Please use this identifier to cite or link to this item:
標題: 土壤pH、磷酸鹽及溶磷菌對土壤磷型態及玉米生長之影響
The effect of soil pH, phosphates, and phosphate solubilizing bacteria on the forms of soil phosphates and growth of maize (Zea mays L.)
作者: 呂嘉偉
Lu, Jia-Wei
關鍵字: phosphorus

phsphate solubilizing bacteria
出版社: 土壤環境科學系所
引用: 林良平。1997。土壤微生物學。國立編譯館。 林淑青。1994。台灣土生性溶磷細菌對土壤磷有效性及大豆生長之研究。國立中興大學土壤環境科學系碩士論文。 陳仁炫。1993。臺灣強酸性土壤磷吸附特性之研究。中國農業化學會誌,31:399-411。 陳仁炫、丁美幸。1993。土壤pH及磷肥施用對酸性和石灰質土壤磷生物有效性的影響。中國農業化學會誌,31:653-666。 陳仁炫、鄒裕民。2008。土壤化學性質分析。土壤與肥料分析手冊 (一)。 許秋燕。1997。溶磷菌之特性及其接種於玉米根面之效應。國立中興大學土壤環境科學系碩士論文。 趙靖豐。2000。以硫磺及硫酸鋁改良石灰質土壤策略下對磷行為的探討。國立中興大學土壤環境科學系碩士論文。 歐毓美。1994。土壤pH及磷肥的交感作用對強酸性土壤磷吸附能力及磷有效性的影響。國立中興大學土壤環境科學系碩士論文。 譚增偉。1998。台灣不同型態磷的有效性及其化學動力學的研究。國立中興大學土壤環境科學系博士論文。 Ahn, P. M. 1993. Tropical soils and fertilizer use. In: Intermediate Tropical Agriculture Series. Longman Scientific and Technical, Malaysia. Alexander, M. 1977. Introduction to soil microbiology. P. 333-339. John Wiley and Sons. New York. Altomare, C., W. A. Norvell, T. Bjrkman, and G. E. Harman. 1999. Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. Environ. Microbiol. 65: 2926-2933. Banik, S. and B. K. Dey. 1982. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing microorganisms. Plant Soil 69: 353-364. Barber, S. A. 1980. Soil-plant interactions in the phosphorus nutrition of plants. In: Khasawneh, F. E., ed. The role of phosphorus in agriculture. Madison, ASA. P. 591-615. Barber, S. A. 1984. Soil Nutrient Bioavailability. John Wiley & Sons. New York. Barker, D. E. and M. C. Amacher. 1982. Nickel, copper, zinc and cadmium. p. 323-336. In A. L. Page et al. (ed) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Barrow, N. J. 1974. The effect of previous additions of phosphate on phosphate adsorption by soils. Soil Sci. 118: 82-89. Barrow, N. J. 1980. Evaluation and utilization of residual phosphorus. P.33-360. In F. E. Khasawneh, E. C. Sample, and E. J. Kamprath. (ed.) The Role of Phosphorus in Agriculture. Am. Soc. Agron., Madison, WI. Bhatti, J. S. and N. B. Comerford. 2002. Measurement of phosphorus desorption from a spodic horizon using two different desorption methods and pH control. Commun. Soil Sci. Plant Anal. 33: 845-853. Bolan, N. S. and N. J. Barrow. 1984. Modelling the effect of adsorption of phosphate and other anions on the surface charge of variable charge oxides. Journal of Soil Science 35: 273-281. Bray, R. H. and L. T. Kurtz, 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 50: 39-45. Buckwith, R. S. 1965. Sorbed phosphate at standard supernatant concentration as an estimate of phosphorus needs of soils. Australian Journal of Extension Agriculture Animal Husbandary 5: 52-58. Caravaca, F., M. M. Alguacil, R. Azcon, G. Diaz, and A. Roldan. 2004. Comparing the effectiveness of mycorrhizal inoculation and amendment with sugar beet, rock phosphate and Aspergillus niger to shrub Dorycnium pentaphyllum L. Appl. Soil Ecol. 25: 169-180. Cassell, D. K. and A. Klute. 1986. Water potential: Tensiometry. p. 563-596. In A. Klute (ed.) Methods of soil analysis. Part 1: Physical and mineralogical methods. 2nd ed. Agronomy Monograph no. 9. ASA and SSSA, Madison, WI, USA. Chang, S. C. and M. L. Jackson. 1957. Fractionation of soil phosphorus. Soil Sci. 84: 133-144. Comerford, N. B. 1998. Soil P Bioavailability. In Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic, and Ecosystem Processes; Lynch, J. P., Deikman, J. Eds.; American Society of Plant Physiologists: Rockville, MD, 136-147. Corrales, I., M. Amenós, C. Poschenrieder, and J. Barceló. 2007. Phosphorus efficiency and root exudates in two contrasting tropical maize varieties. J. Plant Nutr. 30: 887-900. Cross, A. F. and W. H. Schlesinger. 1995. A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64: 197-214. Deepa, C. K., S. G. Dastager, and A. Pandey. 2010. Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World J. Microb. Biot. 26: 1233-1240. Devau, N., E. L. Cadre, P. Hinsinger, B. Jaillard, and F. Gérard. 2009. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches. Appl. Geochem. 24: 2163-2174. Doll, E. C. and R. E. Lucas. 1973. Testing soils for potassium, calcium and magnesium. In Soil Testing and Plant Analysis ed. Walsh, L.M. and Beatons, J.D. pp. 133–152. Madison, WI: Soil Science Society of America. Ezawa, T., S. E. Smith, and F. A. Smith. 2002. P metabolism and transport in AM fungi. Plant Soil 244: 221-230. Fontes, M. P. F. and S. B. Weed. 1996. Phosphate adsorption by clays from Brazilian Oxisols: relationships with specific surface area and mineralogy. Geoderma 72: 37-51. Fox, R. L. and E. J. Kamprath. 1970. Phosphate Sorption Isotherms for Evaluating the Phosphate Requirements of Soils. Soil Sci. Soc. Am. J. 34: 902-907. Fuhrman, J. K., H. Zhang, J. L. Schroder, and R. L. Davis. 2005. Water-soluble phosphorus as affected by soil to extractant ratios, extraction times, and electrolyte. Commun. Soil Sci. Plan. 36: 925-935. Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis. P. 383-411. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA. Madison, WI. Gerretsen, F. C. 1948. The influence of microorganisms on the phosphate intake by the plant. Plant Soil 1: 51-81. Gichangi, E. M., P. N. S. Mnkeni, and P. C. Brookes. 2009. Effects of goat manure and inorganic phosphate addition on soil inorganic and microbial biomass phosphorus fractions under laboratory incubation conditions. Soil Sci. Plant Nutr. 55: 764-771. Goenadi, D. H., Siswanto, and Y. Sugiarto. 2000. Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci. Soc. Am. J. 64: 927-932. Gonsiorczyk, T., P. Casper, and R. Koschel. 1998. Phosphorus binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic district (Germany). Water Sci. Technol. 37: 51-58. Gupta, M. L. and K. Nayan. 1975. Transformation of soil inorganic phosphorus in red soils. J. Ind. Soc. Soil Sci. 23: 61-65. Gyaneshwar, P., G. Naresh Kumar, L. J. Parekh, and P. S. Poole. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245: 83-93. Hameeda, B., G. Harini, O. P. Rupela, S. P. Wani, and G. Reddy. 2008. Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna. Microbiological Research 163: 234-242. Haynes, R. J. 1982. Effects of liming on phosphate availability in acid soils. A critical review. Plant Soil 68: 289-308. Hedley, M. J., J. W. B. Stewart, and B. S. Chauhan. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and laboratory incubations. Soil Sci. Soc. Am. J. 46: 870-976. Hendricks, L., N. Claassen, and A. Jungk. 1981. Phosphate depletion at the soil-root interface and the phosphate uptake of maize and rape. Z. Pflanzenernahr. Bodenk. 144: 486-499. Illmer, P. and F. Schinner. 1992. Solubilization of inorganic phosphate by microorganisms isolated from forest soil. Soil Biol. Biochem. 24: 389-395. Isherword, K. F. 1998. Fertilizer use and environment. In: N. Ahmed and A. Hamid (eds.), Proc. Symp. Plant Nutrition Management for Sustainable Agricultural Growth. NFDC, Islamabad. pp. 57-76. Islam, M. A., M. A. Saleque, M. S. Islam, A. J. M. S. Karim, A. R. M. Solaiman, and A. Islam. 2010. Phosphorus fractionations in acidic piedmont rice soils. Commun. Soil Sci. Plan. 41: 1178-1194. Islam, A. and B. Ahmed. 1973. Distribution of inositol phosphate, phospholipids and nucleic acids and mineralization of inositol phosphates in some Bangladesh soils. J. Soil Sci. 24: 193-198. Kafkafi, U., A. M. Posner, and J. P. Quirk. 1967. Desorption of phosphate from kaolinite. Soil Sci. Soc. Am. Proc. 31: 348-352. Kaiserli, A., D. Voutsa, and N. Greece. 2002. Phosphorus fractionation in lake sediments – Lakes Volvi and Koronia, N. Greece. Chemosphere 46: 1147-1155. Kamprath, E. J. and M. E. Watson. 1980. Conventional soil and tissue Tests for assessing the phosphorus status of soils. In the role of phosphorus in agriculture; Khasawneh, F. E., sample, E. C., Kamprath, E. J., Eds.; ASA, CSSA and SSSA: Madison, WI, 433-469. Kang, S. C., C. G. Ha, T. G. Lee, and D. K. Maheshwari. 2002. Solubilization of insoluble inorganic phosphate by a soil inhabiting fungus Fomitopsis sp. PS102. Curr. Sci. 82: 439-442. Khan, A. A., G. Jilani, M. S. Akhtar, S. M. S. Naqvi, and M. Rasheed. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1: 48-58. Khosla, G. R. B. and M. S. Reddy. 2007. Improvement of maize plant growth by phosphate solubilizing fungi in rock phosphate amended soils. World J. Agric. Sci. 3: 481-484. Kloepper, J. W., R. Lifshitz, and R. M. Zablotowicz. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-43. Koo, S. Y. and K. S. Cho. 2009. Isolation and characterization of a plant growth promoting rhizobacterium Serratia sp. SY5. J. Microbiol. Biotechnol. 19: 1431-1438. Kozerski, H. P. and A. Kleeberg. 1998. The sediments and the benthic pelagic exchange in the shallow lake Muggelsee. Int. Rev. Hydrobiol. 83: 77-112. Krasilinikov, N. A. 1957. On the role of soil micro-organism in plant nutrition. Microbiologiya 26: 659-672. Kucey, R. M. N., H. H. Janzen, and M. E. Leggett. 1989. Microbially mediated increases in plant-available phosphorus. Adv. Agron. 42: 199-228. Kudashev, I. S. 1956. The effect of phosphobacterin on the yield and protein contect in grains of Autumm wheat, maize and soybean. Doki. Akad. Skh. Nauk. 8: 20-23. Kundu, B. S. and A. C. Gaur. 1980. Establishment of nitrogen-fixing and phosphate-solubilizing bacteria in rhizosphere and their effect on yield and nutrient uptake of wheat crop. Plant Soil 57: 223-230. Lal, M. and I. C. Mahapatra. 1979. Phosphate transformation under continuous submergence in rice-barley rotation. J. Ind. Soc. Soil Sci. 27: 375-382. Lijklema, L. 1977. The role of iron in the exchange of phosphorus between water and sediments. In: Golterman, H. L. (Ed.), Interactions between sediments and freshwater. Dr W. Junk, The Hague, pp. 313-317. Lindsay, W. L. 1979. Chemical equilibrium in soils. John Wiley and Sons, New York, USA, p449. Lindsay, W. L., P. L. Vlek G., and S. H. Chien. 1989. Phosphate minerals. In Minerals in soil environment, 2nd edn. Eds J. B. Dixon and S. B. Weed. pp. 1089–1130. Soil Science Society of America, Madison, WI. Lopez-Pineiro, A. and A. Garcia-Navarro. 2001. Phosphate fractions and availability in Vertisols of south-western Spain. Soil Sci. 166: 548-556. Mahapatra, I. C. and W. H. Patrick, Jr. 1969. Inorganic phosphate transformation in waterlogged soils. Soil Sci. 107:281-288. Mamta, P. Rahi, V. Pathania, A. Gulati, B. Singh, R. K. Bhanwra, and R. Tewari. 2010. Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Appl. Soil Ecol. 46: 222-229. Mehlich, A. 1984. Mehlich3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plan. 15: 1409-1416. Morgan, M. A. 1997. The behavior of soil and fertilizer phosphorus. In: Tunney, H., Carton, O. T., Brookes, P. C., Johnston, A. E. (Eds.), Phosphorus loss from soil to water. Cab International, Wallingford, Oxon OX108DE, UK, pp. 137-150. Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural water. Analyt. Chim. Acta 27: 31-36. Nahas, E. 1996. Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J. Microb. Biot. 12: 567-572. Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. P. 539-579. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA. Madison, WI. Ocampo, J. A., J. M. Barea, and E. Montoya. 1978. Bacteriostasis and the inoculation of phosphate-solubilizing bacteria in the rhizosphere. Soil Biol. Biochem. 10: 439-440. Ohyama, T., M. Ito, K. Kobayashi, S. Araki, S. Yasuyoshi, O. Sasaki, T. Yamazaki, K. Soyama, R. Tanemura, and Y. Mizuno. 1991. Analytical procedures of N, P, K contents in plant and manure materials using H2SO4-H2O2 Kjeldahl digestion method. Bulletion of the Faculty of Agriculture-Niigata University. Oloya, T. O. and T. J. Logan. 1980. Phosphorus desorption from soils and sediments with varying levels of extractable phosphate. J. Environ. Qual. 9: 526-531. Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of Available Phosphorus in Soils by Extracting with Sodium Bicarbonate; U. S. Government Printing Office: Washington, DC; Vol. 939, USDA Circ. Olsen, S. R. and L. E. Sommers. 1982. Phosphorus. In Methods of soil analysis, part 2, 2nd ed. (Agronomy Monograph 9), ed. A. L. Page, R. H. Miller, and D. R. Keeney, 403-427. Madison, Wisc.: ASA and SSSA. Olsen, S. R. and F. S. Watanabe. 1957. Amethod to determine a phosphorus adsorption maximum of soils as measured by the Langmuir isotherm. Soil Sci. Soc. Am. Proc. 21:144-149. Olsen, S. R., F. S. Watanabe, and C. V. Cole. 1960. Soil properties affecting the solubility of calcium phosphates. Soil Sci. 90: 44-50. Omar, S. A. 1998. The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microb. Biot. 14: 211-219. Osborne, L. D. and Z. Rengel. 2002. Growth and P uptake by wheat genotypes supplied with phytate as the only P source. Aust. J. Agr. Res. 53: 845-850. Ozanne, P. G. 1980. Phosphorus nutrition of plants-A general treatise. P559-589. In F. E. Kasawneh, E. C. Sample, and E. J. Kamprath.(ed.) The Role of Phosphorus in Agriculture. American Society of Agronomy, Madison, Wisconsin. Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801. Pradhan, N. and L. B. Sukla. 2005. Solubilization of inorganic phosphate by fungi isolated from agriculture soil. Afr. J. Biotechnol. 5: 850-854. Raghu, K. and I. C. MacRae. 1966. Occurrence of Phosphate-dissolving Micro-organisms in the Rhizosphere of Rice Plants and in Submerged Soils. J. Appl. Microbiol. 29: 582-586. Rajan, S. S. S., J. H. Watkinson, and A. G. Sinclair. 1996. Phosphate rocks for direct application to soil. Adv. Agron. 57: 77-159. Ralston, D. B. and R. P. McBride. 1976. Interaction of mineral phosphate-solubilizing microbes with red pine seedings. Plant Soil 45: 493-507. Reddy, M. S., S. Kumar, and B. Khosla. 2002. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresour. Technol. 84: 187-189. Rengel, Z. and P. Marschner. 2005. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol. 168: 305-312. Rhoades, J. D. 1982. Cation exchange capacity. P. 149-157. In A. Page, R. H. Miller and D. R. Keeney (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Richardson, A. E. 2001. Prospects for using soil microorganism to improve the acquisition of phosphate by plant. Aust. J. Plant Physiol. 28: 897-906. Rodríguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339. Rodríguez, H., R. Fraga, and Y. Bashan. 2006. Genetics of phosphate solubilization and potential applications for improving plant growth-promoting bacteria. Plant Soil 287: 15–21. Ryan, J. and J. L. Stroehlein. 1979. Sulfuric acid treatment of calcareous soils: Effects on phosphorus solubility, inorganic phosphorus forms, and plant growth. Soil Sci. Soc. Am. J. 43:731-735. Saber, M. S. M., M. Yousry, and M. Kabesh. 1977. Effect of manganese application on the activity of phosphate-dissolving bacteria in a calcareous soil cultivated with pea plants. Plant Soil 47: 335-339. Singh, H. and M. S. Reddy. 2011. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur. J. Soil Biol. 47: 30-34. Singhania, R. A. and N. N. Goswami. 1978. Transformation of applied phosphorus under simulated conditions of growing rice and wheat in a sequence. J. Ind. Soc. Soil Sci. 26:193-197. Sperber, J. I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Austr. J. Agri. Res. 9: 778-781. Steinman, A., R. Rediske, and K. R. Reddy. 2004, The reduction of internal phosphorus loading using alum in SpringLake, Michigan. J. Environ. Qual. 33: 2040-2048. Stevenson, F. J. 1986. Cycles of Soil Carbon, Nitrogen, Phosphorus, Sulfur Micronutrients. Wiley New York. Stewart, J. W. B. and A. N. Sharpley. 1987. Controls on dynamics of soil and fertilizer phosphorus and sulfur. In: Follett RF, Stewart J. W. B. and Cole C. V., (eds) Soil fertility and organic matter as critical components of production, pp 101-121. SSSA Special Publication 19, Am. Soc. Agron., Madison, WI Subba Rao, N. S. 1982. Biofertilizers in agriculture. p.129-136. Sui, Y., M. L. Thompson, and C. W. Maize. 1999. Redistribution of biosolids derived total P applied to a Mollisol. J. Environ. Qual. 28: 1068-1074. Takahashi, S. and M. R. Anwar. 2007. Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol. Field Crops Res. 101: 160-171. White, R. W. and A. W. Taylor. 1977. Effect of pH on phosphate adsorption and isotopic exchange in acid soils at low and high additions of soluble phosphate. J. Soil Sci. 28: 48-61. Yang, J. E., C. A. Jones, H. J. Kim, and J. S. Jacobsen. 2002. Soil inorganic phosphorus fractions and Olsen-P in phosphorus-responsive calcareous soils: effects of fertilizer amount and incubation time. Commun. Soil Sci. Plan. 33: 855-871. Yuan, T. L., W. K. Robertson, and J. R. Neller. 1960. Forms of newly fixed phosphorus in three acid sandly soils. Soil Sci. Soc. Am. Proc. 24: 447-450. Zhang, J., M. Li, S. Liu, Y. Liu, L. Zhang, Q. Cao, and D. Sun. 2011. Seasonal variations and bioavailability of inorganic phosphorus in soils of Yeyahu Wetland in Beijing, China. Int. J. Sediment Res. 26: 181-192.
摘要: 土壤中的磷主要以各種難溶性無機磷型態存在,對植物的有效性低。許多學者利用溶磷菌提高植物對土壤磷的利用,但是成效常不一致。本論文選用湖口、新社、大雅等三種酸性土壤及西螺及溪洲兩種鹼性土壤,經調整土壤pH值及添加磷肥,探討土壤無機磷酸鹽的轉變;另外探討接種溶磷菌 (Rhizobium lusitanum、Burkholderia cepacia)及施用不同磷肥 (Ca3(PO4)2、FePO4、Rock P) 對土壤磷酸鹽的變化及玉米(Zea mays L.)生長的影響。 試驗結果顯示酸性土壤 (湖口、新社及大雅) 的磷型態之量依序為還原劑溶性磷 (CBD-P) 或磷酸鐵 (Fe-P) > 磷酸鋁 (Al-P) > 磷酸鈣(Ca-P) > 可溶性磷 (Soluble-P);而鹼性土壤 (西螺與溪洲) 磷型態依序為Ca-P > CBD-P或Fe-P > Al-P > Soluble-P。將西螺與溪洲的土壤pH值由7.4分別調整至5.6與5.8,其Soluble-P與Ca-P濃度分別減少48-71 % 與 25-56 %;而Al-P與Fe-P濃度分別增加13-44 % 與 39-276 %。以各土壤磷等溫吸附曲線中平衡溶液為0.2 mg-P L-1所對應的磷吸附量用KH2PO4添加至湖口、新社、西螺及溪洲土壤,經過三週孵育,各土壤中磷的型態分別主要存在Fe-P、Al-P、Ca-P及Ca-P為主,且比原土壤濃度分別增加25 %、276 %、17 %和16 %。盆栽試驗的結果顯示接種溶磷菌對玉米乾重與植體磷含量之效益不顯著。不同磷肥中肥效以施用FePO4最高,且相較於對照處理,玉米的乾重增加26-131 %,植體磷濃度則增加50-622 %。
It has been known that most soil inorganic phosphates are in hard soluble forms and many researches using phosphate solubilizing microorganism to increase their availability to plants, however, their effects are not consistant. In this study, three acid soils (Hukou, Xinshe, and Daya) and two alkaline soils (Xiluo, and Xizhou) were used to investigate the transformation of soil phosphates after the adjust of soil pH and addition of different phospates and the effect of inoculation of phosphate solubilizing bacteria (Rhizobium lusitanum and Burkholderia cepacia) and phosphates (Ca3PO4, FePO4, and Rock P) on the growth of maize (Zea mays L.). Results showed that the rank order of P fractions was CBD-P or Fe-P > Al-P > Ca-P > Soluble-P in acidic soils (Hukou, Xinshe, and Daya), and Ca-P > CBD-P or Fe-P > Al-P > Soluble-P in alkaline soils (Xiluo and Xizhou). The acidification of Xiluo and Xizhou soils from original pH 7.4 to 5.6 and 5.8, respectively, decreased their Soluble-P and Ca-P concentrations 48-71 % and 25-56 %, meanwhile, increased Al-P and Fe-P concentrations 13-44 % and 39-276 %, respectively. The most part of added KH2PO4 (P3) of Hukou, Xinshe, Xiluo and Xizhou soils, their quantity used for each soil was measured according to their isothermal adsorption equation with equilibrium concentration of solution-P at 0.2 mg-P L-1, was mainly in form of Fe-P, Al-P, Ca-P and Ca-P with increased rate, relative to original concentration, at 25 %, 276 %, 17 % and 16 %, respectively. In pot experiments, the inoculation of phosphate-solubilizing bacteria had no significant effect on the dry weight and phosphorus concentration of maize shoot. The efficiency of FePO4 was highest among phosphorus fertilizers (Ca3PO4, FePO4, and Rock P) used, and the dry weight and P concentration of maize shoot of FePO4 treatment were increased 26-131 % and 50-622 %, respectively, compared to the control.
其他識別: U0005-3101201214201100
Appears in Collections:土壤環境科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.