。31:399-411。 郭雅紋。2008。有機質肥料重金屬含量快速檢測法之研究。國立中興大學土壤環境科學研究所碩士論文。 陳慎德。2003。台灣土壤及地下水環境保護協會簡訊。9:10-17。 陳懷滿等。1996。土壤-植物系統中的重金屬汙染。科學出版社。P71-p121。 傅威程。2008。受污染農業環境重金屬(鉻、銅、鋅、鎳、鉛、鎘)之物種分布及轉化研究。國立中興大學土壤環境科學研究所碩士論文。 黃俊憲。2004。污染農地中鎘的去除。國立中興大學環境工程學系研究所碩士論文。 黃政恆、余東峰、陳冠宏。2003。數據品質目標-重金屬汙染土壤整治後如何驗證的案例評估。土壤與環境,3:153-164。 葉琮裕。2000。美國土壤及地下水污染整治技術。環保訓練園地。50期。 廖自基等。微量元素的環境化學及生物效應。中國環境科學出版社。 廖祿津。2006。受重金屬污染農地土壤調查及整治技術之探討。環境工程學系所在職專班碩士學位論文。 蔡妮姍。2006。有機資材的施用對銅和鎳汙染土壤之改良效果研究。國立中興大學土壤環境科學研究所碩士論文。 鄭光喆。2007。重金屬污染土壤之不同單一與連續性抽出方法評估。國立中興大學土壤環境科學研究所碩士論文。 鄭麗蓉。2003。改良質材之施用對強酸性土壤剖面酸性及鉀有效性的影響。國立中興大學土壤環境科學研究所碩士論文。 Abd-Elfattah, and A., K. Wada. 1981. Adsorption of lead, copper, Zinc, cobalt, and cadmium by soils that differ in cation exchange materials. J. Soil Sci. 32:271-283. Adams, M. L., F. J. Zhao, S. P. McGrath, F. A. Nicholson, and B. J. Chambers. 2004. Predicting cadmium concentrations in wheat and barley grain using soil properties. J. Environ. Qual. 33:532-541. Adhikari, T., and M. V. Singh. 2008. Remediation of Cadmium Pollution in Soils by Different Amendments A Column Study. Commun. Soil Sci. Plant Anal. 39: 386–396 Adriano, D. D. 2001. Trace elements in terrestrial environments: biogeochenistry, bioavailability, and risks of heavy metals. Springer-Verlag, New York. Ahnstrom , Z. S., and D. R. Parker. 1999. Development and assessment of a sequential extraction procedure for fractionation of soil cadmium. Soil Sci. Soc. Am. J. 63: 1650-1658. Alcordo, I. S., and J. E. Rechcigl. 1993. Phosphogypsum in agriculture: a review. Adv. Agron. 49:55-118. Almås, Å., B. R. Singh, and B. Salbu. 1999. Mobility of 109Cd and 65Zn in soil influence by equilibration time, temperature and organic matter. J. Environ. Qual. 28: 1742-1750. Alloway, B. J., and Jackson, A. P. 1991. The behavior of heavy metals in sewage sludge-amended soils. Science Total Environ. 100:151-176. Alloway, B. J. 1995. Heavy metal in soils . 2nd edition, Blackie Academic and Professional , London. Antoniadis, V, and B. J. Alloway. 2002. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ. Pollut. 117: 515-521. Antoniadis, V., C. D. Tsadilas, and S. Stamatiadis. 2007. Effect of dissolved organic carbon on zinc solutility in incubated biosolds-amended soils. J. Environ. Qual. 36: 379-385. Ashley, J. T. F. 1996. Adsorption of Cu(II) and Zn(II) by estuarine, riverine and terrestrial humic acids. Chemosphere. 33: 2175-2187. Ashworth, D. J. , and B. J. Alloway. 2004. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut. 127:137-144. Ashworth, D. J., and B. J. Alloway. 2008. Influence of dissolved organic matter on the solubility of heavy metals in sewage-sludge-amended soils. Commun. Soil Sci. Plant Anal. 39:538-550. Autumn S. Wang, J. Scott Angle, Rufus L. Chaney, Thierry A. Delorme and Roger D. Reeves.2006. Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil. 281:325–337. Bahaminyakamwe, L., J. Simunek, J. H. Dane, J. F. Adams, and J. W. Odom. 2006. Copper mobility in soils as affected by sewage sludge and low molecular weight organic acids. Soil sci. 171: 29-38. Boekhold, A. E., Temminghoff, E. J. M., and van der Zee, S. E. A. T. M. 1993. Influence of electrolyte composition, pH and cadmium sorption by an acid sandy soil. J. Soil Sci. 44:85-86. Bouldin, D. R. 1979. The influence of subsoil acidity on crop yield potential. Cornell Intern. Agric. Bull. 34. Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-total.In A. L. Page(ed) Methods of soil analysis. Part II. 2nd edtion Agronomy. P. 595-624. ASA. Madison. WI. Bruemmer, G. W., J. Gerth, and K. G. Tiller. 1988. Reaction-kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. 1. Adsorption and diffusion of metals. Journal of Soil Science, submitted. Buekers, J., L. van Lear, F. Amery, S. van Buggenhout, A. Maes, and E. Smolders. 2007. Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils. Eur. J. Soil Sci. 58: 1514-1524. Cameron, D. F., and M. L. Sohn. 1992. Functional group content of soil and sedimentary humic acids determined by CP/MAS 13C NMR related to conditional Zn(II) and Cd(II) formation constants. Sci. Total Environ. 113:121-132. Campbell, C. G., F. Garrido, V. Illera, and M. T. Gracía-González. 2006. Transport of Cd, Cu and Pb in an acid soil amended with phosphogypsum, suger foam and phosphoric rock. Appli. Geochem. 21: 1030-1043. Cavallaro, N., and M. B. McBride. 1978. Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Sci. Soc. Am. J. 42:550-556. Cassell, D. K., and A. Klute. 1986.Water potential. In A. Klute et al. (ed), Methods of soil analysis. Part I. 2nd edtion Agronomy. P.5630596.ASA.Madison. WI. Chaney, R. L., J. A. Ryan, Y.-M. Li, and S. L. Singh. 1999. Soil cadmium as a threat to human health. In:McLaughlin, M. L., Singh, B. R. (Eds.).Developments in plant and soil sciences.Kluwer Academic Publishers, Dordrecht, The Nertherlands,pp. 219-256. Chang Chien, S. W., C. C. Huang, and M. C. Wang. 2003. Analytical and spectroscopic characteristics of refuse complexing ligands. J. Appl. Sci. Eng. 1: 62-71. Chang Chien, S. W., M. C. Wang, and C. C. Huang. 2006. Reactions of compost-derived humic substances with lead, copper, cadmium, and zinc. Chemosphere. 64: 1353-1361. Chantigny, .M. H., D. A. Angers, D. Prévost, R. R. Simard, and F. P. Chalifour. 1999. Dynamics of soluble organic C and C mineralization in cultivated soils with varying N fertilization. Soil Bio. Biochem. 31: 543-550. Christensen, T. H. 1984. Cadmium soil sorption at low concentrations, II: reversibility effect of changes in solute composition, and effect of soil aging. Water, Air, Soil Pollut. 21:115-125. Christensen, T. H., and P. M. Huang. 1999. Solid phase cadmium and the reactions of aqueous cadmium with soil surfaces. In: M. J. McLaughlin, and B. R. Singh(eds). Cadmium in soils and plants. Kluwer, Dordrecht, pp 65-96. Chubin, R. G., and J. J. Street. 1981. Adsorption of cadmium on soil constituents in the presence of complexing ligands. J. Environ. Qual. 10: 255-228. Clemente, R.,D. J. Walker, A. Roig,M. P. Bernal,P. Lens, and M. Vallero. 2003. Heavy metal bioavailability in a soil affected by mineral sulfides contamination following the mine spillage at Aznalcollar (Spain). Biodegradation. 14:199-205. Clemente, R., N. M. Dickinson, and N. W. Lepp. 2008. Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environ. Pollut. 155: 254-261. Cronan, C. S. 1980. Solution chemistry of a new hampshire subalpine ecosystem : a biogeochemical analysis. Oikos, 34(3):272-281. D.L. Sparks. Methods of soil analysis Part 3-Chemical methods. SSSA book series. Doelsch, E., G. Moussard and H. S. Macary. 2008. Fractionation of tropical soilborne heavy metals-Comparison of two sequential extraction procedures. Geoderma. 143:168-179. Eliott, H. A., B. A. Dempsey, and P. J. Maille. 1990. Content and fractionation of heavy metals in water treatment sludge. J. Environ. Qual. 19: 330-334. Erwin, J. M. T., S. E. A. T. M. van der Zee, and F. A. M. De Haan. 1997. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ. Sci. Tech. 31: 1109-1115. Flilus, A., Streck, T. and Richter, J. 1998. Cadmium sorption and desorption in limed topsoil as influenced by pH: Isotherms simulated leaching. J. of Environ. Quality. 27: 12-18. Fontes, M. P. F., A. T. Matos, L. M. Costa, and J. C. L. 2000. Competitive adsorption of Zinc, Cadmium, copper and lead in three highly weathered Brazilizn soils. Commun. Soil Sci Plant Anal. 31: 2939-2958. Fontes, M. P. F., and P. C. Gomes. 2003. Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils. Appli. Geochem. 28: 795-804. Forbes, E. A., A. M. Posner, and J. P. Quirk. 1976. The specific adsorption of divalent Cd, Co, Cu, Pb, and Zn on goethite. J. Soil Sci. 27:154-166. Fox, T. R., and N. B. Comerfield. 1990. Low molecular weight organic acid in selected forest soils of the south-eastern USA. Soil Sci. Soc. Am. J. 54:1763-1767. Gao, S., W. J. Walker, R. A. Dahlgren, and J. Bold. 1997. Simultreaed with sewage sludge supernatant. Water Air, Soil Pollut. 93: 331-345. Garau, G., P. Castaldi, L. Santona, P. Deiana, and P. Melis. 2007. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable feterotropnic microbial populations and enzyme activities in a contaminated soil. Geoderma. 142: 47-57. Garcia-Miragaya, J. and A. L. Page. 1976.Influence of ionic strength and inorganic complex formation on the sorption of trace amounts of Cd by montmorillonite. Soil Sci. Am. J. 40: 658-663. Garrido, F., V. Illera,C. Vizcayno, and M. T. García-González. 2003. Evaluation of industrial by-products as soil acidity amendments: chemical and mineralogical implications. Eur. J. Soil Sci. 54:411-422. Gee, G. W., and J. W. Bauder. 1986. Particle size analysis. In A. Klute et al., (ed) Methods of soil analysis. Part I 2nd edtion Agronomy. P.404-408. ASA. Madison. WI. Gramss, G., K. D. Voigt, and H. Bergmann. 2004. Plant availavility and leaching of (heavy) metals from ammonium-, calcium-. Carbohydrate-, and citric acid-treated uranium-mine-dump soil. J. Plant Nutr. Soil Sci. 167: 417-427. Gregor, J. E., and H. K. J. Powell. 1988. Application of sampled-d. c. anodic stripping voltammetry to metal/fulvic acid equilibria. Anal. Chim. Acta. 211: 141-154. Harter, R. D. 1983. Effect of soil pH on adsorption of lead copper zinc, and nickel. Soil Sci. Soc. Am. J. 47: 47-51. Hayashi, T., T. Kida, M. Nanzy, T. Takahashi, M. Honna, Y. Aikawa and K. Yoshihara. 2007. Persistence of CaCl2 washing effect for amelioration of Cd-contaminated paddy field soil. Soil Sci. Plant Nutr. 53:720-728. Herwijnen,R.,T. R. Hutchings ,A. Al-Tabbaa and A. J. Moffat. 2007. Remediation of metal contaminated soil with mineral-amended composts. Environ. Pollut. 150:347-354. Hickey, M. G., and Kittrick, J. A. 1984. Chemical partiioning of cadmium, copper, nickel and zinc in soils and sediments containing high levels of heavy metals. J. Environ. Qual. 13:372-376. Hodson, M. E., E. Valsami-Jones, and J. D. Cotter-Howells. 2000. Bonemeal addition as a remediation treatment for metal contaminated soil. Environ. Sci. Tech. 34: 3501-3507. Hue, N.V., G. R. Graddock, and F. Adams. 1986. Effect of organic acids on aluminum toxicity in subsoil. Soil Sci. Soc. Am. J. 50:28-34. Hue, N. V., and I. Amien. 1989. Aluminum detoxification with green manures. Commum. Soil Sci. Plant Anal. 20 : 1499-1511. Hue, N. V., and D. L. Licudine. 1999. Amelioration of subsoil acidity through surface application of organic manures. J. Environ. Qual. 28:623-632. Illera, V. F. Garrido, S, Serrano, and M. T. Gracía-González. 2004. Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and lime-rich industrial by products. Eur. J. Soil Sci. 55: 135-145. Impellitteri, C. A., Y. Lu, J. K. Saxe, H. E. Allen, and W. J. G. M. Peijnenburg. 2002. Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 dutch soils. Environ. Intern. 28: 401-410. Inaba, S., and C. Takenaka. 2005. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts. Environ. Intern. 31: 603-608. Iyamuremye, F., and R. P. Dick. 1996. Organic amendments and phosphorus sorption by soils. Adv. Agron. 56:139-185. Iyengar, S. S., D. C. Martens, and W. P. Miller.1981. Distribution and plant availavility of soil fractions. Soil Sci. Soc. Am. J. 45: 735-739. Johannes, A. H., E. R. Altwicker and N. L. Clesceri. 1985. The integrated lake-watershed acidification study : atmospheric inputs. Water, Air and Soil Pollut. 26:339. Johnson, D.W., D. W. Cole, H. Van Miegroet, and F. W. Horng. 1986. Factors affecting anion movement and retention in four forest soils. Soil Sci. Soc. Am. J. 50:776-783. Jones, D. L., V. B. Willett. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry. 38:991-999. Jung. H. B., S. T. Yun, B. Mayer, S. O. Kim, S. S. Park, and P. K. Lee. 2005. Transport and sediment-water partitioning of trace metals in acid mine drainage: an example from the abandoned Kwangyang Au-Ag mine area, South Korea. Environ. Geol. 48:437-449. Kaasalainen, M. and M. Yli-Halla. 2003. Use of sequential extraction to assess metal portioning in soils. Environ. Pollut. 126:225-233. Kabala, C., and B. R. Singh. 2001. Fraction and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J. Environ. Qual. 30: 485-492. Kabata-Pendias,A. 2000. Rrace elements in soils and plants. CRC Press, Bocan Raton, FL. Khan, M. J., and D. L. Jones. 2008. Chemical and organic immobilization treatments for reducing phytoavailability of heavy metals in copper-mine tailings. J. Plant Nutr. Soil Sci. 171: 908-916. Khan, M. J., and D. L. Jones. 2009. Effect of composts, lime and diammonium phosphate on the phytoavailavility of heavy metals in a copper mine tailing soil. Soil Sci. Soc. China. 19:631-641. Kaschl, A.,V. Römheld, and Y. Chen. 2002. The influence of soluble organic matter from municipal solid waste compost on trace metal leaching in calcareous soils. Sci. Total Environ. 291:45-51. Kashem, M. A., B. R. Singh and S. Kawai. 2007. Mobility and distribution of cadmium, nickel and zinc in contaminated soil profiles from Bangladesh. Nutr. Cycl. Agroecosyst. 77:187–198. Kundsen, O. G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. In A. L. Page(ed) Methods of soil analysis. Part II. 2nd edtion. Agronomy. P. 225-246. ASA. SSA. Madison, WI. Lee, S. H., J. S. Lee, Y. J. Choi, and J. G. Kim. 2009. In sity stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere. 77: 1096-1075. Liu, J., and N. V. Hue. 1996. Amelioration subsoil acidity by surface application of calcium fulvates derived from common organic materials. Biol. Fertil. Soils. 21: 264-270. Lopez-Pamo, E., D. Barettino, C. Anton-Pacheco, G. Ortiz, and O. Montouto. 1999. The extent of the Aznalcóllar pyritic sludge spill and its effects on soils. Sci Total Environ. 242: 57-88. Ma, Y. B., and N. C. Uren. 1998. Transformations of heavy metals added to soil-application of a new sequential extraction procedure. Geoderma. 84: 157-168. Ma, Y., E. Lombi, A. L. Nolan, and M. J. McLaughlin. 2006. Short-term natural attenuation of copper in soils: effects of time, temperature and soil characteristics. Environ. Toxi. Chem. 25: 652-658. Madrid, L., and E. Díaz-Barrientos. 1998. Release of metals from homogeneous soil columns by waste water from an agricultural industry. Environ. Pollut. 101: 43-48. Maftoun, M., F. Rassooli, A. Z. Negad, and N. Karinian. 2004. Cadmium sorption behavior in some highly calcareous soils of Iran. Commun. Soil Sci. Plant Anal. 35:1271-1282. Maurício, P. F. F.,and P. C. Gomes. 2003. Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils. Appl. Geochem. 18: 795-804. McBride, M. B. 1989. Reactions controlling heavy metals solubility in soils. Adv. Soil Sci. 10: 1-56. McBride, M. B. 1994. Chemisorption and precipitation of inorganic ions. In M. B. Bride(ed) Environmental chemistry of soils. P121-168. Oxford university press, Inc. McBride, M. B. 1994. Soil acidity. In M. B. Bride(ed) Environmental chemistry of soils. P1169-206. Oxford university press, Inc. McColl J. G. and A. A. Pohlman. 1986. Soluble organic acids and their chelating influence on Al and other metal dissolution from forest soils. Water, Air and Soil Pollu. 31:917-928. McGrath, S. P., and J. Cegrra. 1992. Chemical extractability of heavy metals during and after long-term applications of sewage to soil. J. Soil Sci. 43: 313-321. McLearn, R. G., and D. V. Crawford. 1973. Studies on soil copper. J. Soil Sci. 24:1973. McLaughlin, M. J., K. G. Tiller, R. Naidu, and D. P. Stevens. 1996. Review: the behaviour and environmental impact of contaminants in fertilizers. Aust. J. Soil Res. 34: 1-54. Mengel, K. 1994. Symbiotic dinitrogen fixation-its dependence on plant nutrition and its ecophysiological impact. Z. Pflanzenernähr. Bodenk. 157, 233-241. Mengel, K., and E. A. Kirkby.2001. Principles of plant nutrition.Kluwer Academic Publishers.P599-611. Miller, J. R., K. A. Hudson-Edwards, P. J. Lechler, D. Preston., M. G. Macklin. 2004. Heavy metal contamination of water, soil and produce within riverine communities of the Rio Pilcomayo basin, Bolivia. Soil Sci. 10: 1-56. Miller, W. P., W. W. McFee, and J. M. Kelly. 1983. Mobility and retention of heavy metals in sandy soils. J. Environ. Qual. 12: 579-584. Miller, W., D. C. Martens, and L. W. Zelazny. 1986. Effect of sequence in extraction of trace metals from soils. Soil Sci. Soc. Am. J. 50: 598-601. Murphy, J., and J. D. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta. 27:31-36. Nelson, D. W., and L. E. So,,ers. 1982. Total carbon, organic carbon, and organic matter.In A. L. Page(ed.) Methods of soil analysis.Part II. 2nd edtion Agronomy. P. 539-579. ASA. Madison. WI. Narwal, R. P., and B. R. Singh. 1998. Effect of organic materials on partitioning extractability and plant uptake of metals in an alum shale soil. Water, Air, and Soil Pollution. 103:405-421. Nwachukwu, O. I., and I. D. Pulford. 2008. Comparative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copper- and zinc-contaminated soil. British society of soil science, soil use and management. P1-P9. Oliveira, F. C., M. E. Mattiazzao, C. R. Marciano, and J. C. Abreu. 2002. Movement of heavy metal in an oxisol fertilized with municipal soil waste compost.Pesquisa Agropecuaria Brusileira. 37:1787-1793. Onyatta, J. O. and P. M. Huang. 2003. Kinetics of cadmium release from selected tropical soils from Kenya by low-molecular-weight organic acids. Soil science.168:234-252. Onyatta, J. O., P. M. Huang. 2006. Distribution of applied cadmium in different size fractions of soils after incubation. Biol. Fertil. Soils. 42:432-436. Pardo, M. T. 2004. Cadmium sorption-desorption by soils in the absence and presence of phosphate. Commun. Soil Sci. Plant Anal. 35:1553-1568. Paulo ,C. G. ,Mauricio P. F. F. ,Aderbal G da Silva ,Eduardo de S. M. ,and André R. Netto . 2001 .Selectivity sequence and competitive adsorption of heavy metals by Brazillian soils. Soil sci. soc. Am. J. 65:1115-1121. Prokop, Z., P. Cupr,Z. V. Zlevorova, J. Komarek, L. Duesk, and I. Holoubek. 2003. Mobility, bioavailability, and toxic effects of cadmium in soil samples. Environ. Research. 91:119-126. Ramos, L., L. M. Hernandez., and M. Singh. 1988. Distribution and forms of copper, iron, manganese, and zinc in soils of India. Soil Sci. 146: 359-366. Rechcigl, J. E., P. Mislevy, and A. K. Alva. 1993. Influence of limestone and phosphogypsum on Bahiagrass growth and development. Soil Sci. Soc. Am J. 57:96-102. Renella, G., P. Adamo, M. R. Bianco, L. Landi, P. Violante, and P. Nannipieri. 2004. Availability and speciation of cadmium added to a calcareous soil under various managements. J. Soil Sci. 55:123-133. Ross, S. M. 1994. Toxic Metals on Soil-Plant systems. John Wiley & Sons . Salbu, .B., T. Krekling, and D. H. Oughton. 1998. Characterisation of radioactive particles in environment. Analyst. 123: 843-849. Satarug, S., J. R. Baker, S. Urbenapol, M. Haswell-Elkins, P. E. B. Reilly, D. J. Williams, and M. R. Moore. 2003.A global perspective on Cd pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 137:65-83. Schmitt, H. W., and H. Sticher. 1986. Long- term trend analysis of heavy metal content and translocation in soils. Geoderma. 38: 195-207. Schramel, O., B. Michalke, and A. Kettrup. 2000. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. Sci. Total Environ. 263: 11-22. Singh, B. R. 1997. Soil pollution and contamination.p. 279-299. In R. Lal(ed.) Methods for assessment of soil degradation. CRC Press, Boca Raton, FL. Smith, C. J., K. M. Goh, W. J. Bond, and J. R. Freney. 1995. Effects of organic and inorganic calcium compounds on soil-solution pH and aluminum concentration. Eur. J. Soil Sci. 46: 53-63. Stevenson, F. J. 1994. Humus chemistry genesis composition and reactions. John Wiley & Sons. Inc., New York. Strobel, B. W., O. K. Borggard, H. C. Hansen, M. K. Andersen and Raulund-Rasmussen. 2005. Dissolved organic carbon and decreasing pH mobilize cadmim and copper in soil. Eur. J. Soil Sci. 56:189-196. Suuman, L. M. 1990. Comparison of exchangeable aluminum, extractable aluminum, and aluminum in soil fractions. Can. J. Soil Sci. 70: 263-267. Shuman, L.M. 1999.Effect of organic waste amendments on zinc adsorption by two soils. Soil Sci. 164: 197-205. Tabak, H. H., R. Scharp, J. Burcklel, F. K. Kawahara, and R. Govind. 2003. Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation. 14: 423-436. Tessier, A., P. G. C. Campbell and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. chem. 51: 844-851. Tye, A. M., S. D. Young, N. M. J. Crout, H. Zhang, S. Preston, and V. L. Barbosa-Jefferson. 2003. Predicting the activity of Cd2+ and Zn2+ in soil pore water from the radio-labile metal fraction. Geochim. Cosmochim. Acta. 67: 375-385. Udom, B. E., J. S. C. Mbagwu, J. K. Adesodun, and N. N. Agbim. 2004. Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge. Environ. Intern. 30: 467-470. USEPA. 1996. Microwave assisted acid digestion of siliceous and organically based matrices. Method 3052. USEPA. 1 997. Innovative site remediation technology. EPA 542-B-97-007. Usman, A. R. A.,Y. Kuzyakov, and K. Stahr. 2004. Dynamics of organic C mineralization and the mobile fraction of heavy metals in a calcareous soil incubated with organic wastes. Water, air, and soil pollu. 158: 401-418. Vaca-Paulín, R., M. V. Esteller-Alberich, J. Lugo-de la Fuente, H. A. Zavaleta-Mancera. 2006. Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil. Waste Manage. 26: 71-81. Welp, G., and G. W. Brümmer. Adsorption and solubility of ten metals in soil samples of different composition. J. Plant Nutr. Soil Sci. 162: 155-161. Wilcke, W.. 2000. Small-scale variability of metal concentrations in soil leachates. Soil Sci. Soc. Am. J. 64:138-143. Wuddivira, M. N., and G. Camps-Roach. 2007. Effects of organic matter and calcium on soil structural stability. Eur. J. Soil Sci. 58: 722-727. Yu, G., U. K. Saha, L. M. Lozak, and P. M. Huang. 2006. Kinetics of cadmium adsorption on aluminum precipitation products formed under the influence of tannate. Geochim. Cosmochim. Acta. 70: 5134-5145.
摘要: The mobility and bioavailability of heavy metals in strongly acidic soil (pH < 5.5) are relatively higher. The application of some organic or calcareous materials could be used as soil amendments to ameliorate the polluted strongly acid soil with heavy metals, however, the effects were determined by the characteristic of these amendments. The purposes of this study were to investigate the change of the bioavailability and the mobility of copper and cadmium in contaminated strongly acidic soil applied with different organic and inorganic calcareous materials, and to evaluate their effects of amelioration. Two organic materials (peat and composted animal manure) and four calcareous containing inorganic materials (calcium carbonate, calcium sulfate, calcium dihydrogenphosphate, and calcium dichloride) were used in this study. The organic materials was added at the rate of 20 ton ha-1 by weight, and the amount of each inorganic amendments was conducted to provide the same amount of calcium as calcium carbonate used to adjust soil to pH 6.0. The amendments was incubated with artificially contaminated strongly acidic soil containing 200 mg kg-1 Cu and 5 mg kg-1 Cd at 25C and -33 kPa water potential. The changes of the bioavailability index (0.1N HCl extractable) and the activity (exchangeable + carbonate bound) Cu and Cd after different amendments added were determined. Results shown that the application of calcium carbonate and composted animal manure decreased both the bioavailability index and the activities fraction of Cu and Cd, and dihydrogenphosphate application only decreased the activities of Cd, but did not significantly decrease the bioavailability index of Cu. Calcium sulfate and calcium dichloride application did not decrease the bioavailability index and the activities of both metals in the soil, furthermore, a increasing effect were found. A 90-day leaching experiment was conducted to study the mobility of Cu and Cd in strongly acidic soil affected by the amendments added. No significant effect was found on the mobility of Cu in the soil, except the treatment with calcium sulfate that more Cu was found to move down to 15 cm, while the concentration of Cu in leachates was too low to pollute grownwater. The application of calcium carbonate and composted animal manure caused more significantly reduction of total 0.1N HCl extractable Cu within soil profile. Calcium sulfide and calcium dichloride application increased the movement of Cd in soil profile, especially in calcium dichloride treatment. Overall results indicated the application of calcium carbonate and composted animal manure had higher ability to reduce the bioavailability and the mobility of Cu and Cd in the soil, however, calcium dichloride was not suitable to be used to ameliorate strongly acidic soil contaminated with Cu and Cd.
重金屬在強酸性土壤(pH < 5.5)中之移動性以及生物有效性相對較高。有些有機質材或含鈣的石灰資材之施用,可降低重金屬污染之強酸性表土的重金屬有效性及其移動性。唯其效應受改良資材的成分特性影響。本試驗乃探討在銅和鎘污染之強酸性土壤中,施用不同有機及無機含鈣改良資材後,對銅和鎘在剖面之有效性和移動性的影響,以評估其改良效果。 試驗選用兩種有機資材(泥炭及禽畜糞堆肥)及四種無機含鈣資材(碳酸鈣、硫酸鈣、磷酸二氫鈣及氯化鈣)作為改良劑。有機資材以20 ton ha-1施用,而無機含鈣資材用量則以提供相當於以碳酸鈣培育至土壤為pH 6.0之相同鈣量為基準。將改良劑施用於含200 mg kg-1銅與5 mg kg-1鎘之強酸性土壤中,於-33 kPa水勢及25˚C下進行培育試驗,以探討不同改良劑的添加對銅和鎘之生物有效性指標(0.1N HCl可萃出性)及活性(可交換態及碳酸鹽鍵結態)。結果顯示,禽畜糞堆肥及碳酸鈣的施用,可同時降低強酸性土壤中銅和鎘的有效性指標及其活性,而磷酸二氫鈣的施用可降低鎘的活性,但對於銅的有效性指標並無顯著降低效果,氯化鈣及硫酸鈣的施用並未具降低銅和鎘的有效性及活性的效應,且反而會使活性較高的銅和鎘型態含量上升。 90天的管柱淋洗試驗亦被用來評估改良資材施用後,對土壤中銅和鎘的移動性。結果顯示,資材的施用對銅的移動性改變較不明顯,僅施用硫酸鈣的處理有相對較多的銅移動至15 cm處,而淋出液中的銅含量甚低而不至於造成地下水污染。碳酸鈣和禽畜糞堆肥之施用對降低土壤剖面中總鹽酸可萃出性銅含量的效果較顯著。硫酸鈣和氯化鈣的施用則會提高鎘的移動性,尤其是氯化鈣處理者的鎘易被洗至淋出液中。綜合上述的結果,以碳酸鈣和禽畜糞堆肥的施用較能達到同時降低土壤中銅和鎘活性及移動性的效果,而氯化鈣則不適用於銅和鎘污染的強酸性土壤改良。
URI: http://hdl.handle.net/11455/28263
其他識別: U0005-1908201021182200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201021182200
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.