Please use this identifier to cite or link to this item:
標題: 應用製味素廢水與製紙廢水於農業生產與碳吸存
Exploitation of organic-rich waste resources from monosodium glutamate and paper-mill industries for agricultural production and C-sequestration
作者: 辛士南
Singh, Satnam
關鍵字: 碳吸存
carbon sequestration
monosodium glutamate wastewater
paper-mill wastewater, Azospirillum growth medium, soil organic carbon(SOC)
出版社: 土壤環境科學系所
引用: Al-Lahham, O., N.M. El-Assi, and M. Fayyad. 2007. Translocation of heavy metals to tomato (Solanum lycopersicom L.) fruit irrigated with treated wastewater. Sci. Hortic. 113:250-254. Anderson, I.C., D.R. Buxton, D.L. Karlen, and C. Cambardella. 1997. Cropping system effects on nitrogen removal, soil nitrogen, aggregate stability and subsequent corn grain yield. Agron. J. 89:881-886. Anex, R.P., L.R. Lynd, M.S. Laser, A.H. Heggenstaller, and M. Liebman. 2007. Potential for enhanced nutrient cycling through coupling agricultural and bioenergy systems. Crop Sci. 47:1327-1335. APHA, 1998. Standard methods for the examination of water and wastewater. 20th Edition American Public Health Association, Washington DC. p. 824. Araji, A.A., Z.O. Abodo, and P. Joyce. 2001. Efficient use of animal manure on cropland-economic analysis. Bioresour. Technol. 79:179-191. Aulakh, M.S., and N.S. Pasricha. 1977. Interaction effect of sulphur and phosphorus on growth and nutrient content of moong (Phaseolus aureus L.). Plant Soil 47:341-350. Bai, Y., P. Yang, Y. Wang, P. Shi, H. Luo, K. Meng, B. Wu, and B. Yao. 2009. Phytase production by fermentation of recombinant Pichia pastoris in monosodium glutamate wastewater. World J. Microbiol. Biotechnol. 25:1643-1649. Bai, Z.H., H. X. Zhang, H. Qi, X.W. Peng, and B.J. Li. 2004. Pectinase production by Apsergillus niger using wastewater in solid state fermentation for eliciting plant disease resistance. Bioresour. Technol. 95:49-52. Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 16:729-770. Bashan, Y. 1999. Interactions of Azospirillum spp. In soils: a review. Biol. Fertil. Soils 29:246-256. Bashan, Y., and H. Levanony. 1990. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can. J. Microbial. 36: 591-608. Bashan, Y., and L.E. de-Bashan. 2005. Bacteria/plant growth-promoting. In: Hillel D (Ed) Encyclopedia of soils in the environment vol. 1. Elsevier, Oxford, pp 103-115. Bashan, Y., and L.E. de-Bashan. 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth-A critical assessment. In Sparks D (Ed) Adv Agron 108. Academic Press, Burlington, UK, pp 77-136. Bashan, Y., and P. Vazquez. 2000. Effect of calcium carbonate, sand, and organic matter levels on mortality of five species of Azospirillum in natural and artificial bulk soils. Biol. Fertil. Soils 30:450-459. Bashan, Y., G. Holguin, and L.E. de-Bashan. 2004. Azospirillum-plant relationship: physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol. 50:521-577. Ben Rebah, F., D. Prevost, D. Yezza, and R.D. Tyagi. 2007. Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: A review. Bioresour. Technol. 98:3535-3546. Ben-Dor, E, and A. Banin. 1989. Determination of organic matter content in arid-zone soils using a simple loss-on-ignition method. Commun. Soil Sci. Plant Anal. 20:1675-1695. Borken, W., Y.J. Xu, and F. Beese. 2004. Leaching of dissolved organic and carbon dioxide emission after compost application to six nutrient-depleted forest soils. J. Environ. Qual. 33:89-98. Bremner, J.M. 1996. Nitrogen total. p. 1085-1121. In D.L. Sparks (ed.) Methods of Soil Analysis, Part 3: Chemical methods. Soil Sci. Soc. Am. Inc., Madison, WI. Cabrera, M.L., D.E. Kissel, and M.F. Vigil. 2005. Nitrogen mineralization from organic residues: research opportunities. J. Environ. Qual. 34:75-79. Casteel, M.J., M.D. Sobsey, and J.P. Mueller. 2006. Fecal contamination of agricultural soils before and after hurricane-associated flooding in North Carolina. J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 41:173-184. Castro-Sowinski, S., Y. Herschkovitz, Y. Okon, and E. Jurkevitch. 2007. Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol. Lett. 276:1-11. Chen, B.M., Z.-H. Wang, S.-X. Li, G.-X. Wang, H.X. Song, and X.N. Wang. 2004. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science 167:635-643. Chen, Z.S., and D.Y. Lee. 1997b. Soil quality management in Taiwan rural soils after long-term application of organic composts. In: Proceedings of International Conference on soil quality Management and Agro-Ecosystem health for East and Southeast Asia. Korean Society of Soil Science and Fertilizer, Cheju Island, Korea, pp. 137-147. Chenel, J.P., R.D. Tyagi, and R.Y. Surampalli. 2008. Production of thermostable protease enzyme in wastewater sludge using thermophilic bacterial strains isolated from sludge. Water Sci. Technol. 57:639-645. Chtaini, A., A. Bellaloui, G. Ballivy, and S. Narasiah. 2001. Field investigation of controlling acid mine drainage using alkaline paper mill waste. Water Air Soil Pollut. 125:357-374. Curnoe, W.E., D.C. Irving, C.B. Dow, G. Velema, and A. Unc. 2006. Effect of spring application of a paper mill soil conditioner on corn yield. Agron. J. 98:423-429. del Amor, F.M., A. Serrano-Martinez, M.I. Fortea, P. Legua, and E. Nunez-Delicado. 2008. The effect of plant-associative bacteria (Azospirillum and Pantoea) on the fruit quality of sweet pepper under limited nitrogen supply. Sci. Hort. 117:191-196. Diaz-Zorita, M., and M.V. Fernandez-Canigia. 2009. Field performance of a liquid formulation of Azospirillum on dryland wheat productivity. Eur. J. Soil Biol. 45:3-11. Duiker, S.W., and R. Lal. 2000. Carbon budget study using CO2 flux measurements from a no till system in central Ohio. Soil Tillage Res. 54:21-30. Foley, B.J., and L.R. Cooperband. 2002. Paper mill residuals and compost effect on soil carbon and physical properties. J. Enviorn. Qual. 31:2086-2095. Gadagi, R.S., P.U. Krishnaraj, J.H. Kulkarni, and T. Sa. 2004. The effect of combined Azospirillum inoculation and nitrogen fertilizer on plant growth promotion and yield response of the blanket flower Gaillardia pulchella. Sci. Hort. 100:323-332. Gastal, F., and G. Lemaire. 2002. N uptake and distribution in crops: an agronomical and ecophysiological perspective. J. Exp. Bot. 53:789-799. Gea, T., A. Artola, and A. Sanchez. 2005. Composting of de-inking sludge from the recycled paper manufacturing industry. Bioresour. Technol. 96:1161-1167. Ghosh, P.K., A.K.K. Bhandopadhyay, M.C. Manna, K.G. Mandal, A.K. Misra,and K.M. Hati. 2004. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. II. Dry matter yield, nodulation, chlorophyll content and enzyme activity. Bioresour. Technol. 95:85-93. Heaton, E.A., R.B. Flavell, P.N. Mascia, S.R. Thomas, F.G. Dohleman, and S.P. Long. 2008. Herbaceous energy crop development: recent progress and future prospects. Curr. Opin. Biotechnol. 19:202-209. Heggenstaller, A.H., R.P. Anex, M. Liebman, D.N. Sundberg, and L.R. Gibson. 2008. Productivity and nutrient dynamics in bioenergy double-cropping systems. Agron. J. 100:1740-1748. IPCC, 2003. In Penman, J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, and F. Wagner. (ed.) Good practice guidelines for land use, land use change and forestry. Institute for Global Environmental Strategies, Japan. Jia, C., R. Kang, Y. Zhang, W. Cong, and Z. Cai. 2007a. Synergic treatment for monosodium glutamate wastewater by Sccharomyces cervisiae and Coriolus versicolor. Bioresour. Technol. 98:967-970. Jia, C., R. Kang, Y. Zhang, Y. Zhang, and W. Cong. 2007b. Degradation and decolorization of monosodium glutamate wastewater with Coriolus versicolor. Biodegradation 18:551-557. Johnson Jr. J.P., B.F. Carver, and V.C. Baligar. 1997. Productivity in great plains acid soils of wheat genotypes selected for aluminum tolerance. Plant Soil 188:101-106. Kargi, F., and S. Ozmıhcı. 2002. Improved biological treatment of nitrogen-deficient wastewater by incorporation of N2-fixing bacteria. Biotechnol. Lett. 24:1281-1284. Kennedy, I.R., A.T.M.A. Choudhury, and M.L. Kecskes. 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited?. Soil Biol. Biochem. 36:1229-1244. Kinoshita, S. 1985. Glutamic acid bacteria. In: Demain A.L., and N. A. Solomon, editors. Biology of Industrial Micro-organisms. London: Benjamin/Cummings. pp. 115-42. Kizilkaya, R., and B. Bayrakli. 2005. Effects of N-enriched sewage sludge on soil enzyme activities. Appl. Soil Ecol. 30:192-202. Kjeldahl, J. 1883. A new method for the determination of nitrogen in organic matter. Z. Anal. Chem. 22:366-382. Ladha, J.K., D. Dawe, T. S. Ventura, U. Singh, W. Ventura, and I. Watanabe. 2000. Long-term effects of urea and green manure on rice yields and nitrogen balance. Soil Sci. Soc. Am. J. 64:1993-2001. Lai, W.A., P.D. Rekha, A.B. Arun, and C.C. Young. 2008. Effect of mineral fertilizer, pig manure, and Azospirillum rugosum on growth and nutrient contents of Lactuca sativa L. Biol. Fertil. Soils 45:155-164. Lal, R. 2003. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit. Rev. Plant Sci. 22:151-184. Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304:1623-1627. Lin, C. 2008. A negative-pressure aeration system for composting food wastes. Bioresour. Technol. 99:7651-7656. Lin, C.C., A.B. Arun, P.D. Rekha, and C.C. Young. 2008. Application of wastewater from paper and food seasoning industries with green manure to increase soil organic carbon: A laboratory study. Bioresour. Technol. 99:6190-6197. Liu, R., Q. Zhou, L. Zhang, and H. Gao. 2007. Toxic effects of wastewater from various phases of monosodium glutamate production on seed germination and root elongation of crops. Front. Environ. Sci. Engin. China 1:114-119. Madejon, E., P. Burgos, R. Lopez, and F. Cabrera. 2003. Agriculture use of three organic residues: effect on orange production and on properties of a soil of the ‘Comarca Costa de Huelva' (SW Spain). Nutr. Cycl. Agroecosyst. 65:281-288. Mantelin, S., and B. Touraine. 2004. Plant growth-promoting bacteria and nitrate availability impacts on root development and nitrate uptake. J. Exp. Bot. 55:27-34. Marschner, P., J. Gerend, and B. Sattelmacher. 1999. Effect of N concentration and N source on root colonization by Pseudomonas fluorescens 2-79RLI. Plant Soil 215:135-141. Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2. Comm. Soil Sci. Plant Anal. 15:1409-1416. Mehnaz, S., and G. Lazarovits. 2006. Inoculation effects of Psudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbiol. Ecol. 51:326-335. Miller, R.O. 1998. Nitric-Perchloric acid wet digestion in an open vessel. p. 69-73. In Y.P. Kalra (ed.) Handbook of reference methods for plant analysis. CRC Press, LLC Boca Raton. Mondini, C., M.L. Cayuela, T. Sicicco, F. Cordaro, A. Roig, and M.A. Sanchez-Monedero. 2007. Greenhouse gas emissions and carbon sink capacity of amended soils evaluated under laboratory conditions. Soil Biol. Biochem. 39:1366-1374. Moser S. B., B. Feil, S. Jampatong, and P. Stamp. 2006. Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize. Agric. Water Manage. 41-58. Nelson, D.W., and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis, Part 2, 2nd ed., AL Page et al. (Ed.), Agronomy 9:961-1010. Nemerrow, N.L., and A. Dasgupta. 1991. Industrial and hazardous waste management. New York: Van Nostrand Reinhold. O'Brien, T.A., S. J. Herbert, and A.V. Barker. 2002. Growth of corn in varying mixtures of paper mill sludge and soil. Commun. Soil Sci. Plant Anal. 33:635-646. O'Brien, T.A., S.J. Herbert, and A.V. Barker. 2003. Paper Sludge as a Soil Amendment for Production of Corn. Commun. Soil Sci. Plant Anal. 34:2229-2241. Oğut, M., and F. Er. 2006. Micronutrient composition of field grown dry bean and wheat inoculated with Azospirillum and Trichoderma. J. Plant Nutr. Soil Sci. 169:699-703. Overland, M.A. 2008. Vietnam cracks down polluters. URL:,8599,1851331,00.html accessed on April 25, 2009. Patterson, S., D. Chanasyk, E. Mapfumo, and M. Naeth. 2008. Effects of diluted Kraft pulp mill effluent on hybrid poplar and soil chemical properties. Irrig. Sci. 26:547-560. Paustian, K., J. Six, E.T. Elliott, and H.W. Hunt, 2000. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48:147-163. Petersen, J. 2003. Nitrogen fertilizer replacement value of sewage sludge, composted household waste and farmyard manure. J. Agr. Sci.140:169-182. Phukan, S., and K.G. Bhattacharyya. 2003. Modification of soil quality near a pulp and paper mill. Water Air Soil Pollut. 146:319-333. Pokhrel, D., and T. Viraraghavan. 2004. Treatment of pulp and paper mill wastewater-a review. Sci. Total Environ. 333:37-58. Pollock, M.S., M.G. Dube, and R. Schryerz. 2010. Investigating the link between pulp mill effluent and endocrine distribution: Attempts to explain the presence of intersex fish in the Wabigoon River, Ontario, Canada. Environ. Toxicol. Chem. 29:952-965. Rhoades, J.D., and J. Loveday. 1990. Salinity in irrigated agriculture. p. 1089-1142. In B.A. Stewart and D.R. Nielsen (ed.) Irrigation of agricultural crops. Agron. Monogr. 30. ASA, CSSA, and SSSA, Madison, WI. Riley, W.J., I. Ortiz-Monasterio, and P.A. Matson. 2001. Nitrogen leaching and soil nitrate, nitrite and ammonium levels under irrigated wheat in northern Mexico. Nutr. Cycl. Agroecosyst. 61:223-236. Ros, M., M.T. Hernandez, and C. Garcia. 2003. Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol. Biochem. 35:463-469. Rose, G.D. 1999. Community-based technologies for domestic wastewater treatment and reuse: Options for urban agriculture, N.C. Division of Pollution Prevention and Environmental Assistance, CFP Report Series: Report 27. Roulet, N., and T.R. Moore. 2006. Browning the waters. Nature 444:283-284. Sadasivan, L., and C.A. Neyra. 1985. Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J. Bacteriol. 163:716-723. Sands, G. R., and T.H. Podmore. 2000. A generalized environmental sustainability index for agricultural systems. Agric. Ecosyst. Environ. 79:29-41. Sano, C. 2009. History of glutamate production. Am. J. Clin. Nutr. 90(suppl):728S-32S. Shepard, R. 2000. Nitrogen and phosphorous management on Wisconsin farms: Lessons learned for agricultural water quality programs” J. Soil Water Conservation 55:63-68. Shipitalo, M.J., and J.V. Bonta. 2008. Impact of using paper mill sludge for surface-mine reclamation on runoff water quality and plant growth. J. Environ. Qual. 37:2351-2359. Stat Soft, Inc. 1998. STATISTICA for windows (computer program manual). Stat Soft, Inc. 2325 East 13th Street, Tulsa, OK. USA. Tenkorang, F., and J. Lowenberg-DeBoer. 2008. Forecasting long-term global fertilizer demand. Nutr. Cycl. Agroecosyst. 83:233-247. United States Environmental Protection Agency (USEPA). 1989. Proposed standards for the disposal of sewage sludge. Federal Register 54: 5880. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586. Walker, R.L., I. G. Burns, and J. Moorby. 2001. Responses of plant growth rate to nitrogen supply: a comparison of relative addition and N interruption treatments. J. Exp. Bot. 52:309-317. Walkley, A., and I.A. Black. 1934. An examination of Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37:29-38. Wulf, S., P. Jager, and H. Dohler. 2006. Balancing of greenhouse gas emissions and economic efficiency for biogas-production through anaerobic co-fermentation slurry with organic waste. Agric. Ecosyst. Environ. 112:178-185. Xue, F., J. Maio, X. Zhang, H. Luo, and T. Tan. 2008. Studies on lipid production by Rodotourula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour. Technol. 99:5923-5927. Yang, Q., M. Yang, L. Hei, and S. Zheng. 2003. Using ammonium-tolerant yeast isolates: Candida halophila and Rhodotorula glutinis to treat high strength fermentative wastewater. Environ. Technol. 24:383-390. Yang, Q., M. Yang, S. Zhang, and W. Lv. 2005. Treatment of wastewater from monosodium glutamate manufacturing plant using successive yeast and activated sludge systems. Process Biochem. 40:2483-2488. Young, C.C., H. Hupfer, C. Siering, M.J. Ho, A.B. Arun, W.A. Lai, P.D. Rekha, F.T. Shen, M.H. Hung, W.H. Chen, and A.F. Yassin. 2008. Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 58:959-963. Zhong, W., C. Hu, and M. Wang. 2002. Nitrate and nitrite in vegetables from China: Content and intake. Food addit. Contam. 19:1125-1129. Zibilske, L.M. 1994. Carbon mineralization. p. 835-864. In Methods of soil analyses, Part 2, Microbiological and Biochemical Properties. R.W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, and A.Wollum. (ed.) SSSA Book Series. Vol. 5. Soil Sci. Soc. Am. Inc. Madison, WI. Zibilske, L.M., and L.A. Materon. 2005. Biochemical properties of decomposing cotton and corn stem and root residues. Soil Sci. Soc. Am. J. 69:378-386. Zibilske, L.M., and W.M. Clapman, R.V. Rourke. 2000. Multiple application of paper mill sludge in an agricultural system: Soil effects. J. Environ. Qual. 29:1975-1981.
摘要: Present studies were conducted to explore the suitability of monosodium glutamate industrial wastewater (MW) and paper-mill wastewater (PW) for agricultural production and carbon sequestration. Effect of MW and PW on early growth of plant species; Chinese cabbage, maize and pai tsai was tested by the seed germination bioassay, growth chamber, subsequently in greenhouse by tray and pot studies and finally by field experiment. Effect of MW application rates on the plant biomass yield, nitrogen content and soil properties was analyzed. At MW concentrations below 1%, germination indices for maize and Chinese cabbage plants were significantly (p<0.01) higher than the Control. The greenhouse tray and pot study resulted in significant increase in maize and Chinese cabbage plant biomass yield at MW application rates of 5,000 and 10,000 L ha-1. Soil organic carbon (SOC) was also increased by the addition of MW and PW due to the presence of significant amounts of organic C in the wastewaters. In another pot study, to alleviate the acidic pH of MW, highly alkaline PW was used. MW and PW were applied at three rates i.e., 0, 5,000 and 7,500 L ha-1 and 0, 3,500 and 5,000 L ha-1, respectively. Significant increase in the maize growth and nutrition were observed in all the wastewater treatments compared to the Control without any adverse affects. MW was also used as a culture medium for Azospirillum rugosum strain IMMIB AFH-6 inoculant (In) by optimizing the dilution at 2.5% and pH 7.0 ± 0.1. Seed germination bioassay results revealed that IMMIB AFH-6 grown in MW stimulated the radicle and epicotyl elongation of maize and pai tsai. Strain IMMIB AFH-6 inoculated to maize under growth chamber study revealed higher dry matter production than Control. Pai tsai recorded significantly higher dry matter production when treated with strain IMMIB AFH-6 and chemical fertilizers than Control. The PW was applied at the rate of 5,000 and 10,000 L ha-1 singly and in combination with A. rugosum and CF, resulted in high plant dry matter production and SOC buidup. In field experiment MW was used at 6,000 L ha-1 and its acidity was neutralized with PW and lime. Maize plant height, plant dry matter production, leaf area index (LAI) at 60 DAS, ears plant-1, kernels ear-1 and weight of 100 kernels were significantly (p<0.05) higher in MW, CF, MW+PW and MW+Lime treatments than the Control. Plant N concentration was significantly higher in MW than Control; kernel N concentration was significantly higher in MW+PW and MW+Lime than Control. After harvesting of maize, soil organic matter (SOM) content was recorded significantly higher in MW, MW+PW and MW+Lime over other treatments. Humic substances (C-HS) were significantly higher in MW+PW than other treatments. Combination of 75% of each lyophilized MW and chemical fertilizer produced significantly higher maize dry matter than Control. We demonstrate that after neutralizing the acidity of MW, it is suitable for A. rugosum growth. PW can be used either in combination of MW or chemical fertilizers and inoculants for biomass production and SOC buildup. Using MW singly or in combination with PW and lime stimulates growth components and yield of maize, which are comparable to chemical fertilizers, and also increases SOM and C-HS content. Hence, we suggest that MW and PW can be safely used in agriculture for growing energy crops and soil carbon sequestration as a low cost green practice with multiple benefits.
本文探討運用製味素廢水(MW)與製紙廢水(PW)於農業生產與碳吸存之策略。首先利用種子發芽生物分析、溫室試驗(穴盤與盆栽)以及田間試驗以研究製味素廢水與製紙廢水對於大白菜、玉米與白菜等植物早期生長的影響。本研究分析不同施用比率的製味素廢水對於作物生產質量、氮含量以及土壤特性之影響,並發現:當製味素廢水濃度低於1%,大白菜和玉米的發芽指標(GI)明顯比控制組高(p<0.01)。溫室穴盤和盆栽的研究結果顯示:使用介於5,000到10,000 L ha-1間的製味素廢水,玉米與大白菜的生產量較控制組有顯著的增加。由於廢水中含有大量的有機碳,添加製味素廢水和製紙廢水可以增加土壤有機碳(SOC)的含量。另一項研究,使用高鹼性的製紙廢水可以中和改善高酸性的製味素廢水。本研究施用製味素廢水(0、5,000和7,500 L ha-1)與製紙廢水(0、3,500和5,000 L ha-1) 明顯增加玉米的生長與養份,且無任何負面效應。將製味素廢水稀釋至最適濃度2.5%,pH 值在7.0 ± 0.1時亦可做為Azospirillum rugosum IMMIB AFH-6 菌株接種劑之培養基。種子發芽生物分析結果顯示:生長於製味素廢水的IMMIB AFH-6菌株可促進玉米和白菜胚根與胚莖的生長。在生長箱試驗中,施加IMMIB AFH-6菌株對於白菜的植物生質量較控制組為高。施用IMMIB AFH-6菌株及化學肥料使白菜有較控制組更高的生產量。此外,製紙廢水亦可運用於生產白菜和土壤碳的建構。本研究分析單獨添加製紙廢水(施加量5,000 L ha-1與10,000 L ha-1 )及其分別與接種劑(In-NB)和化學肥料(CF)搭配混合的處理對於作物造成高的作物產量及土壤有機碳的積聚。使用6,000 L ha-1製味素廢水及製紙廢水和石灰中和的製味素廢水進行田間試驗,經播種後60天,「製味素廢水」、 「CF」、 「製味素廢水+製紙廢水」和「製味素廢水+石灰」處理之玉米高度、乾重產量、葉面積指標(LAI)、每棵作物的果穗軸數量、每穗軸的穗粒數量 及 100粒的重量均較控制組為高。製味素廢水處理之作物氮濃度亦明顯較控制組高;「製味素廢水+製紙廢水」及「製味素廢水+石灰」之穗粒N濃度均較控制組高。玉米收穫之後,「製味素廢水」、「製味素廢水+製紙廢水」及「製味素廢水+石灰」處理的土壤有機質含量明顯較其他處理為高。結合75%製味素廢水的冷凍乾燥物及化肥的處理產生較控制組高的玉米乾重。本研究證明酸性中和後的製味素廢水,與施用6,000 L ha-1 可以成功運用於農業。製味素廢水適合被當作A. rugosum之培養基。製紙廢水可以運用於幫助白菜作物的生產以及土壤有機碳含量的建立。單獨運用製味素廢水或與製紙廢水及石灰混合促進玉米的生長及生產,且增加土壤有機質及腐植酸的含量。因此,我們建議製味素廢水與製紙廢水作為具多重效益的低成本綠色實務,可以安全使用於生長能源作物及碳蓄存的農業。
其他識別: U0005-0605201109282300
Appears in Collections:土壤環境科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.