Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28530
標題: 吲哚丁酸對不同成熟度、不同時期之喜樹插穗在不同介質扦插之影響
The Effect of Indole Butyric Acid on Different Maturity of Camptotheca acuminate Decaisne Cutted in Different Period and Inserted in Various Medium
作者: 陳義宏
Chen, Yi-Hung
關鍵字: Camptotheca acuminate
扦插
Cutting
Rooting
IBA
Maturity
Medium
發根
吲哚丁酸
成熟度
介質
出版社: 園藝學系所
引用: 王戈戎、袁曉穎。2007。喜樹莖解剖構造及插條不定根的形成。東北林業大學學報35(3) pp. 朱建鏞。1998。園藝種苗生產。三民書局。p56-70。 朱德明。1995。植物與環境逆境。明文書局。p.309-339。 李星。2004。喜樹的分布現狀、藥用價值及發展前景。陜西師範大學學報。32:169-173 林宜信、張永勳、陳益昇、謝文全、歐潤芝、謝伯舟。2003。臺灣藥用植物資源名錄。行政院衛生署中醫藥委員會。喜樹p334。 徐善德、廖玉婉。1999。植物生理學。啟英文化事業有限公司。p402-407。 高景輝。1994。植物荷爾蒙生理。華香園出版社。p27-47。 高毓斌、黃松根。1993。牛樟之扦插繁殖。林業試驗所研究報告刊。8(4):371-388。 席夢利、施季森、包少康。2006。喜樹形成層的發育及週年活動。浙江林學院學報23(3) p275-279。 張玉紅,喜樹果實中喜樹鹼含量的產地差異及季節變化。東北林業大學學報。2002,30(6):44-46。 張宗勤、撒文清、張睿、楊金祥。2002。喜樹藥用林營造。中藥材25(2) p85-86。 張淑華、蔡錦瑩、許原瑞、何政坤。2005。喜樹之微體繁殖與喜樹鹼含量分析。台灣林業科學。20(4):331-340。 陳書婷. 2007. 黃連木之扦插繁殖. 國立中興大學園藝研究所碩士論文. 59 pp. 楊士平、李慶國。2009。喜樹鹼及其衍生物的歷史回顧及展望。化學67(1): 45-60。 諶克終 譯。1995。園藝植物營養繁殖之最新技術。台灣商務印書館。p31-127。 Altman A, and Y. Waisel. 1997. Biology of Root Formation and Development. New York: Plenum Press ISBN 0-306-45706-7. Altman, A. and P. F. Wareing. 1975. The effect of IAA on sugar accumulation and basipetal transport of 14C-labelled assimilates in relation to root formation in Phaseolus vulgaris cuttings. Physiologia Plantarum 33: 28-32. Allen, D. J. and D. R. Ort. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6: 36–42. Aminahm, H., J. M. Dick, and J. Grace. 1997. Rooting of Shorea leprosula stem cuttings decreases with increasing leaf area. Forest Ecology and Management 91: 247-254. Avidan, B. and S. Lavee. 1978. Physiological aspects of the rooting ability of olive cultivars. Acta Horticulturae 79: 93-101. Atkin, O. K., D. Bruhn, V. M. Hurry, and M. G. Tj¨olker. 2005. The hot and the cold: unravelling the variable response of plant respiration to temperature. Funct. Plant Biol. 32: 87–105. Avemann, K., R. Knippers, T. Koller, and J. M. Sogo. 1988. Camptothecin, a specific inhibitor of a type I DNA topoisomerase, induces DNA breakage at replication forks. Molecular and Cellular Biology 8: 3026-3034. Bartolini, G., and M. Tattini. 1986. Effects of phenolic acids and auxin on rooting Olea europaea L. cuttings. Hortscience 21: 2-262. Bassuk, N. L. and B. H. Howard. 1981. A positive correlation between endogenous root-inducing cofactor activity in vacuum-extracted sap and seasonal changes in rooting of M.26 winter apple cuttings. Journal of Horticultural Science 55(4): 301-312. Bendixen, C., B. Thomsen, J. Alsner, and O. Westergaard. 1990 Camptothecin- stabilized topoisomerase I–DNA adducts cause premature termination of transcription. Biochemistry 29: 5613–5619. Berry, J., and O. Bj¨orkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31: 491–543. Breen, P. J. and T. Muroaka. 1973. Effect of indolebutyric acid on distribution of 14C-photosynthate in softwood cuttings of ‘Mariana 2624’ plum. Journal of the American Society for Horticultural Science 98: 436-439. Callis, J. 2005. Auxin action. Nature 435, 436-437. Cameron, R. W. F., R. S. Harrison-Murray, K. Van Campfort, K. Kesters, and L. J. Knight. 2001. The influence of branches and leaf area on rooting and development of Cotinus coggygria cv. Royal Purple cuttings. Ann. appl. Biol. 139: 155-164. Cambridge, A. P. and D. A. Morris. 1996. Transfer of exogenous auxin from the phloem to the polar auxin transport pathway in pea (Pisum sativum L.). Planta 199: 583-588. Chung, B. C., S. Y. Lee, S. A. Oh, T. H. Rhew, H. G. Nam, and C. H. Lee. 1997. The promoter activity of sen 1, a senescence-associated gene of Arabidopsis, is repressed by sugars. J. Plant Physiol. 151: 339–345. Corrêa L. R., D. C. Paim, J. Schwambach, and A. G. Fett-Neto. 2005. Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Plant Growth Regulation 45: 63-73. Cristofori, V., Y. Rouphael, and E. Rugini. 2010. Collection time, cutting age, IBA and putrescine effects on root formation in Corylus avellana L. cuttings. Scientia Horticulturae 124: 189–194. Curir, P., C. F. Vansumere, A. Termini, P. Barthe, A. Marchesini, and M. Dolci. 1990. Flavonoid accumulation is correlated with adventitious roots formation in Eucalyptus gunni Hook micropropagated through axillary bud stimulation. Plant Physiol. 92: 1148–1153. Cuir, P., S. Sulis, F. Mariani, C. F. Van Sumere, A. Marchesini and M. Dolci. 1993. Influence of endogenous phenols on rootability of Chamaelaucium uncinatum Schauer stem cuttings. Scientia Hort. 55:303-314. Davis, T. D. and B. E. Haissig. 1990. Chemical control of adventitious root formation in cuttings. Bull Plant Growth Regul Soc. Am. 18:1–17. Davis, T. D. and N. Sankhla. 1988. Effect of shoot growth retardants and inhibitors on adventitious rooting. In ‘Adventitious Root Formation in Cuttings’. Advances in Plant Sciences Series. 2: 174-184. De Klerk G. J., and J. Hanecakova. 2008. Ethylene and rooting of mung bean cuttings. The role of auxin induced ethylene synthesis and phase-dependent effects. Plant Growth Regul. 56: 203–209. De Klerk, G. J., J. T. Brugge, and S. Marinova. 1997. Effectiveness of indolacetic acid, indolebutyric acid and naphthaleneacetic acid during adventicious root formation in vitro in Malus Jork 9. Plant Cell Tiss. Org. Cult. 49: 39–44. De Klerk, G.J., W. V. D. Krieken, and J. Jong. 1999. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev. Biol. 35: 189–199. Desai, S. D., T. K. Li, A. Rodriguez-Bauman, E. H. Rubin ,and L. F. Liu. 2001. Ubiquitin/26S proteasome-mediated degradation of topoisomerase I as a resistance mechanism to camptothecin in tumor cells. Cancer Res. 61: 5926–5932. Druege, U. and R. Kadner. 2008. Response of post-storage carbohydrate levels in pelargonium cuttings to reduced air temperature during rooting and the relationship with leaf senescence and adventitious root formation. Postharvest Biology and Technology 47: 126–135. Druege, U., S. Zerche, and R. Kadner. 2004. Nitrogen- and storage-affected carbohydrate partitioning in high light-adapted pelargonium cuttings in relation to survival and adventitious root formation under low light. Ann. Bot. 94: 831–842. Ecke, P., Jr., O.A. Matkin, and D.E. Hartley. 1990. The Poinsettia Maual, 3rd edition. Paul Ecke Poinsettia Ranch, Encinitas, Califomia. Ensminger, I., F. Busch, and N. P. A. Huner. 2006. Photostasis and cold acclimation: sensing lowtemperature through photosynthesis. Physiol. Plant. 126: 28–44. Esau K. 1977. Anatomy of seed plants. 2nd edn. New York: Wiley. Fujiki, Y., Y. Yoshikawa, T. Sato, N. Inada, M. Ito, I. Nishida, and A. Watanabe. 2001. Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol. Plant. 111: 345–352. Fukuda, H. 2004. Signals that control plant vascular cell differentiation. Nature Reviews, Molecular Cell Biology 5: 379-391. Gaspar, Th., C. Kevers, M. Crevecoeur, C. Penel, J.M. Foidart, and H. Greppin. 1992. Habituation and vitrification of plants cultured in vitro: a reciprocal relationship. Wiss. Zeitschr. Humboldtuniv. Berlin, Mathem. Naturwiss. 41: 35-40. Geneve, R. L. and C. W. Heuser. 1982. The effect of IAA, IBA, NAA and 2.4-D on root promotion and ethylene evolution in Vigna radiata cuttings. J. Amer. Soc. Hort. Sci. 107: 202–20. Giovanella, B. C., J. S. Stehlin, M. E. Wall, M. C. Wani, A. W. Nicholas, L. F. Liu, R. Silber and M. Potmesil. 1989. DNA topoisomerase I-targeted chemotherapy of human colon caner in xenografts. Science 246: 1046-1048. Hartmann, H. P., and F. Loreti, 1965. Seasonal variation in the rooting of olive cuttings. J. Amer. Soc. Hort. Sci. 87: 194–198. Hartmann, H.P., and R.M. Brooks, 1958. Propagation of Stocktom Montebello cherry rootstock by sooftwood cuttings. In: Annual Report, E. Malling Research Station, pp. 101–108. Hartmann, H.P., D. E. Kester, and J. T. Davies. 1990. Plant Propagation. Principle and Practices, 5th ed. Prentice-Hall, New Jersey. Husen A. 2008. Clonal propagation of Dalbergia sissoo Roxb. and associated metabolic changes during adventitious root primordium development. New For 36: 13-27. Husen A and Pal M. 2007. Metabolic changes during adventitious root primordium development in Tectona grandis Linn. f. (teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment. New Forests 33: 309-323. Hurry, V., A. Strand, R. Furbank, and M. Stitt. 2000. The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. Plant J. 24: 383–396. Hsiang, Y. H., R. Hertzberg, S. Hecht, and L. F. Liu. 1985. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260: 14873-14878. Kulka R.G.. 2008. Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoë) marnierianum: role of auxin and ethylene. J. Exp. Bot.. 59: 2361–2370. Lanteri, M. L., G. C. Pagnussat, and L. Lamattina. 2006. Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J. Exp. Bot. 57: 1341-1351. Li, S. and K. T. Adair. 1994. Camptotheca acuminata Decaisne XI SHU (Chinese Happy tree) a promising anti-tumor and anti-viral tree for the 21st century. Tucker Center, College of Forestry, Stephen F. Austin State University, Nacogdoches, Texas Li, S., Y. Yi, Y. Wang, Z. Zhang, and R. S. Beasley. 2002. Camptothecin accumulation and variations in Camptotheca. Planta Med 68(11): 1010-1016. Li, S., Z. Zhang, A. Cain, B. Wang, M. Long, and J. Taylor. 2005. Antifungal activity of Camptothecin, Trifolin, and Hyperoside Isolated from Camptotheca acuminate. J. Agric. Food Chem. 53: 32-37. Liu, J., and D.M. Reid, 1992. Adventitious rooting in hypocotyls of sunflower (Heliantus annuus) seedlings. VI. The role of changes in endogenous free and conjugated indole-3-acetic acid. Physiol. Plant Mol. Biol. 41: 455–496. Liu, Z. and J. C. Adams. 1998. Seed source variation in camptothecin concentrations of nurserygrown Camptotheca acuminata seedlings. New Forest 16: 167–175. Lorence, A. and C. L. Nessle . 2004. Molecules of interest camptothecin, over four decades of surprising findings. Phytochemistry 65: 2735–2749. Lorence, A., F. Medina-Bolivar, and C. L. Nessler. 2004. Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22: 437-441. Mathesius, U., C. Charon, B. G. Rolfe, A. Kondorosi, and M. Crespi. 2000a. Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized Mathesius, U., H. R. M. Schlaman, H. P. Spaink, C. Sautter, B. G. Rolfe, and MA. Djordjevic. 1998. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. The Plant Journal 14: 23-34. cytokinin addition. Molecular Plant–Microbe Interactions 13: 617-628. Mathesius, U., J. J. Weinman, B. G. Rolfe, M. A. Djordjevic. 2000b. Rhizobia can induce nodules in white clover by ‘hijacking’ mature cortical cells activated during lateral root development. Molecular Plant–Microbe Interactions 13: 170-182. McDonald, M. S. and J. Wynne. 2003. Adventitious Root Formation in Woody Tissue: Peroxidase – A Predictive Marker of Root Induction in Betula Pendula. In Vitro Cell. Dev. Biol. Plant 39: 234-235. Mcdonald, M. S. and J. Wynne. 2008. Adventitious Root Formation in Stem Cuttings of Quercus bicolor and Quercus macrocarpa and Its Relationship to Stem AnatomyJ. Amer. Soc. Hort. Sci. 133: 479-486. Meir, S., J. Riov, S. Philosoph-Hadas, and N. Aharoni. 1989. Carbohydrates stimulate ethylene production in tobacco leaf discs. III. Stimulation of enzymatic hydrolysis of indol-3-acetyl-L-alanine. Plant Physiology 90: 1246-1248. Mi, Z. and T. G. Burke. 1994. Differential interactions with camptothecin lactone and carboxylate forms with human blood components. Biochemistry 33: 10325-10336. Negi, S., M. G. Ivanchenko, and G. Muday. 2008. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J. 55: 175-187 Nemali, K. S. and M. W. van Iersel. 2004. Light effects on wax begonia: photosynthesis, growth respiration, maintenance respiration, an carbon use efficiency. J. Am. Hort. Sci. 129: 416–424. Nickell, L. G. 1982. ‘Plant Growth Regulators. Agricultural Uses.’ Pp.4-5.(Springer-Verlag: New York.) Norris, R. M., D. E. Caughey, L. W. Deeming, C. J. Mercer, and P. J. Scott. 1970. Coronary prognostic index for predicting survival after recovery from acute myocardial infarction. Lancet.2:485. Pommier, Y., A. Tanizawa, and K. W. Kohn. 1994. Mechanisms of topoisomerase I inhibition by anticancer drugs. In Advances in Pharmacology; Liu, L.F.; Academic Press: New York 29: 73-92. Possingham, J. V. 1980. Plastid replication and development in the life cycle of higher plants. Annual Review of Plant Physiology 31: 113-129. Rapaka, V. K., B. Bessler, M. Schreiner, and U. Druege. 2005. Interplay between initial carbohydrate availability, current photosynthesis, and adventitious root formation in Pelargonium cuttings. Plant Sci. 168: 1547–1560. Rose, R. J., X. D. Wang, K. E. Nolan, and B. G. Rolfe. 2006. Root meristems in Medicago truncatula tissue culture arise from vascular-derived procambial-like cells in a process regulated by ethylene. J. Exp. Bot.. 57: 2227-2235 Rugini, E., G. Di Francesco, M. Muganu, S. Astolfi, and G. Caricato. 1997. The effects of polyamines and hydrogen peroxide on root formation in olive and the role of polyamines as an early marker for rooting ability. In: Altman, A., Waisel, Y. (Eds.). Biology of Root Formation and Development. Plenum Press, New York. pp. 65–73. Sachs, T. 1981. The control of patterned differentiation of vascular tissues. Advances in Botanical Research 9: 151-162. Sakato K., H. Tanaka, N. Mukai, and M. Misawa.1974. Isolation and identification of camptothecin from cells of Camptotheca acuminata suspension cultures. Agric Biol Chem 38: 217–218. Scheres, B. 2005. Stem cells: a plant biology perspective. Cell 122: 499-504. Schwambach, J., C. M. Ruedell, M. R. Almeida, R. M. Penchel, E. F. Arau´jo, and A. G. Fett-Neto. 2008. Adventitious rooting of Eucalyptus globulus × maidennii mini-cuttings derived from mini-stumps grown in sand bed and intermittent flooding trays: a comparative study. New For 36: 261–271 Sebastiani, L. and R. Tognetti. 2004. Growing season and hydrogen peroxide effects on root induction and development in Olea europaea L. (cvs ‘Frantoio and ‘Gentile di Larino’) cuttings. Sci. Hortic. 100: 75–82. Seemann, J. R., T. D. Sharkey, J. L. Wang ,and C. B. Osmond. 1987. Environmental effects on photosynthesis, nitrogen use efficiency, and metabolic pools in leaves of sun and shade plants. Plant physiology 84: 796-802. Shin, C. G. and R. M. Snapka. 1990. Exposure to camptothecin breaks leading andlagging strand simian virus 40 DNA replication forks. Biochemical and Biophysical Research Communications 168: 135-140. Sirikantaramas, S., M. Yamazaki, and K. Saito. 2009. A survival strategy: The coevolution of the camptothecin biosynthetic pathway and self-resistance mechanism. Phytochemistry 70: 1894–1898. Song, J. D, J. H. Kim, D. H. Lee, T. H. Rhew, S. H. Cho, and C. H. Lee. 2005. Developmental regulation of the expression of 1-aminocyclopropane-l-carboxylic acid (ACC) synthase and ACC oxidase genes in hypocotyls of etiolated mung bean seedlings. Plant Sci. 168:1149–1155. Soylu, A. and U. Erturk. 1997. Some factors affecting the rooting of filbert hardwood cuttings. Acta Hort. 445: 459–466. Staker, B. L., K. Hjerrild, M. D. Feese, C. A. Behnke, A. B. Burgin, and L. Stewart. 2002. The mechanism of topoisomerase I poisoning by a camptothecin analog. Biochemistry 99: 15387-15392. Swarup, R., P. Perry, D. Hagenbeek, D. V. D. Straeten, G. T. S. Beemster, G. Sandberg, R. Bhalerao, K. Ljung, and M. J. Bennett. 2007. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell. 19: 2186–2196. Rolfe, B. G. and J. McIver. 1996. Single-leaf plantlet bioassays for the study of root morphogenesis and Rhizobium–legume nodulation. Australian Journal of Plant Physiology 23: 271-283. Szecsko, V., K, Hortko and E. Stefanovits-Banyai. 2004. Phenolic compounds, bud dormancy, and rooting ability of plum hardwood cuttings. Acta Hort. 658: 679-687. Thomas, P. and M. B. Ravindra. 1997. Shoot tipculture in mango: Influence of medium, genotype, explant factors, season and decomtamination treatments on phenolic exudation, explant survival and axenic culture establishment. Journal of Horticultural Science. 72: 713-722. Van Hegel, A. J., M. P. Harkes, H. J. Wichers, P. G. M. Hesselink, and R. M. Buitelaar. 1992. Characterization of callus formation and camptothecin production by cell lines of Camptotheca acuminata. Plant Cell Tissue Org Cult 28: 11–18. Venema, J.H., F. Posthumus, and P. R. van Hasselt. 1999. Impact of suboptimal temperature on growth, photosynthesis, leaf pigments and carbohydrates of domestic and high-altitude wild Lycopersicon species. J. Plant Physiol. 155: 711–718. Vincent, R. M., M. Lo´pez-Meyer, T. D. McKnight, and C. L. Nessler. 1997. Sustained harvest of camptothecin from the Leaves of Camptotheca acuminate. J. Nat. Prod. 60: 618-619. Wall, M. E. and M. C. Wani. 1996. Camptothecin and taxol: from discovery to clinic. J. Ethnopharmacol. 51: 239-254. Wall, M. E., M. C. Wani, C. E. Cook, and K. H. Palmer. 1966. Plant antitumor agents. I. The isola¬tion and structure of camptothecin-a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Amer Chem Soc 88(16): 3888-3890. Welander, N. T., and O. Hellgren. 1988. Growth, development, net photosynthesis and dark respiration in Pelargonium×hortorum cv. Celeste in relation to temperature, quantum flux density and absorbed quanta. J. Hort. Sci. 63: 659–666. Wiedenfeld H, M. Furmanowa, E. Roeder, J. Guzewska, and H. Gustowski. 1997. Camptothecin and 10-hydroxycamptothecin in callus and plantlets of Camptotheca acuminata. Plant Cell Tissue Org Cult 49: 213–218. Wilson, J. W., L. W. Roberts, P. M. Wilson, and P. M. Gresshoff. 1994. Stimulatory and inhibitory effects of sucrose concentrations on xylogenesis in lettuce pith explants: possible mediation by ethylene biosynthesis. Annals of botany 73: 65-73. Yamazaki, Y., H. Sudo, M. Yamazaki, N. Aimi, K. Saito. 2003. Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential ex¬pression in tissues and by stress compounds. Plant Cell Physiol 44: 395-403. Yan, X. F., Y. Wang, T. Yu, Y. H. Zhang, and S. J. Dai. 2003. Variation in camptothecin content in Camptotheca acuminata leaves. Bot Bull Acad Sin 44: 99-105.
摘要: 喜樹鹼為一種近十年來極熱門的抗癌藥物,作為喜樹鹼的萃取原料,喜樹的藥材包括葉片及莖幹產量是相當重要的,而喜樹營養繁殖體系─扦插,在本研究中試圖建立無性繁殖種苗生產體系。喜樹之扦插適期以春冬兩季為主,冬天扦插可以選用碳水化合物蓄積較多的半硬枝插與硬枝插,以利度過低溫不發根的消耗以及插穗本身的長時間發根障礙,適用IBA濃度為1000ppm、1500ppm、2000ppm,發根率可達83%;春初之際,以半硬枝插為佳,短時間低溫可以降低插穗的養分消耗、減少病原菌的感染,又可避免回溫後芽體大量萌動對碳水化合物的競爭導致存活率下降,搭配IBA 1000、1500ppm發根率可達83%;綠枝插則可以選擇一月下旬過後,營養勢較強時扦插,避免冬天長時間不發根引發的失活、萎凋,使用IBA 2000ppm可以有66%發根率;冬天扦插介質的選擇應該使用排水力較佳的泥碳苔+真珠石混合介質,以利水分之管控;而春天的枝條活力較足夠能在短時間發根,可以使用扦插海綿扦插提高發根率。針對其不同成熟度扦插容易存活的時間進行,可以有效提高各種成熟度的萌芽存活率,而選用適合的生長素濃度則可以加快繁殖過程與育苗品質。
Camptothecin has been acted as a very popular anti-cancer drugs since the past decade, because of the extraction of raw materials in term of camptothecin in which medicine materials come from shoot, stem and leaves, therefore Camptotheca acuminate production has been very important, and a vegetative propagation system of Camptotheca acuminata─ cuttings for nursery plants would be pursued in this study. The suitable period of cuttings of Camptotheca acuminate is in spring and winter. When cutting propagation was conducted in winter, semi-hardwood and hardwood which had more carbohydrate accumulation could be used to facilitate rooting through the long time consumption of low temperature and rooting obstacles. The suitable indole-3-butyric acid concentration were 1000, 1500, and 2000 ppm, the rate of rooting could be 83%; In early spring, the better choice of cutting is semi-hardwood. A short time low temperature reduced the nutrition consumption of cuttings, and the infection of pathogens, but also avoided a large number of buds sprouts competition for carbohydrates due to warm temperature. With IBA 1000, 1500ppm, could promote rooting rate to 83%; soft-wood cutting could be chosen over late Jan., when the nutritional potential of cuttings were strong, more over avoided inactivation and decay caused by long period in low temperature by winter. Using IBA 2000 ppm presented 66% rooting rate; The choice of media for cutting in winter should be used better drainage of peat moss plus perlite mixture, in order to facilitate the control of water, and soft-wood cuttings had enough energy to take for short term rooting, cubic flock could be used to promote rooting percentage. Different maturity cuttings could promote the survival rate by matching their own better cutting time, while the selection of a suitable concentration of auxin could speed up the propagation process and nursery plant quality.
URI: http://hdl.handle.net/11455/28530
其他識別: U0005-0802201215410500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0802201215410500
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.