Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28336
標題: 環境控制對甜椒種苗生長之影響
Effects of Environment Control to Seedling Growth of Capsicum annuum L.
作者: 許禮強
Shiu, Li-Chiang
關鍵字: Seedling Incubation
育苗
Sweet Pepper
Environmental Control
甜椒
環境控制
出版社: 土壤環境科學系所
引用: 方怡丹、張武男。2008。甜椒生產體系改進之研究。國立中興大學園藝學系博士班論文。 王三太。1997。番椒之栽培管理。農村青年中短期農業專業訓練講義。果菜類蔬菜栽培班。行政院農委會農業試驗所。p:1-9 王裕權、張元聰、陳耀煌、王仕賢、吳慶杉。2007。洋桔梗育苗技術之研究。台南區農業改良場研究彙報。p 48:47-59。 王鍾和、林毓雯、丘麗蓉。2009。第六章 蔬菜有機栽培之肥陪管理技術。有機作物栽培。行政院農業委員會農業試驗所農業化學組。p:59-70。 台灣農業統計年報。2009。農業災害估計損失。行政院農業委員會。p:222。 交通部中央氣象局天文站。2009。台灣各地日出日沒時刻。交通部中央氣象局。p:124 吳正宗。2008。第四篇-配製營養液的理論。無土栽培的營養管理。國立中興大學土壤環境科學系。P127。 李金龍、陳世賢。1989。設施栽培之環境控制與管理。設施園藝技術。豐年叢書 HV#893。p 37~45。 林瑞松。2000。花卉設施栽培與生長環境。興大農業 第三十三期。 張武男。1995。果菜類-番椒。園藝作物(蔬菜)。台灣農家要覽-農作篇(二)。p:437~440。 張祖亮。1998。養液栽培之應用技術。種苗生產自動化技術通訊。行政院農業委員會種苗生產自動化技術服務團編印。p 3-4。 郭孚燿。2000。甜椒的性狀及分類。甜椒栽培技術。行政院農業委員會台中區農業改良場。p:3~28。 陳正次、傅成美、劉依昌。2002。夏季耐熱小果番茄新品種『台南亞蔬六號』。番茄品種特性與栽培技術全輯。行政院農委會種苗改良場 p:11-18。 黃泮宮、薛佑光、李美娟。1995。蔬菜穴盤育苗技術。行政院農業委員會台灣省政府農林廳。p:25-27。 農業氣象旬報。2010。七月上旬天氣概況。交通部中央氣象局主編。第57卷第19期。p:1-4 農業氣象旬報。2010。十二月上旬天氣概況。交通部中央氣象局主編。第57卷第34期。p:1-4 劉天麟。2000。彩色海芋組織培養苗馴化之環境控制研究。國立中興大學土壤環境科學系碩士班論文。 劉廣泉、曹幸之。2005。高溫促進綠竹生長出筍及壓條育苗之發根。國立台灣大學園藝學研究所碩士論文。 劉國聖、宋妤。2007。彩色甜椒嫁接方式與嫁接植株生育之情形。國立中興大學園藝學系研究所碩士論文。 蔡金川、林俊逸、沈再發、蕭吉雄。2004。設施內環境控制。設施園藝學。p:155-176。 謝廣文、陳世銘、陳乃菁。2001。育苗環境與甘藍苗品質關係之模糊理論模擬。農業機械學刊。10 (2):31-42。 羅正宗、陳榮坤、張素貞。1998。苗栗地區水稻生育積溫度數與生育時期之關係。苗栗區農業專訊第42期。P5-8。 Aaslyng, J.M., J.B. Lund, N. Ehler, and E. Rosenqvist. 2003. IntelliGrow: a greenhouse component-based climate control system. Environmental Modeling & Software 18:657-666. Abdel-Ghany, A.M, and T. Kozai. 2006. Dynamic modeling of the environment in a naturally ventilated, fog-cooled greenhouse. Renewable Energy 31:1521-1539. AVRDC. 1990. Vegetable production training manual. Asian Vegetable Research and Development Center. Shanhua, Tainan. pp27 Andaya, V.C.,and Mackill, D.J., 2003. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J. Exp. Bot. 54 : 2579–2585. Arbel, A., M. Barak, and A. Shklyar. 2003. Combination of forced ventilation and fogging systems for cooling greenhouses. Biosystems Engineering 84(1): 45-55. Banowetz, G.M., M.D. Azevedo, and R. Stout. 2008. Morphological adaptations of hot springs panic grass (Dichanthelium lanigunosum var sericeum (Schmoll) to thermal stress. Journal of Thermal Biology 33:106-116. Bewley, J.D., and M. Black. 1994. Seeds: Physiology of development and germination. 2nd ed. New York: Plenum Press. Blasco, X., M. Martinez, J.M. Herrero, C. Ranmos, and J. Sanchis. 2007. Model-based producitive control of greenhouse climate for reducing energy and water consumption. Computers and Electronics in Agriculture 55:49-70. Boulard, T., and S. Wang. 2000. Greenhouse crop transpiration simulation from external climate conditions. Agricultural and Forest Meteorology 100: 25-34. Catley, J.L., L.J. Davies, I.R. Brooking, and E.A. Halligan. 2002. Effects of day/night temperature differential and irradiance on the flower stem quality of Sandersonia aurantiaca. Scientia Horticulturae. 95:85-98. Chun, C. and T. Kozai. 2000. Closed transplant production system at chiba university. C. Kubota and C., Chun, (eds.), Transplant Production in the 21st Century. 20-27. Craven, D., S. Gulamhussein, and G. P. Berlyn. 2010. Physiological and anatomical responses of Acacia koa(Gray) seedlings to varying light and drought conditions. Environmental and Experimental Botany 69 : 205-213. Daskalov, P.I., K.G. Arvanitis, G.D. Pasgianos, and N.A. Sigrimis. 2006. Non-linear Adaptive Temperature and Humidity Control in Animal Buildings. Biosystems Engineering 93:1-24. Efren, F.R., C. Kubota, G.A. Giacomelli, M.E. Tignor, S.B. Wilson, and M. McMahon. 2010. Dynamic modeling and simulation of greenhouse environments under several scenarios: A web-based application. Computers and Electronics in Agriculture 70:105–116. Francisco, M. del Amor, and Leo F.M. Marcelis. 2006. Differential effect of transpiration and Ca supply on growth and Ca concentration of tomato plants. Scientia Horticulturae. 111:17-23. Gupta, M. K., D. V. K. Samiel, and N. P. S. Sirohi. 2010. Decision support system for greenhouse seedling production. Computers and Electronics in Agriculture 73:133-145. Heather A., Hatt Graham, and Dennis R. Decoteau. 1995. Regulation of bell pepper seedling growth with End-of-day supplemental fluorescent light. Scientia Horticulturae. 30:487-489. Jardar M., and Roar M. 1995. Effect of diurnal temperature alternations on plant morphology in some greenhouse crops-a mini review. Scientia Horticulturae 62 : 205-215 Kempkes, F. L. K., N. J. Van de Breaak, and J. C. Bakker. 2000. Effect of heating system position on vertical distribution of crop temperature and transpiration in greenhouse tomatoes. Journal of Agricultural Engineering Reasearch. 75: 57-64. Kim, S.J., E.J.Hahn, J.W. Heo, and K.Y. Paek. 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae. 101:143-151. Korner, O., and G. V. Steaten. 2008. Decision support for dynamic greenhouse climate control strategies. Computers and Electronics in Agriculture 60:18-30. Korner, O., and H. Challa. 2003. Process-based humidity control regime for greenhouse crop. Computer and Electronics in Agriculture 39:173-192. Kozai, T. 2007. Propagation, grafting and transplant production in closed systems with artificial lighting for commercialization in Japan. Propagation of Ornamental Plants. Vol.7, No 3: 145-149. Kozai, T., C. Chun, and K. Ohyama. 2004. Closed systems with lamps for commercial production of transplants using minimal resources. Acta Horticulturae. 630:239-254. Kozai, T., C. Chun, K. Ohyama and C. Kubota. 2000. Closed transplant production systems with artificial lighting for production of quality transplants with environment conservation and minimum use of rescource, In Proceedings of The 15th Workshop on Agricultural Structures and ACESYS (Automation, Culture, Environment & System) IV Conference, 110-126, Dec.4-5, Tsukuba, Japan. Kozai, T., F. Afreen, and S. M. A. Zobayed. 2002. Photoautotrophic culture of Coffea arabusta somatic embryos: development of a bioreactor for large-scale plantlet conversion from Cotyledonary Embryos. Annals of Botany 90:21-29. Kozai, T., K. Watanabe and B.R. Jeong. 1995. Stem elongation and growth of Solanum tuberosum L. in vitro in response to photosynthetic photon flux, photoperiod and difference in photoperiod and dark period temperatures. Scientia Horticulturae. 64:1-9. Kozai, T., S. Seiyama and C. Kubota. 2002. Manipulation of photoperiod and light intensity in low-temperature storage of eggplant plug seedling. Scientia Horticulturae. 94:13-20. Kozai, T., K. Ohyama, F. Afreen, S. Zobayed, C. Kubota, T. Hoshi and C. Chun. 1999. Transplant Production in Closed System with Artificial Lighting for Solving Global Issues on Environment Conservation, Food, Resource and Energy.Center for Controlled Environment Agriculture. P343-357 Ledesma, N. A., M. Nakata, and N. Sugiyama. 2008. Effect of high temperature stress in the reproductive growth of strawberry cvs. “Nyoho” and “Toyonoka”. Scientia Horticulturae 116:186-193. LI-COR. 1989. Radiation Measurement instruments. Lincoln, Nebraska 68504 USA. Mahdavian K., M. Ghorbanli, Kh. M. Kalantari. 2008. The effects of ultraviolet radiation on some antioxidant compounds and enzymes in Capsicum annuum L. Turkish Journal of Botany. 32: 129-134. Nelson, P.V., W. Kowalczyk, C.E. Niedziela Jr., N.C. Mingis, and W.H. Swallow. 2003. Effects of relative humidity, calcium supply, and forcing season on tulip calcium status during hydroponic forcing. Scientia Horticulturae. 98:409-422. Nurgul, E., A. Funda, A. Sensoy, and S. Sirn, 2006. Influence of growing season and donor plant age on anther culture response of some pepper cultivars (Capsicum annuum L.). Scientia Horticulturae. 110:16~20. Qu Y.H., X.M. Wei., Y.F. Hou., B. Chen., G.Q. Chen, and C. Lin. 2009. Analysis for an environmental friendly seedling breeding system. Commun Nonlinear Sci Numer Simulat 14:1766–1772 Sethi, V.P, and S.K. Sharma. 2007. Greenhouse heating and cooling using aquifer water. Energy 32:1414-1421. Shibuya, T., J. Tsuruyama, Y. Kitaya, and M. Kiyota. 2006. Enhancement of photosynthesis and growth of tomato seedlings by forced ventilation within the canopy. Scientia Horticulturae. 109:218-222. Straten, G. V., H. Challa, and F. Buwalda. 2000. Towards user accepted optimal control of greenhouse climate. Computers and Electronics in Agriculture 26 : 221-238. Thakur, P., S. Kumar, J.A. Malik, J.D. Berger, and H. Nayyar. 2010. Cold stress effects on reproductive development in grain crops: An overview. Environmental and Experimental Botany 67:429-443. Tong, Y., T. Kozai, N. Nishioka, and K. Ohyama. 2010. Greenhouse heating using heat pumps with a high coefficient of performance (GOP). Biosystems Engineering 106:405-411. Welander, N.T., and B. Ottosson. 2000. The influence of low light, drought and fertilization on transpiration and growth in young seedlings of Quercus robur L. Forest Ecology and Management 127:139-151.
摘要: The main purposes of this study were to incubate seedlings of good quality and at shortened period through environmental control. The growth of Capsicum annuum L., in self-built environments controllable growth chambers, at various day/night temperature, lighting intensity, light-dark cycle and hydroponic nutrient concentration were analyzed and compared with seedlings incubated in January, March and April of 2010 at a local incubation farm. Results indicated that seedlings grown under environmental controlled conditions can do transplantation directly without acclimatization. The seedlings grown under the conditions of day/night temperature 30/20 ℃, light-dark cycle 18/6hr, lighting intensity 395μmol m-2 s-1, and full strength Hoagland solution had the highest quality and required only 4 weeks of incubation time. However, the conditions of day/night temperature 30/20 ℃, light-dark cycle 18/6hr, lighting intensity 190μmol m-2 s-1, and half strength (or full strength) of Hoagland solution were more economical in terms of the electricity required. Under these conditions, the quality of incubated seedlings was as good as those best seedlings from the local incubation farm, also required 4 weeks of incubation time, but saved half the electricity than the best combination.
本研究目的希望能夠經由環境控制達到縮短育苗所需要耗費的時間,進一步培育出品質優良的苗。利用以自行裝置具有環控能力的育苗室,藉由控制甜椒苗的日/夜溫度、光照強度、光照週期以及水耕養液濃度,分析在不同的環境控制下,甜椒苗的生長反應,並且與實際育苗場在2010年1、3、4月,三個不同時間所育出的甜椒苗比較。研究由試驗結果顯示,環控苗都可以直接移植至田間不需再馴化。在各種環境控制條件中,以日/夜溫度30/20℃、光照週期18/6hr、全光照(395μmol m-2 s-1)、全量Hoagland養液培育出的甜椒苗最為優質,且只需要4週育苗時間。但從用電經濟效益角度來看,在日/夜溫度30/20℃、光照週期18/6hr、半光照(190μmol m-2 s-1)、1/2量(或全量) Hoagland養液條件下,即可培育出與專業育苗場最佳複合壯苗指數相當之種苗,而在此條件下的環控苗也只需要4週,耗電量則較最佳條件減少一半。
URI: http://hdl.handle.net/11455/28336
其他識別: U0005-2607201111540300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2607201111540300
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.