Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28346
標題: 由穩定氫氧同位素鑑別地下水對溪水之補注-以台北景美溪為例
Using hydrogen and oxygen isotopes to assess contribution of groundwater to stream water: A case study of Jing Mei Creek, Taipei
作者: 王瑋宏
Wang, Wei-Hong
關鍵字: Spring pit
湧泉坑
Hydrogen and oxygen isotopes
Jing Mei Creek
氫氧同位素
景美溪
出版社: 土壤環境科學系所
引用: 水資會(1995)台灣地區之水資源。 水利署(2007)經濟部水利署第十河川局之景美溪 http://www.wra10.gov.tw/about037.html 中央氣象局(2009)中華民國九十八年氣候資料年報第一部分-地面資料,共 185頁。 中央氣象局(2010)中華民國九十九年氣候資料統計資料內的資料統計(臺北) http://www.cwb.gov.tw/ 王淑姿(2003),「南投烏溪流域河水之氫氧同位素研究」,國立中興大學土壤環 境科學所碩士論文 台灣鯛協會(2002) 台灣鯛魚的演進。 http://www.taiwantilapia.org/chinese/t2a01_03.html 吳富春(2009)湧泉坑對於都市型河川生態復育成效評估:子計畫二-現地地質鑽探 林峰偉(2006)知本溪流域地下水資源評估研究。國立成功大學資源工程學系碩士論 文 美國環保署網站 Http://www.epa.gov/wed/pages/models/stableIsotopes/ isosource/isosource.htm 莊凱勳(2006)翡翠水庫及其集水區之氫氧碳同位素水文研究。國立中央大學水文 科學研究所碩士論文。 陳立群、劉昌明、郝芳華、劉九玉、戴東(2006),黃河源區基流變化及影響因子 分析。Journal of glaciology and geocryology. 第28 卷第2期 陳尉平(2006)應用河川流量利憲推估台灣地下水補注量。國立成功大學資源工程 學系碩士論文 彭宗仁(2006)地下水穩定氫氧同位素研究。中央地質調查所委託研究報告。 彭宗仁、汪中和、劉聰桂 (1992),台北及宜蘭兩地區地表水與地下水穩定碳同 位素組成之初步比較。地質,12(2): 199-212。 彭宗仁、汪中和、劉滄棽 (2002),宜蘭雨水之氫氧同位素變化。臺灣農業化學 與食品科學,40(5): 336-346。 彭宗仁、劉聰桂、汪中和 (1984),宜蘭地區地下水氫氧穩地同位素組成之初步 結果。地下水資源及水質保護研討會論文集: 165-184. 詹博舜(2001)由穩定氫氧同位素探討台灣西南活動構造帶泉水之來源。國立台 灣大學地質科學研究所碩士論文。 Christiansen, E. A., Gendzwill, D. J. & Meneley, W. A. (1982): Howelake:a hydrodynamic blowout structure. Canadian Journal of Earth Sciences 19, 1122–1139 Chu, S.Y.F. , Ekstrom, L.P. and Firestone, R.B. (1999):WWW Table of Radioactive Isotopes, database version 2/28/1999 from URL http://nucleardata.nuclear.lu.se/nucleardata/toi/ Craig, H. (1961) Standard for reporting concentrations of deuterium and oxygen-18 In natural waters. Science 133, 1833-1834. Coleman, M. L., Shepherd, T. J., Durham, J. J., Rouse, J. E. and Moore, G. R. (1982) Reduction of water with zinc for hydrogen isotope analysis. Analytical chemistry, 54: 993- 995 Dansgaard, W., (1964).Stable isotopes in precipition. Tellus 16, 436-468.Draganits, E. & Janda, C. 2003 (June): Subaqueous artesian springs and associated spring pits in a Himalayan pond. Boreas, Vol. 32, pp. 436–442. Oslo. ISSN 0300-9483. Epstein, S., and Mayeda, T. K. (1953) Variations of the 18O/16O ratio in natural waters.Geochim. Cosmochim. Acta 4,: 213. Gat, J.R.,( 1971). Comments on the stable isotope method in regional groundwater investigations. Water Resources Research 7, 980–993. Gat, J. R. and Gonfiantini, R. (1981) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. I.A.E.A. Tech. Rep. Ser. No.210. IAEA (1983) Guidebook on nuclear techniques in hydrology. IAEA Technical Reports Series No. 91, IAEA, Vienna Ingraham, N.L. (1998). Isotopic Variations in Precipitation, Chapter 3, In: C. Kendall and J.J. McDonnell (Eds.), Isotope Tracers in Catchment Hydrology, Elsevier, Amsterdam, p. 87-118. Lawrence, J.R. and White, J.W.C. (1991) The elusive climate signal in isotopic composition of precipitation. In Stable Isotopic Geochemistry: A tribute to Samuel Epstein, Taylor, H.P., O’Neil, J.R. and Kaplan, I.R. eds., The Geochemical Society, Special Publication 3, 169-185. Lis, G.,Wassenaar, L. I, and Hendry, M. J. (2008) High- precision laser spectroscopy D/H and 18O/16O measurements of mircoliter natural water samples. Analytical Chemistry, 80: 287-293. Misstear, B., Daly, D., and Brown, L.(2009) Groundwater recharge and its relationship to river flow in Ireland. Irish National Hydrology Conference:13-23. O’Neil, J.R.(1986) Teminology and standards. Rev. Mineral. 16,561-570. Payne, B.R. and Yurtsever, Y.(1974) Environmental isotopes as a hydrogeological Tool in Nicaragua. In Isotope Techniques in Groundwater Hydrology 1, 193-202. IAEA, Vienna. Peng, T. R., Wang, C. H., Huang, C. C., Fei, L. Y., Chen, T. A. and Hwong, J.L.,(2010) Stable isotope characteristic of Taiwan’s precipitation: a case study of western Pacific monsoon region. Earth Planet. Sci. Lett., 289: 357-366. Power, G., Brown, R.S. and Imhof, J.G. 1999. Groundwater and fish–insights from northern North America. Hydrological Processes 13: 401–422. Quirke, T. T. (1930): Spring pits; sedimentation phenomena. Journal of Geology 38,88–91. Rozanski, K., Araguas-Araguas, L. and Gontfiantini, R. (1993) Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Records,Swart, P.K., Lohmann, K.C., McKennie J. and Savin, S. eds., Geophysical Monograph 78, 1-36.Salati, E., Dall’Olio, A., Matsui, E. and Gat, J.R. (1979) Recycling of water in the mazon Basin: an isotopic study. Water Resour. Res. 15, 1250-1258. Soontag, C., Neureuther, P., Kalinke, C., Munnich, K.O., Klitzsch, E. and Weistroffer, K. (1976) Zur Palaeoklimatik der Sahara: Kontinentaleffekt im D-und O-18-Gehalt pluvialer Saharawaesser. Naturwiss 63, 479. Szilagyi, J., Harvey, F.E., and Ayers J.A.(2003). Regional estimation of base flow racharge to ground water using balance and a base-flow index. Ground Water Vol.41, NO. 4,page 504-513. van der Straaten, C. M., and Mook, W. G. (1983). Stable isotope composition of precipitation and climatic variability. In: Palaeoclimates and Palaeowater. IAEA, Vienna, pp: 53-64. Yurtsever, Y. and Gat, J. R.(1981). Atmospheric waters. In: Stable Isotope Hydrology:Deuterium and Oxygen-18 in the Water Cycle. Technical Report Series 210:103-142. IAEA, Vienna. Zhang, Y. H., Song, X. F. and Wu, Y. Q.2009. Use of oxygen- 18 isotope to quantify flows in the upriver and middle reaches of the Heihe River, Northwestern China.Environ Geol (2009) 58:645–653
摘要: 本研究利用水中的氫氧同位素作為天然的示蹤劑,調查景美溪地下水對於景美溪溪水的補注,及鑑別景美溪湧泉坑地下水之來源。本研究選取了三個季節作為分析,依序是2009年8月(夏季)、2010年1月(冬季)、及2010年5月(春季),分析標本種類包括:景美溪溪水、河床孔隙水及湧泉坑孔隙水。由三季分析結果顯示,依湧泉坑孔隙水與溪水、河床孔隙水之同位素差異程度,可分為三類型湧泉坑。類型Ⅰ湧泉坑,其湧泉坑孔隙水之同位素組成較溪水及河床孔隙水為輕,推測其為來自高程約700m集水區而來之地下水。類型Ⅱ湧泉坑孔隙水之同位素組成與河床孔隙水及溪水相似,推測現無地下水湧出,或類型Ⅱ湧泉坑為非地下水因素所造成,如魚類的活動所致。與類型Ⅰ相反,類型Ⅲ湧泉坑孔隙水之同位素組成較溪水及河床孔隙水為重,推測其地下水來自景美溪河岸附近高程較低地區之入滲雨水。分析湧泉坑各類型在各季所出現的相對頻率,發現到類型Ⅱ出現的頻率比起Ⅰ、Ⅲ要來得多,推論大致景美溪地區的湧泉坑是屬於類型Ⅱ。本研究續探討在春夏二季湧泉坑出現之差異比較,發現到春季時湧泉坑類型Ⅲ出現的頻率較類型Ⅰ來得高,顯示春季時地下水補注主要以鄰近地下水來源為主。在夏季時,則與春季相反,類型Ⅰ湧泉坑出現的頻率較類型Ⅲ湧泉坑的頻率高,顯示夏季由山區地表水入滲的補注較多。利用三端點法計算景美溪地下水對於景美溪溪水之貢獻百分比,結果得到夏季時地下水對景美溪溪水之貢獻約27%,在冬天無法有合理的計算結果,而春季地下水貢獻約34%,景美溪地下水貢獻範圍屬於山麓區,推斷因是由東側山區地表水所入滲而來;春季地下水貢獻比例較夏季為高,可能為夏季雨量雖多但多屬暴雨,土壤容易達到飽和入滲速率減慢,導致逕流量大,地下水的貢獻比例就較少,冬季的地下水貢獻量無法估算,因冬季時沒有湧泉坑的出現,而無法有準確的端點來源。
Use hydrogen and oxygen isotopes as a natural tracer to find how the groundwater bonding to the Jing Mei Creek and identify the source of spring pit in Jing Mei Creek. This study chooses three seasons to analyze. It is August of 2009 (summer), January of 2010 (winter), and May of 2010 (spring).Kind of the samples includes: stream, hole water of stream and hole water of spring pit. According to hydrogen and oxygen composition isotopes between the hole water of spring pit and stream, can be divided into three kinds of spring pits. The typeⅠ, its hole water''s isotope composition lighter than stream, infer that it came from the catchment area of the high altitude about 700m. The typeⅡ,the isotopes composition of hole water of spring pits is similar to the stream, means there is no groundwater to gush out , or the hole waters are not be caused by groundwater, such as due to activity of the fish. The typeⅢ, its isotope composition in hole water is heavier than stream, infer its groundwater came from the rain of the surface of Jing Mei Creek. Analyzing each types of the relative frequency in all the hole, it find that the typeⅡ is the most. These data suggest that the spring pits of Jing Mei Creek to be part of typeⅡ roughly. To calculate the percentage contribution of groundwater to Jing Mei Creek, using three component of the point method to the result of the summer when the groundwatercontribution to stream on Jing Mei about 27% in the winter can not have reasonable results, the springgroundwater contribution of about 34 % Jingmei Creek are the foothills of the groundwater contribution to the range area, inferred from the east due to the infiltration of surface water from the mountains; in the spring than in summer the proportion of groundwater contribution to thehigher summer rainfall, although many may be, but mostly heavy rain, the soil is easy to reach saturation infiltrationrate slows down, resulting in runoff volume, less the proportion of groundwater contribution, winter can not estimate the contribution of groundwater, because there is no winter springs pits appear, and the endpoint can't have accurate source.
URI: http://hdl.handle.net/11455/28346
其他識別: U0005-2911201119232400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2911201119232400
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.