Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28283
標題: Establishing DFT-based quantitative structure-property relationships for organic acid-metal ion complexation and acid dissociation of aliphatic organic acids
在密度泛函理論基礎下建立脂肪族有機酸與金屬離子錯合及其酸解離反應之定量結構特性關係
作者: 黃昆鈴
Huang, Kun-Ling
關鍵字: organic acid
有機酸
complexation
錯合反應
出版社: 土壤環境科學系所
引用: 王明光(譯)。2003。土壤物理化學。藝軒圖書出版社。(Donald L. Sparks, 1998) 。 林泰宏。2007。建立金屬離子在水溶液中與礦物表面上化學反應性之線性自由能關係。 土壤環境科學研究所。 張瓊文。2009。以密度泛函理論為基礎建立預測有機污染物混合毒性之定量結構活性關係。土壤環境科學研究所。 陳正昌、程炳林、陳新豐、劉子鍵 (2003),多變量分析方法: 統計軟體運用,五南圖書出版股份有限公司,台北市。 Alina, K. P.1995. Agricultural problems related to excessive trace metal contents of soils. In: W. Salmons, U. Förstner and P. Madder, Editors, Heavy Metals: Problems and Solutions, Springer. Baath, E. 1989. Effects of heavy metals in soil on microbial processes and population. Water Air Soil Pollut. 47: 335-379. Barrow, N. J., 1985. Reactions of anions and cations with variable charge soils. Adv. Agron. 38: 183-230. Benjamin, M. M., and Leckie, J. O., 1981. Conceptual model for metal-ligand-surface interactions during adsorption. Environ. Sci. Technol. 15: 1050-1057. Benyahya, L., J. M. Garnier, 1999. Effect of salicyclic acid upon trace-metal sorption (Cd, Zn, Co and Mn) onto alumina, silica, and kaolinite as a function of pH. Environ. Sci. Technol. 33: 1398-1407. Bourg, A. C. M. 1988. Metals in aquatic and terrestrial systems: sorption, speciation, and mobilization. In: Salomons, W., U. Forstner. Chemistry and Biology of Solid Wastes. Dredged Material and Mine Tailings, Springer-Verlag, Berlin, pp 3-32. Bourg, A. C. M. 1995. Speciation of heavy metals in soils and groundwater and implications for their natural and provoked mobility. In: W. Salmons, U. Förstner and P. Madder, Editors, Heavy Metals: Problems and Solutions, Springer. Bradl, H. B., 2004. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid. Interface Sci. 277: 1-18. Bruckert, S., F. Toutain, J. Tchicaya, and F. Jacquin, 1971. Influence of throughfall water under beech and pine on humification process. Oecol. Plant. 6: 329-337. Burckhard, S. R., A. P. Schwab, and M. K. Banks. 1995. The effects of organic acids on the leaching of heavy metals from mine tailings. J. Hazard. Mater. 41: 135-145. Chairidchai, P., G. S. P. Ritchie, 1990. Zinc adsorption by a lateritic soil in the presence of organic ligands. Soil Sci. Soc. Am. J. 54: 1242-1248. Campbell, P. G. C., and A. Tessier. 1987. Current status of metal speciation studies. In: Patterson, J. W., R. Passino. Metals speciation, separation, and recovery, lewis publ, Chelsea, Michigan, pp 201-224. Carbonaro, R. F.and D. M.D. Toro. 2007. Linear free energy relationships for metal-ligand complexation:monodentate binding to negatively-charged oxygen donor atoms. Geochem. Cosmochim. Acta.71:3958-3968. Chen,Y. X., Q. Lin, Y. M. Luo, S. J. Zhen, and M. H. Wong, 2003. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere. 50: 807-811. Covelo, E. F., M. L. Andrade, and F. A. Vega, 2004. Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics. J. Colloid Interface Sci. 280: 1-8. Daniele, P. G., C. Foti, A. Gianguzza, E. Prenesti and S. Sammartano. 2008. Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. 252: 1093-1107. David, A. V., P. F. Strom, and J. E. Alleman. 2006. Environmental biology for engineers and scientists. John Wiley & Sons, Inc. Davis, J. A., and J. O. Leckie, 1978. Effect of adsorption complexing kigands on trace metal uptake by hydrous oxides. Environ. Sci. Technol. 12: 1309-1315. Elliott, H. A., M. R. Liberati, C. P. Huang, 1986 Competitive adsorption of heavy metals by soil. J. Environ. Qual. 15: 214-219. Evangelou, M. W. H., M. Ebel and A. Schaeffer. 2007. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere. 68: 989-1003. Forstner, U. 1987. Changes in metal mobilities in aquatic pollutants in aquatic systems. J. Hydraul. Eng. 113:430-475. Hohenberg, P. and W. Kohn. 1964. Inhomogeneous electron gas. Phys. Rev. 136: B864-B871. Huang, P. M., and J. Bethelin. 1995. Environmental impact of soil component interaction. Metals, other inorganics and microbial activities. CRC Press, Florida, pp. 376-384. Huang, Q. Y., Z. H. Zhao, W. L. Chen. 2003. Effect of several low-molecular weight organic acids and phosphate on the adsorption of acid phosphatase by soil colloids and minerals. Chemosphere. 52: 571-579. Iczkowsksi, R. P. and J. L. Margrave. 1961. Electronegativity. J. Am. Chem. Soc. 83: 3547-3551. Jones, D. L., P.G. Dennis, A. G. Owen, and P. A. W. van Hees, 2003. Organic acid behavior in soils-misconceptions and knowledge gaps. Plant Soil. 248: 31-41. Jones, D. L., 2004 Organic acids in the rhizosphere-acritical review. Plant Soil. 205: 25-44. Jorge, R. A., and P. Arruda. 1997. Aluminum-induced organic acids exudation by roots of an aluminum-tolerant tropical maize. Phytochemistry. 45: 675-681. Jover, J., B.Ramón, and S.Joaquim. 2009. Quantitative structure-property relationship estimation of cation binding affinity of the common amino acids. J. Phys. Chem. A. 113: 3703-3708. Jung, C., V. Maeder, F. Funk, B. Frey, H. Sticher, and E. Frossard, 2003. Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant Soil. 252: 301-312. Koopmans, T. 1934. Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1(1-6): 104-113. Kuo, S., B. L. McNeal, 1984. Effect of pH and phosphate on cadmium sorption by hydrous ferric oxide. Soil Sci. Soc. Am. J. 48: 1040-1044. Krishnamurti, G. S. R., G. Cielinski,P. M. Huang and K. C. J. vanRees. 1998. Kinetics of cadmium release from soils as influenced by organic acids: implementation in cadmium availability. J. Environ. Qual. 26: 271-277. Lasat, M.M., 2002. Phytoextraction of toxic metals: a review of biological mechanism. J. Environ Qual. 31: 109-120. Lee, J., R. D. Reeves, R. R. Brooks and T. Jaffre. 1997. Isolation and identification of a citrate-complex of nickel from nickel-accumulating plants. Phytochemistry. 16: 1502-1505. Li, J.Y., R.K. Xu, D.K. Tiwari, and G.L. Ji. 2006. Effect of low-molecular-weight organic acids on the distribution of mobilized Al between soil solution and solid phase. Appl. Geochem. 21:1750-1759. Liao, M.,X. M. Xie, 2004. Cadmium relase in contaminated soils due to organic acids. Pedosphere. 14: 223-228. Manley, E.P., L. J. Evans, 1986. Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids. Soil Sci. 141: 106-112. Marino T., M. Toscano., N. Russo and A. Grand. 2006. Structural and electronic characterization of the complexes obtained by the interaction between bare and hydrated first-row transition-metal ions(Mn2+,Fe2+,Co2+,Ni2+,Cu2+,Zn2+) and glycine. J. Phys. Chem. B. 110:2466-24673. Marschner, B., U. Henke and G. Wessolek. 1995. Effect of ameliorative additives on the adsorption and binding forms of heavy-metals in a contaminated topsoil from a former sewage farm. Z. Pflanz. Bodenkunde. 158: 9-14. Martell, A. E., R. M. Smith, 1977. Critical Stability Constants, vol.3. Plenum Press, New York. Mcbride, M. B., and J. J. Blasiak, 1979. Heavy metals in soils. John Wiley, New York, pp. 261-272. McLean, J. E., B. E. Bledsoe, 1992. Behavior of metals in soils. EPA Groundwater Issue, EPA/540/S-92/018. US EPA, Washington, DC. Morgan, J. J. 1987. General affinity concepts, equilibria and kinetics in aqueous metals chemistry. In: Patterson, J. W., R. Passino. Metals speciation, separation, and recovery, lewis publ, Chelsea, Michigan, pp 27-61. Novotny, V. 1995. Diffuse sources of pollution by toxic metals and impact on receiving waters. In: W. Salmons, U. Förstner and P. Madder, Editors, Heavy Metals: Problems and Solutions, Springer. Nye, P. H. 1981. Changes of pH across the rhizosphere induced by roots. Plant soil. 61: 7-26. Parr, R. G., R. A. Donnelly, M. Levy, and W. E. Palke. 1978. Electronegativity: The density functional viewpoint. J. Chem. Phys. 68(8): 3801-3807. Parr, R. G. and R. G. Pearson. 1983. Density functional theory for fractional particle number: Derivative discontinuities of the energy. J. Am. Chem. Soc. 105: 7512-7516. Pauling, L. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. 1932. J. Am. Chem. Soc. 54(9): 3570-3582. Pearson, R. G. 1963. Hard and soft acids and bases. J. Am. Chem. Soc. 85(22): 3533-3539. Pearson, R. G. 2005. Chemical hardness and density functional theory. J. Chem. Sci. 117(5): 369-377. Qin, F., X. Q. Shan, B. Wei. 2004. Effect of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere. 57:253-263. Robert, M., J. Berthelin, 1986. Role of biological and biochemical factors in soil mineral weathering. In: Huang, P.M., M. Schnitzer (Eds), Interaction of soil minerals with natural organics and microbes. Soil Science Society of America, Madison, WI, pp. 453-495. Schmidt, U.,2003. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual. 32: 1939-1954. Schwab, A. P., M. K. Banks, 1993. The impacts of vegetation on the leaching of heavys from mine tailings: solubilization of zinc by organic acids. In: Proc. AWMA, Denver, CO, Paper 93-WA-89.06. Schwab, A.P., Y. He, and M.K. Banks. 2005. The influence of organic ligands on the retention of lead in soil. Chemosphere. 61:856-866. Schwab, A.P., D.S. Zhu, and M.K. Banks. 2008. Influence of organic acids on the transport of heavy metals in soil. Chemosphere. 72:986-994. Schwab, A.P., Y. He, and M.K. Banks.2004. Influence of citrate on adsorption of zinc in soils. J. Environ. Eng. 130:1180-1187. Shuman, L. M., 1999. Organic waste amendments effect on zinc fractions of two soils. J. Environ. Qual. 28: 1442-1447. Song, F. Q., G. T. Yang, F. R. Tian, X. J. And A. R. Dong. 2004. The rhizospheric niche of seedlings of Populus ussruiensis colonized by arbuscular mycorrhizal(AM) fungi. Ecology and Environment(in Chinese). 13: 211-216. Sposito, G., 1989. The Chemistry of soils. Oxford Press, London, p. 42. Stahl, R. S., B. R. James, 1991. Zinc sorption by B horizon soils as a function of pH. Soil Sci. Soc. Am. J. 55: 1592-1597. Stevenson, F. J., 1967. Organic acids in soils. In: McLarcel Dekker, New York, 99. 119-146. Stevenson, F. J. 1994. Humus Chemistry. Genesis, Composition, reactions, second ed. John Wiley & Sons Inc., New York. Sutton, R. and G. Sposito. 2005. Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 39: 9009-9015. Tan, K. H. 1986. Degradation of soil minerals by organic acids. In: Huang, P. M., M. Schnizer(Eds), M., Interaction of soil minerals with natural organics and microbes, SSSA Spec. Pub. No. 17. Soil Science Society of America, Madison, WI, pp. 1-27. Tao, S., Y. J. Chen, F. L. Xu, J. Cao and B. G. Li. 2003. Cghanges of copper speciation in maize rhizosphere soil. Environ. Pollut. 122: 447-454. Wu, L. H., Y. M. Luo, P. Christie, and M. H. Wong, 2003. Effects of EDTA and low molecular weight organic acids on soil solution properties of heavy metal polluted soil. Chemosphere. 50: 819-822. Yang, J. Y., X. E. Yang, Z. L. He, T. Q. Li, J. L. Shentu and P. J. Stoffella. 2006. Effects of pH, organic acid, and inorganic ions on lead desorption from soils. Environ. Pollut. 143: 9-15. Yuan, S.h., Z.M. Xi, Y. Jiang, J.H. Wan, C. Wu, Z.H. Zheng, and X.H. Lu. 2007. Desorption of copper and cadmium from soils enhanced by organic acids. Chemosphere. 68:1289-1297. Zaccheo, P., M. Cocucci and S. Cocucci. 1985. Effect of Cr on proton extrusion, potassium uptake and transmembrane electric potential in maize root segments. Plant, Cell and Environment. 8: 721-726. Zeng, F. R., S. Chen, Y. Miao, F. B. Wu and G. P. Zhang. 2008. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress. Environ. Pollut. 155: 284-289.
摘要: 有機酸對植物以及土壤中的生物扮演重要的角色,不僅影響土壤的pH、金屬的移動性、養分有效性以及物質的毒性並且改善土壤品質,提升土壤有益菌的生長。有機酸的錯合反應便是主要影響這些因子的機制。本研究以密度泛涵理論(DFT)為基礎,結合軟硬酸鹼理論為研究方法。研究結果顯示,有機酸與水合金屬離子錯合預測結果-以單參數考量時,依序是最大帶電荷之原子、總表面積、極性表面積、非極性表面積、化學勢、局域軟度為主要的影響參數,而根據t-value檢驗各參數的重要性,貢獻最大的參數為最大帶電荷之原子,得知錯合反應中,金屬離子之電荷與有機陰離子之電荷為主要影響因子,其次是極性表面積,則為發生錯合反應部位。有機酸與酸解離常數之迴歸預測結果,顯示出重要參數為化學勢與極性表面積,而化學勢為電負度的負號,表示電子流動趨勢,代表反應發生趨勢,有機酸之酸解離反應發生為氫原子與有機離子進行斷鍵,使電子由電負度小的氫原子流向電負度大的氧原子,此時的電子流動參數佔有很重要的決定因子,而極性表面積也與酸解離有重要的相關性,由於極性表面積亦為酸解離的部位。
URI: http://hdl.handle.net/11455/28283
其他識別: U0005-2307201015451500
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.