Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28329
標題: Survival of compost coliforms in soil and Brassica chinensis
堆肥大腸桿菌群在土壤與小白菜中之存活
作者: 鄭世鑫
Cheng, Hhih-Hsin
關鍵字: Coliforms
大腸桿菌群
Klebsiella sp.
Brassica chinensis
Survival
Klebsiella sp.
小白菜
存活
出版社: 土壤環境科學系所
引用: 柒、參考文獻 王憶鎧。2005。截切蔬菜之處理技術及產業之應用。園產品採後處理 技術之研究與應用研討會專刊。 行政院衛生署疾病管制局疫情中心2009年12月23日, http://www.cdc.gov.tw/ct.asp?xItem=6464&ctNode=1733&mp=1 朱宏怡。2010。長期施用不同肥料下水稻根圈土壤固氮基因多樣性。 國立中興大學土壤環境科學系博士論文。 邱智琦。2010。一條根 (闊葉大豆 Glycine tomentella) 之根瘤菌分離 及特性研究。國立中興大學土壤環境科學系碩士論文。 柯勇。2003。現代微生物學。藝軒圖書出版社。台北市。 徐振盛、李孟諺。1995。水質生物指標。環境微生物學。p.175-184。 淑馨出版社。 許仁鴻。2002。水旱輪作及不同施肥處理對土壤理化性質及作物根系 生長的影響。國立中興大學土壤環境科學系碩士論文。 陳國誠。2003。大腸桿菌檢測。環境微生物實驗。p.34-35。藝軒圖書 出版社。 陳藝文。2005。水體及土壤中大腸桿菌群抗藥性之研究。國立中興大 學土壤環境科學系碩士論文。 楊秋忠。2001。水旱田之不同施肥對土壤生態系品質及生產力之研究。 有機肥料與合理化施肥研討會。國立中興大學。 廖彩汝。2001。不同施肥處理下土壤微生物多樣性之探討。國立中興 大學土壤環境科學系碩士論文。 謝淑敏。2002。經五年水旱田輪作系統土壤對不同施肥管理的玉米與 水稻生長及養分吸收的影響。國立臺灣大學。 譚鎮中。2010。農畜廢棄物堆肥病原微生物安全性研究。行政院農業 委員會農糧署99年度科技計畫研究報告。 羅裕堂。2002。有機栽培下土壤微生物多樣性之探討。國立中興大學 土壤環境科學系碩士論文。 Beuchat, L.R. 1996. Pathogenic microorganisms associated with fresh produce. J. Food Protect. 59:204–216. Beuchat, L.R. 2002. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect. 4:413–423. Beuchat, L.R., and A.J. Scouten. 2004. Factors affecting survival, growth, and retrieval of Salmonella Poona on intact and wounded cantaloupe rind and in stem scar tissue. Food Microbiology. 21: 683–694. Bohme L., U. Langer and F. Bohme. 2005. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture, Ecosystems and Environment 109:141–152. Brandl, M.T. 2006. Fitness of human enteric pathogens on plants and implications for food safety. Annu. Rev. Phytopathol. 44: 367–392. Brandl, M.T, and R.E. Mandrell. 2002. Fitness of Salmonella enterica serovar. Thompson in the cilantro phyllosphere. Appl. Environ. Microbiol. 68:3614–3621. Bustamante, M.A., R. Moral, C. Paredes, M. C. Vargas-Garcia, F. Suarez-Estrella, and J. Moreno. 2008. Evolution of the pathogen content during co-composting of winery and distillery wastes. Bioresource Technol. 99:7299–7306. Cao, H., R. Baldini, and L.G. Rhame. 2001. Common mechanisms for pathogens of plants and animals. Annu. Rev. Phytopathol. 39:259–284. Cools, D., R. Merckx, K. Vlassak, and J. Verhaegen. 2000. Survival of E. coli and Enterococcus spp. derived from pig slurry in soils of different texture. Appl. Soli Ecol. 17:53–62. Davies, B.E. 1974. Loss-on-ignition as an estimate of soil organic Matter. Soil Sci. Soc. Am. Proc. 38:150–151. Das, E., G.C.Gurakan, and A. Bayındırlı. 2006. Effect of controlled atmosphere storage, modified atmosphere packaging and gaseous ozone treatment on the survival of Salmonella Enteritidis on cherry tomatoes. FOOD MICROBIOL 23:430–438. Deportes, I., J. L. Benoit-Guyod, D. Zmirou and M. C. Bouvier. 1998. Microbialdisinfection capacity of municipal solid waste (MSW) composting. Applied Microbiology. 85:238–246. Ellis, J.R., and T. McCalla. 1976. Fate of pathogens in soils receiving animal wastes. Paper No.76–2560. Winter Meeting, American Society of Agricultural Engineers, Chicago, Illinois. Estrada, I.B., A. Aller, F. Aller, X. Gomez, and A. Moran. 2004. The survival of Escherichia coli, faecal coliforms and enterobacteriaceae in general in soil treated with sludge from wastewater treatment plants. Bioresource Technol. 93:191–198. Gong, C.M. 2007. Microbial safety control of compost material with cow dung by heat treatment. J. Environ. Sci. 19:1014-1019. Garcia-Orenes, F., A. Roldan, C. Guerrero, J. Mataix-Solera, J. Navarro-Pedreno, I. Gomez, and J. Mataix-Beneyto. 2007. Effect of irrigation on the survival of total coliforms in three semiarid soils after amendment with sewage sludge. Waste Manage. 27: 1815–1819. Hanene Cherif, Fathia Ayari, Hadda Ouzari, Massimo Marzorati, Lorenzo Brusetti, Naceur Jedidi, Abdennaceur Hassen, Daniele Daffonchio. 2009. Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate. EUR J SOIL BIOL. 45:138–145. Hirano S.S., and C.D. Upper. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64:624–653. Islam, M., M.P. Doyle, S.C. Phatak, P. Millner, and X. Jiang. 2004. Survival of Escherichia coli O157:H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water. Food Microbiol. 22:63-70. Jha, A.K., H.P. Bais, and J.M. Vivanco. 2005. Enterococcus faecalis mammalian virulence- related factors exhibit potent pathogenicity in the Arabidopsis thaliana plant model. Infect. Immun. 73: 464–475. Johansson, M., B. Stenberg, and L. Torstensson. 1999. Microbiological and chemical changes in two arable soils after long-term sludge amendments. Biol. Fertil. Soils. 30:160–167. Keeney, D. R. and D. W. Nelson. 1982. Nitrogen-inorganic form. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. ASA-SSSA Agronimy monographs. 9:643-698. Lapidot, A., U. Romling, and S. Yaron. 2006. Biofilm formation and the survival of Salmonella typhimurium on parsley. Int. J. Food. Microbiol. 109:229–233. Lemunier, M., C. Francou, S. Rousseaux, S. Houot, P. Dantigny, P. Piveteau, and J. Guzzo. 2005. Long-Term survival of pathogenic and sanitation indicator bacteria in experimental biowaste composts. Appl. Enviorn. Microb. 5779–5786. Logan, T.J., B.J. Harrison, D.C. McAvoy, and J.A. Greff. 1996. Effects of olestra in sewage sludge on soil physical properties. J. Environ. Qual. 25:153–161. Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12): 1409-1416. Muller, T., A. Ulrich, Ott E.-M., and M. Muller. 2001. Identification of plant-associated enterococci. J. Appl. Microbiol. 91:268–78. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassys with tobacoo tissue cuture. Physiol. Plant. 15:473-479. Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27:31-36. Ngole , V., S. Mpuchane, and O. Totolo. 2006. Survival of faecal coliforms in four different types of sludge-amended soils in Botswana. Eur J. Soil Biol. 42:208–218. Parke, J.L., and D. Gurian-Sherman. 2001. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu. Rev. Phytopathol. 39:225–58. Richards, G. M., and L. R. Beuchat. 2004. Metabiotic associations of molds and Salmonella Poona on intact and wounded cantaloupe rind. Int. J. Food. Microbiol. 97:327–339. Richards G.M. and L.R. Beuchat. 2005. Infection of cantaloupe rind with Cladosporium cladosporioides and Penicillium expansum, and associated migration of Salmonella poona into edible tissues. Int. J. Food Microbiol. 103:1–10. Rosa, M.J. Cimadom., and F. Schinner. 2006. Biological activity during composting of sewage sludge at low temperatures. Int. Biodeter. Biodegr. 57:88–92. Rufete, B., M.D. Perez-Murcia, A. Perez-Espinosa, R. Moral, J. Moreno-Caselles, and C. Paredes. 2006. Total and faecal coliform bacteria persistence in a pig slurry amended soil. Livest Sci 102: 211–215. Shen, F.T., and C.C. Young. 2005. Rapid detection and identification of the metabolically diverse genus Gordonia by 16S rRNA-gene-targeted genus-specific primers. FEMS Microbiol. Lett. 250:221–227. Starr, M.P., and A.K. Chatterjee. 1972. The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu. Rev. Microbiol. 26:389–426. Ukuku, D.O., and G. M. Sapers. 2007. Effect of time before storage and storage temperature on survival of Salmonella inoculated on fresh-cut melons. Food Microbio. 24:288–295. Vinneras, B. 2007. Comparison of composting, storage and urea treatment for sanitizing of faecal matter and manure. Bioresource Technol. 98:3317–3321. Wang, G., T. Zhao, and M.P. Doyle. 1996. Fate of enterohemorrhagic Escherichia coli O157:H7 in bovine feces. Appl. Environ. Microbiol. 62:2567–2570. Wie sner, S., B. Thiel, J. Kramer, and U. Kopke. 2009. Hygienic quality of head lettuce: Effects of organic and mineral fertilizers. Food Control 20:881–886 Wilson M, and S. E. Lindow. 1994. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl. Environ Microbiol. 60:4468–4477.
摘要: 摘要 近年有機資材的使用大幅增加,處理不當的有機肥料中可能含有大量的病原細菌,經施用後有可能會影響到農作物上。因此,本研究主要是觀察大腸桿菌群在不同的施肥處理下土壤中的存活情形以及傳播至作物之現象。首先選擇農試所35號田長期施用不同肥料處理之試驗田,調查土壤中大腸桿菌群之數量,以本研究篩選之大腸桿菌群之ㄧKlebsiella sp.當作試驗用菌進行實驗室土壤中之孵育試驗,添加於兩種金門紅土與農試所沖積土中分析觀察其存活情形。為探討不同氮源對Klebsiella sp.之影響,研究中分別添加無機氮肥與堆肥後,目標菌株之活菌數變化。此外,種植小白菜並添加Klebsiella sp.到土壤中,觀察土壤中之Klebsiella sp.傳播到作物情形。結果顯示,長期施用化肥混合有機肥的土壤中有最高的大腸桿菌群數目。在實驗室土壤孵育方面,農試所沖積土中Klebsiella sp.可存活56天以上,金門紅土中Klebsiella sp.可存活28天。Klebsiella sp.在施用堆肥土壤中之存活數量較施用化肥者高。在栽種小白菜的試驗中,發現小白菜植體有檢測出大腸桿菌之存在,添加越多菌液,植體中之菌數越多。試驗結果顯示,混施有機肥料與化學肥料的土壤有較高大腸桿菌群之存活,有較高的汙染風險。Klebsiella sp.在含砂量比較高之農試所沖積土壤中有較好的存活力;有機堆肥可以延長Klebsiella sp.之存活時間;Klebsiella sp.可由土壤傳播到植體中,堆肥中之病原菌造成食用作物被污染之風險應加以重視。
Abstract Application of organic fertilizers such as compost in crop production has been increased drastically. However, the pathogenic bacteria in composts may transfer into plant tissue and cause severe public health problems if the composts are nor treated properly. The primary purpose of this study was to investigate the survival of coliforms originating from composts in different types of soil and plants. In a long term field experiment the highest count of coliforms in soil was found in half chemical and half organic fertilizer plot. An isolated coliform, Klebsiella sp. was used in pot experiment to test its survival in soils and Chinese cabbage. The experiment results show that Klebsiella sp. survived more than 56 days in Taiwan Agriculture Research Institute (TARI) soil and 28 days in Kimen soil. Klebsiella sp. survived longer in compost amended soil than in chemical fertilized soil. Klebsiella sp. was found in Pak choi (Brassica chinensis) tissue when the soil was inoculated with the bacterium. The amount of Klebsiella sp. in the plant was increased with increasing of inoculation frequency. The longer period of survival of Klebsiella sp. in TARI soil and compost amended soil, and its translocation into plant tissue revealed the problem of potential risk of pathogenic bacteria infection of food crop should take into account seriously.
URI: http://hdl.handle.net/11455/28329
其他識別: U0005-1908201116171600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201116171600
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.