請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/28340
標題: 以電子屬性為基礎建立有機化合物半效應濃度之定量構效關係
Electronic Attribute-based Quantitative Structure-Activity Relationships for Median Effect Concentration of Organic Compounds
作者: Wu, Fang-Wei
吳芳瑋
關鍵字: Electronic Attribute
電子屬性
QSARs
Organic pollution
Photobacterium phosphoreum
定量構效關係
有機污染物
發光菌
出版社: 土壤環境科學系所
引用: 于瑞蓮、胡恭任。2003。環境化學中有機化合物毒性的QSAR研究方法。環境科學與技術。26 (1) : 57259。 周忠義。2002。室外空氣中揮發性有機物之毒性探討。國立成功大學環境工程研究所。 邱順稜。2002。以Microtox檢測方法評估實際廢水生物毒性之研究。國立中央大學環境工程研究所。 吳先琪。2000。廢水生物學。台北:國立編譯館。 陶雪琴、盧桂寧。2008。定量構效關係研究方法及其在環境科學中的應用。仲愷農業技術學院學報。 21 (1) : 65-70。 陳景文。1999。有機污染物定量結構 - 性質關係與定量結構 - 活性關係。大連:大連理工大學出版社。 陳景文、李雪花、於海瀛、王亞南、喬顯亮。2008。面向毒害有機物生態風險評價的(Q)SAR技術:進展與展望。中國科學 B輯。38 (6):461-474。 張瓊文。2009。以密度泛函理論為基礎建立預測有機污染物混合毒性之定量結構活性關係。國立中興大學土壤環境科學研究所。 黃伯俊、黃毓麟。2004。農藥毒理學。北京:人民軍醫出版社。 謝永昌。2002。拜香氣膠中PAHs之粒徑分析研究。國立成功大學環境工程研究所。 Andersson, H., L. Eva, W. Roger, G. Kerstin, A. Jacob and O. Lars. 1998. Neurotoxic effects of fractionated diesel exhausts following microinjections in rat hippocampus and striatum. Environ. Res. 76:41-51. Agarwal, A., P. P. Pearson, E. W. Taylor, H. B. Li, T. Dahlgren, M. Heralöf, Y. Yang, G. Lambert, D. L. Nelson, J. W. Regan, and A. R. Martin. 1993. Three-dimensional quantitative structure-activity relationships of 5-ht receptor binding data for for tetrahydropyridinylindple derivatives: a comparison of the hansch amd comfa methods. J. Med. Chem. 36: 4006-4014 Arulmozhiraja, S., T. Fujii, and G. Sato. 2002. Density functional theory-based reactivity descriptors for dioxins. Mol. Phys. 100:423-431. Arulmozhiraja, S., and M. Morita. 2004. Structure-activity relationships for the toxicity of polychlorinated dibenzofurans: approach through density functional theory-based descriptors. Chem. Res. Toxicol. 17: 348-356. Bethea, R. M., B. S. Durn, and T. L. Boullion. 1995. Statistical methods for engineers and scientists, 3 rd ed., Marcel Dekker: New York. Belesley, D. A., E. Kuh, and R. E. Welsh. 1980. Regression Diagnostics; Wiley: New York. Bearden, A. P. and T. W. Schultz. 1997. Structure-activity relationships for Pimephales and Tetrahymena: a mechanism of action approach. Environ. Toxicol. Chem. 16: 1311-1317. Berenbaum, M. C. 1981. Criteria for analyzing interactions between biologically active agents. Adv. Cancer. Res. 35: 269-335. Bliss, C. I. 1939. The toxicity of poisons applied jointly. Ann. Biol. 26: 585-615. Blum, D. J. W., and R. E. Speece. 1990. Determining chemical toxicity of aquatic species . Environ. Sci. Technol. 24(3) : 284-293. Bradbury, S. P. 1995. Quantitative structure-activity relationships and ecological risk assessment: an overview of predictive aquatic toxicology research. Toxicol. Lett. 79: 229-237. Bruner, L. H., D. J. Kain, D. A. Roberts, and R. D. Parker. 1991. Evaluation of seven in vitro alternatives for ocular safety testing. Fundam. Appl. Toxiciy. 17: 136-149. Bulich, A. A. 1986. Bioluminescence assays, in toxicity testing using microorganisms. Process Biochem.1: 57-74. Chao, C., L. Guanghua, T. Zhuyun, and G. Xiaoling. 2008. Quantitative structure-activity relationships for joint toxicity of substituted phenols and anilines to Scenedesmus obliquus. J. Environ. Sci. 20:115–119. Dai, J. Y., et al. (1998). Prediction of water solubility and toxicity of substituted indoles to Photobacterium phosphoreum by using molecular connectivity indices and quantum chemical parameters. Bull. Environ. Contam. Toxicol. 61(5): 591-599. Dongbin, W., Z. Aiqian, Z. Wei, S. Han, and L. Wang. 2002. A case study of logistic QSAR modeling methods and robustness tests. Ecotoxicol. Environ. Saf. 52: 143-149. Engberts, J. B. F. N., G. R. Famini, A. Perje’ssy, and L. Y. J. Wilson. 1998 . Phys. Org. Chem. 11: 261. Enterprise & Industry Directorate General and Environment Directorate General. European Commission, REACH in brief. 2002, September. Available online at: http://ecb.jrc.it/REACH/ Famini, G. R., and L. Y. Wilson. 1994. In theoretical and computational chemistry:quantitative treatments of solute/solvent interactions;Politzer, P., J. S. Murray, Eds.;Elsevier:Amsterdam. Vol. 1, p 213. Free, S. M., and J. M. Wilson. 1964. A mathematical contribution to structure-activity studies. J. Med. Chem. 7(4): 395-399. Gazquez, L. 2008. Perspectives on the density functional theory of chemical reactivity. J. Mex. Chem. Soc. 52(1):3-10. Hansch, C., P. P. Maloney, and T. Fujita. 1962. Correlation of biological activity of phenoxyacetic acids with Hammett substituted constants and partition coefficients. Nature. 14: 178-180. Hohenberg, P., and W. Kohn. 1964. Inhomogeneous electron gas. Phys. Rev. 136: B864-B871. Iczkowsksi, R. P. and J. L. Margrave. 1961. Electronegativity. J. Am. Chem. Soc. 83: 3547-3551. Kaiser, K. L. E. 1998. Correlations of vibrio fischeri bacteria test data with bioassay data for other organisms. Environ. Health. Perspect. 106(2): 583-591. Klopman, G. 1968. Chemical reactivity and the concept of charge and frontier controlled reactions. J. Am. Chem. Soc. 90:223-234. Kohn, W., and L. J. Sham. 1965. Self-consistent Eq.uations including exchange and correlation effects. Phys. Rev. 140: A1133-A1138. Linkov, I., M. R. Ames, E. A. C. Crouch, and F. K. Satterstrom. 2005. Uncertainty in octanol-water partition coefficient: Implications for risk assessment and remedial costs. Environ. Sci. Technol. 39(18): 6917-6922. Mazzatorta, P., M. Smiesko, E. L. Piparo, and E. Benfenati. 2005. QSAR model for predicting pesticide aquatic toxicity. J. Chem. Inf. Model. 45: 1767-1774. Parr, R. G., R. A. Donnelly, M. Levy, and W. E. Palke. 1978. Electronegativity: The density functional viewpoint. J. Chem. Phys. 68(8): 3801-3807. Parr, R. G., and R. G. Pearson. 1983. Density functional theory for fractional particle number: Derivative discontinuities of the energy. J. Am. Chem. Soc. 105: 7512-7516. Pasha, F. A., H. K. Srivastava, and P. P. Singh .2005. Comparative QSAR study of phenol derivatives with the help of density functional theory. Bioorganic & Medicinal Chemistry. 13: 6823-6829. Pearson, R. G. 1963. Hard and soft acids and bases. J. Am. Chem. Soc. 85(22): 3533-3539. Pearson, R. G. 1987. Recent advances in the concept of hard and soft acids and bases. J. Chem. Edu . 64(7): 561-567. Pearson, R. G. 2005. Chemical hardness and density functional theory. J. Chem. Sci. 117(5): 369-377. Soffers, A. E., M. F., M. G. Boersma, W. H. J. Vaes, J. Vervoort, B. Tyrakowska, J. L. M. Hermens, and I. M. C. M. Rietjens. 2001. Computermodeling-based QSARs for analyzing experimental data on biotransformation and toxicity. Toxico .Vitro. 15: 539–551. USEPA (U.S. Environmental Protection Agency). 1987. Water quality advisory: Aquatic life and human health—Metolachlor. Verhaar, H. J. M., J. Solbe, J. Speksnijder, C. J. V. Leeuwen, and J. L. M. Hermens. 2000. Classifying environmental pollutants: Part 3. External validation of the classification system. Chemosphere. 40(8): 875-883 Vijayaraj, R. V. Subramanian, and P. K. Chattaraj. 2009. Comparison of global reactivity descriptors calculated using various density functionals: A QSAR perspective. J. Chem. Theory. Comput. 5: 2744-2753. Walker, J. D. 2003. Applications of QSARs in toxicology: a US government perspective. J. Mol. Struct. (Theochem) 622: 167-184. Wang, B., G. Yu, H. Hu, and L. Wang. 2007. Quantitative structure–activity relationships and mixture toxicity of substituted benzaldehydes to Photobacterium phosphoreum. Bull. Environ. Contam. Toxicol.78: 503-509. Xinhui, L., C. Wu, S. Han, L. Wang, and Z. Z hang.2001. The acute toxicity of a-branched phenylsulfonyl acetates in Photobacterium phosphoreum test. Ecotoxicol. Environ. Saf. 49: 240-244. Zhang, L., P. J. Zhou, F. Yang, and Z. D. Wang. 2007. Computer-based QSARs for predicting mixture toxicity of benzene and its derivatives. Chemosphere. 67: 396-401. Zhao, H. X., G. Q. Zhan, and J. P. 2005. Prediction of octanol-air partition coefficients of sernivolatile organic compounds based on molecular connectivity index. Chemosphere. 59: 1421-1426. 化學結構查詢網站 Ask.com: http://www.ask.com/ NIST Chemistry WebBook: http://webbook.nist.gov/chemistry/ Chemical Book: http://www.chemicalbook.com/
摘要: 定量構效關係簡稱QSAR,被廣泛應用於許多科學領域中,包括環境中毒化物的研究及藥物分子設計等。儘管如此,QSAR的研究仍然有進步的空間,因為QSAR是一種可以用來研究機制的工具,但目前的QSAR存在一些問題使其無法成為研究機制的工具。因此本研究透過以電子屬性為基礎的參數建立化學反應性參數資訊的完整性,期望使QSAR成為研究機制工具。電子擁有四種不同屬性(接觸性、非接觸性、變形性、不變形性),兩兩組合而成,使分子間產生四種主要的化學鍵結或作用力(共價鍵、離子鍵、凡得瓦力、親水性作用力)。藉以闡明苯類及萘類化合物之分子結構參數與其對發光菌毒性之關係,進而解釋有機污染物的生物活性作用機制。研究結果顯示,單一及混合型態的苯類化合物對發光菌之主要作用機制為離子鍵,是由電子的非接觸性(ρH+)及非變形性(1/APSA)組合而成的庫倫靜電交互作用力。而單一及混合型態的萘類化合物對發光菌之主要作用機制為由電子的接觸性(μ)及變形性(smax+)組合而成的共價作用力。此外,單一及混合型態的苯類、萘類化合物之迴歸方程式皆具有預測性(R2 CV均大於0.7)。證明電子屬性參數建立化學反應性參數資訊(化學鍵結)之完整性,因此不僅可藉由定量模型預測任一化合物同系物之毒性,更可由模型中之參數鑑定有機化合物之生物活性作用機制。
QSARs are currently being applied in many disciplines, with many pertaining to the study of toxicological activities of environmentally important molecules and drug design. Nevertheless, there is still room to improve the QSARs to become a tool for studying the mechanism. But there are some problems in QSAR that it can't become a tool for studying the mechanism. Therefore, this study expected QSAR to become a research mechanism tools through descriptors of electronic attributes established integral information of chemical reactions. Electronic has four different attributes (contact, non-contact, deformation, non-deformation), pairwise combine to four major chemical bonding forces (covalent bond, ionic bond, where der Waals force and hydrophilic interactions). The aim of the present study was to represent an attempt to correlate the electronic attribute-based descriptors with the experimentally determine the toxicity of substituted Organic Compounds to the Photobacterium phosphoreum. The results showed that the main toxicity mechanism of benzene and naphthalene compounds to Photobacterium phosphoreum is ionic bond and covalent bond , respectively. In addition, the QSAR models are predictive and descriptors of electronic attributes establish chemical reaction descriptors (chemical bonding) integrity. In summary, it can be concluded from the information presented in this study that a model based on electronic attributes not only can calculate the toxicity of any hypothetical compound of the series, but also can identify mechanism of organic compounds.
URI: http://hdl.handle.net/11455/28340
其他識別: U0005-2607201116051600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2607201116051600
顯示於類別:土壤環境科學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。