Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28539
標題: 黃皮洋香瓜直立式栽培之結果生理及使用NaCl對果實品質之影響
The pruning and fruiting in vertical culture of melon(Cucumis melo L. var inodorous Naud) and the effect of NaCl on melon fruit quality
作者: 林世旻
Lin, Shih-Min
關鍵字: Muskmelon
黃皮洋香瓜
Vertical cultivation
△Fv/Fm
ETR
Total soluble solids
直立式栽培
葉片壽命
葉綠素螢光產量
可溶性固形物
出版社: 園藝學系所
引用: 98年農業統計年報。2009。行政院農業委員會。p. 70-71。 山崎肯哉。1982。養液栽培全篇。博友社。日本。 沈再發、許淼淼。1990。溫室洋香瓜水耕之養分吸收研究。中華農業研究。39(1): 55-64。 沈再發、陳甘澍(譯)。1997。甜瓜栽培與營養、生理障害。財團法 人農友社會福利基金會編印。高雄。 沈再發、許淼淼。2010。網紋洋香瓜之養液栽培技術。農業世界雜 誌 323:68-75。 何小珍。2002。鹽分處理對番茄‘農友301’植株生育、產量及果實 品質之影響。國立中興大學園藝學系研究所碩士論文。台中。 李國明。1999。哈密瓜產期調節之研究-不同節位留果對產期及產量 之影響。花蓮區研究彙報 17 : 73-79。 林楨祐 陳甘澍 林照能。2009。東方甜瓜之設施栽培技術介 紹。農試所鳳山分所技術服務 80:8-10。 施純堅。1999。澎湖地區高品質洋香瓜栽培之研究 Ⅱ. 種植期與結果節位上方葉 片數對溫室洋香瓜生長與品質之影響。高雄區農業改良場研究彙報 10(2): 51-63。 施純堅。2002。澎湖地區高品質洋香瓜栽培之研究 Ⅲ. 葉面積對溫室洋香瓜亞魯 斯(Earl’s)果實生長與品質之影響。高雄區農業改良場研究彙報 14(1):31-42。 姚銘輝、盧虎生、朱鈞。2002。葉綠素螢光與作物生理反應。科學農業 50(1): 31-41。 神谷園一。1982。各作型ベッドの基本技術と生理。農業技術大系メロン類 。財団法人農山漁村文化協会編印。p. 150-154。 冥戶良洋、湯橋 勤、施山紀男、今田成雄。1992。メロン果実への光合成產物の轉流、分配に及ぼす葉位およぴ灌水量の影響。日本園藝學雜誌 60(4): 897-903。 陳秀瑜、朱德民。1977。葉片老化。科學農業 25:191-196。 陳國憲。1995。不同根溫對溫室洋香瓜生理代謝之影響。國立中興大學植物學研究所碩士論文。台中。 張育森、陳玲岑、俞美如、陳帥如。2004。葉綠素螢光在植物對空氣污染抗耐性 表現上之應用。光合作用研討會。 張祖亮。1998。養液栽培之應用技術。種苗生產自動化技術通訊。 張瑞卿。1987。利用溫室栽培洋香瓜。豐年 37(7):200-222。 黃涵、洪立。1988。臺灣蔬菜彩色圖說。臺灣大學園藝系。台北。 黃圓滿。2004。設施洋香瓜直立式栽培技術。台南區農業專訊 50:4-7。 黃賢良、鄭安秀、陳文雄。1999。隧道式洋香瓜栽培管理。台南區農業改良場技術專刊 88-6 (No.92)。 黃賢良。2004。設施之作物栽培-洋香瓜設施栽培。農試所編印。p. 200-202。 莊國誌。2010。直立式栽培整枝方式及氯化鈉處理對東方型甜瓜植株生育、果實 產量與品質之影響。國立中興大學園藝學系研究所碩士論文。台中。 萩原 十、余吾卓也。1944。西瓜の葉面積と果実との関係。日本園藝學雜誌 13(3): 272-276。 鈴木英治郎、野中民雄。1982。生育のステージと生理生態。農業技術大系メロン類。財団法人農山漁村文化協会編印。p. 82-89。 連慧瑞。1997。積儲強度對溫室洋香瓜葉片光合成率與蔗糖代謝之影響。國立中興大學生命科學院植物學研究所碩士論文。台中。 蔡竹固、童伯開、陳瑞祥。1999。甜瓜病害的診斷及其防治。國立嘉義技術學院 農業推廣委員會。p. 20。 蔡青園。1999。以供源~積儲觀念來看洋香瓜之留葉及留果技術。農業世界雜誌 10(194):94-98。 蔡燕如。1997。細胞分裂素Benzyladenine處理對溫室洋香瓜葉片碳代謝及組織構造之研究。國立中興大學生命科學院植物學研究所碩士論文。台中。 戴振洋、陳榮五、蔡宜峰。2010。牛番茄介質耕栽培技術。台中區農業改良場。 鄭安秀、黃圓滿、黃瑞彰、陳昇寬、彭瑞菊。2009。洋香瓜安全生產管理。台南 區農業改良場技術專刊。 羅筱鳳、廖芳心。1999。設施園藝與芽菜栽培。僑務委員會 中華函授學校 出版。 Alarcon, J. J., M. J. Sanchez-Blanco, M. C. Bolarin, and A. Torrecillas. 1994. Growth and osmotic adjustment of tomato cultivars during and after saline stress. Plant Soil 166: 75-82. Aranda, R. R. and T. S. J. Cuartero. 2001. Tomato plant water uptake and plant water relationships under saline growth conditions. Plant Sci. 160: 265-272. Awang, Y. B. and J. G. Atherton. 1994. Salinity and shading effects on leaf water relations and ionic composition of strawberry plants grown on rockwool. J. Hort. Sci. 69: 377-383. Badr, M. A. and S. D. Abou Hussein. 2008. Yield and quality of drip-irrigated cantaloupe under salt stress conditions in arid environment. Aust. J. Basic Appl. Sci. 2(1): 141-148. Balibrea, M. E., A. M. S. Cruz, M. C. Bolarin, and F. Perez-Alfocea. 1996. Sucrolytic activities in relation to sink strength and carbohydrate composition in tomato fruit growing under salinity. Plant Sci. 118: 47-55. Ball, M. C., J. A. Butterworth, J. S. Roden, R. Christian, and J. G. Egerton. 1994. Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiol. 22: 311-319. Baker, N. R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55: 1607-1621. Black, V. J. and M. H. Unsworth. 1979. Effects of low concentrations of sulphur dioxide on net photosynthesis and dark respiration of Vicia faba. J. Exp. Bot. 30(116): 473-486. Botia, P., J. M. Navarro, A. Cerda, and V. Martinez. 2005. Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. Eur. J. Agron. 23: 243-253. Boyer, J. S. and B. L. Bowen. 1970. Inhibition of oxygen evolution inchloroplasts isolated from leaves with low water potentials. Plant Physiol. 45: 612-615. Burger, Y., S. Shen, M. Petreikov, and A. A. Schaffer. 2000. The contribution of sucrose to total sugar content in melons. Acta Horticulture 510:479-485. Bustan, A., S. Cohen, Y. D. Malach, P. Zimmermann, R. Golan, M. Sagi, and D. Pasternak. 2005. Effects of timing and duration of brackish irrigation water on fruit yield and quality of late summer melons. Agric. Water Manage. 74: 123-134. Caro, M., J. Cuartero, M. T. Estan, and M. C. Bolarin. 1991. Salinity tolerance of normal-fruited and cherry tomato cultivars. Plant Soil 136: 249-255. Charles-Edwards, D. A. and L. C. Ho. 1975. Translocation andcarbon metabolism in tomato leaves. Ann. Bot. 40: 387-389. Chartzoulakis, J. M. 1992. Effect of NaCl salinity on germination, growth and yield of greenhouse cucumber. J. Hort. Sci. 67: 115-119. Chrost, B. and K. Schmitz. 1997. Changes in soluble sugar and activity of α-galactosidase and acid invertase during muskmelon (Cucumis melo L.) fruit development. J. Plant Physiol. 151: 41-50. Del Amor, F. M., V. Martinez, and A. Cerda. 1999. Salinity duration and concentration affect fruit yield and quality and growth and mineral composition of melon plants grown in perlite. Hort. Sci. 34(7): 1234-1237. Demmig-Adams, B. and W. W. Adsms. III. 1992. Photoprotection and other responses of plants to hight light stress. Ann. Rev. Plant Phys. Plant Mol. Biol. 43: 599-626. Eguchi, H. and K. Hujieda. 1970. Chromatographic analyses of sugar accumulation of fruit of (Cucumis melo L.) Bull. Hort. Res. Stat. Jpn. D. 6: 49-56. Ehret, D. L. and L. C. Ho. 1986. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J. Hort. Sci. 61(3): 361-367. Facteau, T. J., N. E. Chestnut, and K. E. Rowe. 1983. Relationship between fruit weight, firmness, and leaf/fruit ratio in Lamber and Bing sweet cherries. Can. J. Plant Sci. 63: 763-765. Fader, C. M. and H. R. Koller. 1983. Relationships between carbon assimilation Partitioning and export in leaves of two soybean cultivars. Plant Physiol. 73: 297-303. Franco, J. A., C. Esteban, and C. Rodriguez. 1993. Effect of salinity on various growth stages of muskmelon cv. Revigal. J. Hort. Sci. 68: 899-904. Gao, Z., M. Sagi, and S. H. Lips. 1998. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci. 135: 149-159. Gross, K. C. and D. M. Pharr. 1982. A Potential Pathway for Galactose Metabolism in Cucumis sativus L. A Stachyose Transporting Species. Plant Physiol. 69: 117-121. Gough, C. and G. E. Hobson. 1990. A comparison of the productivity, quality, shelf-life characteristics and consumer reaction to the crop from cherry tomato plants grown at different levels of salinity. J. Hort. Sci. 65(4): 431-439. Higashi, K. and H. Ezura. 1999. Histological analysis of fruit development between two melon (Cucumis melo L. retriculatus) genotypes setting a different size of fruit. J. Expt. Bot. 50: 1593-1597. Hofstra, G.. and C. D. Nelson. 1969. A comparative study of translocation of assimilated 14C from leaves of different spesies. Planta 88: 103-112. Hubbard, N. L., D. M. Pharr, and S. C. Huber. 1990. Sucrose metabolism in ripening muskmelon fruit as affected by leaf area. J. Amer. Soc. Hort. Sci. 115: 798-802. Hughes, D. L. and M. Yamaguchi. 1983. Identification and distribution of some carbohydrates of the muskmelon plant. Hort. Sci. 18: 739-740. Hurkman, W. J. 1979. Ultrastructural change of chloroplasts in attached and detached, aging primary wheat leaves. Am. J. Bot. 66: 64-70. Jones, R. W. 1989. Salinity influences cucumber growth and yield. J. Amer. Soc. Hort. Sci. 114(4): 547-551. Kaya, C., D. Higgs, F. Ince, B. M. Amador, A. Cakir, and E. Sakar. 2003. Ameliorative effects of potassium phosphateon salt-stressed pepper and cucumber. J. Plant Nutr. 26(4): 807-820. Kerr, P. S. 1984. Biochemical regulation of photosynthate partitioning and its relation to whole plant growth of soybeans (Glycine max L. Merr) PhD thesis. North Carolina state University. Raleigh. Kingston, C. M. and C. W. van. Epenhuijson. 1989. Influence of leaf area on fruit development and quality of Italia glasshouse table grapes. Am. J. Enol. Vit. 40(2): 130-134. Knight, S. L., R. B. Rogers, M. A. L. Smith, and L. A. Spomer. 1992. Effects of NaCl salinity on miniature dwarf tomato ‘Micro- Tom’: I. growth analyses and nutrient composition. J. Plant. Nut. 15(11): 2315-2327. Lalonde, S., M. Tegeder, M. Throne-Holst, W. B. Frommer, and J. W. Patrick. 2003. Phloem loading and unloading of sugars and amino acids. Plant Cell Env. 26: 37-56. Lauchli, A. and E. Epstein. 1990. Plant responses to saline and sodic conditions. In Tanji, K. K. (ed.). Agricultural salinity assessment and management. Manuals and Reports on Engineering Practice 71: 113-137. Lester, G. E. and J. R. Dunlap. 1985. Physiological changes during development and ripening of ‘Perlita’ muskmelon fruits. Sci. Hort. 26: 323-331. Lester, G. E. and B. D. Bruton. 1986. Relationship of netted muskmelon fruit water loss to postharvest storage life. J. Amer. Soc. Hort. Sci. 111(5): 727-731. Lichtenthaler. H. K. 1987. Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382. Long, S. P., S. Humphries, and P. G. Falkowski. 1994. Photoinhibition of photosynthesis in nature. Ann. Rev. Plant Phys. Plant Mol. Biol. 45: 633-662. Maas, E. V. and G. J. Hoffman. 1977. Crop salt tolerance-current asessment. J. Irri. Drain. Div. ASCE. 103(2): 115-134. McGlasson, W. B. and H. K. Pratt. 1963. Fruit set patterns and fruit growth in cantaloupe (Cucumis melo L., var. reticulatis Naud.). Proc. Am. Soc. Hort. Sci. 83: 495-505. Meiri, A., D. J. Lauter, and N. Sharabani. 1995. Shoot growth and fruit-development of muskmelon under saline and non saline soil-water deficit. Irrig. Sci. 16: 15-21. Mendlinger, S. 1994. Effects of increasing plant-density and salinity on yield and fruit-quality in muskmelon. Hort. Sci. 57: 41-49. Miccolis, V. and M. E. J. Saltveit. 1991. Morphological and physiological changes during fruit growth and maturation of seven melon cultivars. J. Amer. Soc. Hort. Sci. 116: 1025-1029. Mitchell, J. P., C. Shennan, and S. R. Grattan. 1991. Developmental changes in tomato fruit composition in response to water deficit and salinity. Physiol. Plant. 83: 77-185. Mittelheuser, C. J. and R. F. M. Van-Stereninck. 1971. The ultrastructure of wheat leaves. I. Changes due to natural senescence and the effects of kinetin and ABA(Abscisic acid). Protoplasma 73: 239-252. Mousavi, S. F., B. Mostafazadeh-Fard, A. Farkhondeh, and M. Feizi. 2009. Effects of deficit irrigation with saline water on yield, fruit quality and water use efficiency of cantaloupe in an arid region. J. Agr. Sci. Tech. 11: 469-479. Munns, R., P. A. Gardner, M. L. Tonnet, and H. M. Rawson. 1988. Growth and development in NaCl-treated plants II. Do Na+ or Cl- concentrations in dividing or expanding tissues determine growth in barley Aust. J. Plant Physiol. 15: 529-540. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239-250. Naito, K., K. Udea, and J. Tsuji. 1981. Differential effects of benzyladenine on the ultrastructure of chloroplasts in intact bean leaves according to their age. Protoplasma 105: 293-306. Pardossi, A., G. Bagnoli, F. Malorgio, C. A. Campiotti, and F. Tognoni. 1999. NaCl effects on celery(Apium graveolens L.) grown in NFT. Sci. Hort. 81: 229-242. Peoples, M. B., V. C. Beilharz, S. P. Waters, J. R. Simpson, and M. J. Dalling. 1980. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). II. chloroplast senescence and the degradation of ribulose-1,5-bisphosphate carboxylase. Planta 149: 241-251. Perez-Alfocea, F., E. M. T. Caro, and G. Guerrier. 1993. Osmotic adjustment in Lycopersicon esculentum L. and pennellii under NaCl and polyethylene glycerol 6000 iso-osmotic stresses. Plysiol. Plant. 87: 493-498. Powles, S. B. 1984. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Physiol. 35: 15-44. Rufty, T. W. and S. C. Haber. 1983. Changes in starch tormation and activities of sucrose phosphate synthase and cytoplasmic fructose-1,6- bisphosphatase in response to sourse – sink alterations. Plant Physiol. 72: 74-480. Sanchez, V. M., F. J. Sunstorm, and N. S. Lang. 1993. Plan size influences bell peppr seed quality and yield. Hort. Sci. 28(8): 809-811. Schwarz, M. and J. Gale. 1981. Maintenance respiration and carbon balance of plant at low levels of sodium chloride salinity. J. Exp. Bot. 32: 933-941. Sharp, R. E., T. C. Hslao, and S. W. Kuhn. 1990. Growth of maize primary root at low water potential. II Role of growth and deposition of hexose and potassium in somotic adjustment. Plant Physiol. 93: 1337-1346. Shaw, M. and M. S. Manocha. 1965. Fine structure in detached senescing wheat leaves. Can. J. Bot. 43: 747-755. Shin, K. Y. 1992. Studies on the accumulation of sugars, amino acids and ethyl alcohol in the fruits of oriental melon (Cucumis melo L.). Kangweon Nat’l Univ PhD Diss. p. 25-37. Silva, J. and R. Santos. 2004. Can chlorophyll fluorescence be used to estimate photosynthetic production in the seagrass Zostera noltii. J. Exp. Marine Biol. Ecol. 307: 207-216. Sonneveld, C. and G. W. H. Welles. 1988. Yield and quality of rockwool-grwon tomatoes as affected by variations in EC-value and climatic conditions. Plant Soil 111: 37-42. Souza, R. P., E. C. Machado, J. A. B. Silva, A. M. M. A. Lagoa, and J. A. G. Silveira. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 51 :45-56. Suzuka, E. and S. Masada. 1961. Studied on muskmelon (Cucumis Melo L.) of sugar content in Earl’s Favorite. Bull. Fac. Ed. Sizuoka Univ. 12: 205-213. Taiz, L. and E. Zeiger. 1998. Photosynthesis: Physiology and ecological considerations. Plant Physiology 2nd. p. 227-249. Taji, T., C. Ohsumi, S. Iuchi, M. Seki, M. Kasuga, and M. Kobayashi. 2002. Important roles of drought- and cold-inducible genes for galactinol sythase in stress tolerance in Arabidopsis thaliana. Plant J. 29: 417-726. Welles, G. W. and K. Buitelar. 1985. Facters affectimg soluble solide content of muskmelon (cucumis melon L.) Netherlands. J. Agri. Sci. 36: 239-246. Wittenbach, V. A., R. C. Ackerson, R. T. Giaquinta, and R. R. Hebert. 1980. Changes in photosynthesis, ribulose bisphosphate carboxylase, proteolytic activity, and ultrastructure of soybean leaves during senescence. Crop Sci. 20: 225-231. Yoo, K. C., Y. N. Song, C. S. Jeong, and G. Y. Sin. 1989. Varietal differences in sugar accumulation and kind of sugars in Cucumis melo L. K. Kor. Soc. Hort. Sci. 30(1): 1–6. Yoshida, S., F. Dpuglosa, C. Janosh, and Gwaachai. 1976. Laboratory manual for physiological studies of rice. International Rice Research Institute, Los Banos, Phillippines. P. 46-49. Zhang, M. F., Z. L. Li, K. S. Chen, Q. Q. Qian, and S. L. Zhang. 2003. The relationship between sugar accumulation and enzymes related to sucrose metabolism in developing fruits of muskmelon. J. Plant Physiol. Mol. Biol. 29: 455-462. Zribi, L., G. Fatma, R. Fatma, R. Salwa, N. Hassan, and R. M. Nejib. 2009. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”. Sci. Hortic. 120: 36.
摘要: 為生產高品質甜瓜,現今有於溫網室採用直立式整枝之栽培模式,增加單位面積產量且可提高果實品質與價格。本論文對黃皮洋香瓜於直立式栽培中整枝方式、留葉數、留果節位及利用NaCl調整養液濃度進行研究,建立黃皮洋香瓜直立式栽培管理技術。 ‘夏鳳’洋香瓜葉片生長二~三週其鮮乾重、葉面積、葉綠素及可溶性糖含量皆達最高,第10節葉片生長至五~六週後,葉綠素、可溶性糖含量及△Fv/Fm皆顯著下降葉片開始老化,第20節葉片生長五~六週則無此現象。果實生長以著果兩天至十四天為果實快速膨大期,果重已達1000 g以上,可溶性固形物以採收前兩週開始大量累積於果實中,果實成熟採收時可達13.7 oBrix以上。 比較‘金姑娘’及‘夏鳳’洋香瓜以直立式單、雙幹整枝與匍匐栽培,‘金姑娘’ 以匍匐栽培蔓長及葉面積顯著高於直立式栽培,分別為241.8 cm及6319 cm2,三種整枝栽培對‘夏鳳’植株生長無顯著影響,‘金姑娘’及‘夏鳳’之果實大小皆以匍匐栽培顯著最高,果重分別為1433.9及1728.6 g,‘金姑娘’單幹整枝果實可溶性固形物達15.7 °Brix顯著高於雙幹及匍匐式者,分別為15.0 °Brix、14.2 °Brix。於葉片受光及遮蔽情形,匍匐栽培著果上位葉對著果下位葉無顯著遮蔽影響,‘夏鳳’直立式栽培隨葉片節位提高PPFD及ETR顯著增加,著果上位葉對著果葉片有顯著遮蔽,下位葉片之PPFD及ETR分別減少500及80 μ mol m-2s-1。 ‘秋凰’、‘夏鳳’、‘金姑娘’及‘秋蜜’洋香瓜分別於著果節位上留9、12及15片葉摘心,其地上部株高、著果節位以上葉片總葉面積皆隨留葉數增加而顯著增加。果實糖度皆以著果節位上留12及15片葉表現最佳,‘秋凰’果實留葉數以12片葉處理,其果重與果肉厚度顯著最高,分別為738.3 g、2.90 cm;‘夏鳳’及‘金姑娘’果實重量皆以著果上留9片葉最佳,留12或15片葉次之;‘秋蜜’留葉數9及12片葉處理其果重分別為897.3、880.3 g,可溶性固形物分別達13.9、14.6 oBrix。‘秋凰’及‘秋蜜’洋香瓜果實生育期葉片之△Fv/Fm皆以留葉數12能維持在0.7左右。 ‘金姑娘’、‘夏鳳’、‘金蜜’及‘秋蜜’洋香瓜於母蔓第9、12及15節位之子蔓留果,留果節位上留12片葉摘心,四品種隨留果節位提高,植株高度增加,顯著增加定植至開花所需天數。果實大小除‘夏鳳’外,其餘三品種皆隨留果節位提高有顯著增加,‘金姑娘’以15節位留果有最佳果重、果長及果肉厚分別為1167.4 g、14.7 cm及3.47 cm顯著高於9及12節位留果者,果實糖度於處理間無顯著差異。‘金蜜’及‘秋蜜’變化趨勢與‘金姑娘’相同,‘夏鳳’以第9節位留果之果實大小顯著高於12及15節位留果者,但果實可溶性固形物以15節位留果處理顯著最高,達13.8 oBrix。‘金姑娘’及‘秋蜜’隨留果節位提高,葉片所接受到光強度越強,葉片碳水化合物含量顯著增加,以15節位留果著果上第十片葉所合成之可溶性糖含量顯著高於12及9者,三者分別為5.32、4.55及4.29 mg/g DW,此結果與果實大小成正相關。 ‘夏鳳’及‘金姑娘’洋香瓜於開花及著果15天後於養液加入不同NaCl濃度,EC值調整為2、5及8 dS m-1,‘夏鳳’以EC 2及開花期間EC 5之處理對植株生長不影響,‘金姑娘’洋香瓜則以EC 2及8處理下表現最差。兩品種葉片△Fv/Fm值皆以EC值處理越高越顯著下降,其中‘金姑娘’洋香瓜於開花期或著果後15天以EC 5澆灌下,對植株生長無造成顯著影響,但提高果實品質。著果上第十片葉葉綠素含量,兩品種皆以EC 8處理最低,分別為2.08及1.46 mg/g DW,植株生長也受到限制。果實可溶性固形物‘夏鳳’洋香瓜以EC 8處理可稍提高至13.8 oBrix,與對照組13.2 oBrix差異不顯著,‘金姑娘’洋香瓜以EC 8及開花期EC 5處理可溶性固形物顯著提高至15.4及16.0 oBrix。 以本研究養液條件供給下,四品種洋香瓜以‘金姑娘’黃皮洋香瓜於直立式栽培表現較為穩定,以單、雙幹整枝、著果上留12片葉、母蔓上第12~15節位留果及開花著果階段將養液濃度以NaCl調整為EC 5澆灌下,可穩定生產最佳品質之果實。藉由洋香瓜品種、整枝方式,觀察植株生長情形與果實大小及糖度,在測定葉片光合作用相關數據,瞭解直立式栽培下,品種選擇標準及影響生理表現可能因素,建立黃皮洋香瓜直立式栽培整枝模式。
For the production of high-quality melons, growing plants in an insect-proof greenhouse using a vertical cultivation system and supplementing with nutrient solution, This study investigated the factors that may improve melon quality and production, including the pruning method, number of leaves to be retained, location of the fruit setting position, and use of NaCl to adjust the concentration of the nutrient solution. In 2-3 weeks, the total leaf growth of the ‘Summer Phoenix' muskmelon had the highest fresh dry weight, leaf area, chlorophyll content and soluble sugar content. In 5-6 weeks, the 10th leaf growth showed a significant reduction in chlorophyll, soluble sugar content and △Fv/Fm, while the 20th leaf growth did not exhibit this phenomenon. From 2-14 days after fruit setting, the fruits showed rapid enlargement, and the fruit weight reached more than 1000 g. Two weeks before harvest, the total soluble solids increased greatly in the fruits, reaching above 13.7 °Brix in mature fruit. Comparing the growth of ‘Golden Lady' and ‘Summer Phoenix' muskmelons using different cultivation methods, including vertical one-branch pruning, vertical two- branch pruning or creeping cultivation, the results showed that the ‘Golden Lady' under creeping cultivation had a significantly greater plant height and leaf area (241.8 cm and 6319 cm2, respectively) than that cultivated vertically. The three cultivation methods had no differing effects on plant growth for the ‘Summer Phoenix' melon. Creeping cultivation resulted in the greatest fruit size for both ‘Golden Lady' and ‘Summer Phoenix', which was 1433.9 g and 1728.6 g, respectively. ‘Golden Lady' with vertical one-branch pruning cultivation had a total soluble solids of 15.7 °Brix, which was higher than that produced by vertical two-branch pruning or creeping cultivation (15.0 and 14.2 °Brix, respectively). In terms of shade, at the fruit position, the upper leaves had no significant shading effect on the lower leaves with the creeping cultivation method, while for the ‘Summer Phoenix' with the vertical cultivation methods, the PPFD and ETR increased significantly with leaf node position. This suggest that the upper leaves had a shading effect on the lower leaves, and the PPFD and ETR of the lower leaves decreased by 500 and 80 μmol m-2s-1, respectively. To compare the effects of different trimming methods on fruit growth, ‘Autumn Phoenix', ‘Summer Phoenix', ‘Golden Lady' and ‘Autumn Sweet' muskmelons were used different trimming methods that left 9, 12 or 15 leaves remaining above the fruit set position, with the branch topped. The results showed that the plant height and the total leaf area of the leaves above the fruit set position both increased with an increasing number of leaves remaining above the fruit set position. The plants with 12 or 15 leaves remaining above the fruit set position had the highest sugar content. ‘Autumn Phoenix' with 12 leaves remaining exhibited a significantly higher fruit weight and flesh thickness, at 738.3 g and 2.90 cm, respectively. ‘Summer Phoenix' and ‘Golden Lady' had the best fruit growth with 9 leaves remaining, followed by 12 and 15 leaves remaining. For ‘Autumn Sweet' with 12 and 15 leaves remaining above each fruiting node, the fruit weight was 897.3g and 880.3 g and the total soluble solids was 13.9 and 14.6 °Brix, respectively. During the fruit growth period, ‘Autumn Phoenix' and ‘Autumn Sweet' muskmelons with 12 leaves remaining above each fruiting node maintained a higher △Fv/Fm, which was around 0.7. To compare the effect of fruit set position on fruit growth, using ‘Golden Lady', ‘Summer Phoenix', ‘Golden Honey' and ‘Autumn Sweet' muskmelon plants, the fruit setting position on the primary branch was kept at node 9, 12 or 15, retaining 12 leaves above the nodes. The plant height of all four cultivars increased as the fruit set position increased, significantly increasing the number of days from planting to flowering. With the exception of ‘Summer Phoenix', the fruit size increased with increasing fruit set position in all 3 cultivars. With the fruit set position at node 15, ‘Golden Lady' had the highest fruit weight, length and flesh thickness, of 1167.4 g, 14.7 cm and 3.47 cm, respectively. These values were significantly higher than those resulting from a fruit set position at nodes 9 and 12, while the fruit sugar content did not differ significantly between different fruit set positions. ‘Golden Honey' and ‘Autumn Sweet' had similar results to those for ‘Golden Lady'. However, ‘Summer Phoenix' with the fruit set position at node 9 had the largest fruit size, while with the fruit set position at node 15, it had a higher total soluble solids of 13.8 °Brix. In ‘Golden Lady' and ‘Autumn Sweet', as the fruit set position increased, the carbohydrate content in the leaves increased. The soluble sugar level synthesized by the 10th leaf of the plant with the fruit set position at node 15 was higher than that of plants with the fruit set position at nodes 12 and 9, which was 5.32, 4.55 and 4.29 mg/g DW, respectively. The results were positively correlated with fruit size. To investigate the effect of the concentration of the nutrient solution, the EC value of the nutrient solution was adjusted to 2, 5 and 8 ds m-1 (EC 2, 5 and 8) using NaCl, and the solutions were used to treat ‘Summer Phoenix' and ‘Golden Lady' muskmelon plants during the period of flowering to 15 days after fruit setting. In ‘Summer Phoenix', The plant growth was not affected by EC 2 and EC 5 treated during the flowering period. In ‘Golden Lady', The plant growth of EC 2 and EC 8 treatment was poor. In both cultivars, the leaf △Fv/Fm decreased as the EC value of the nutrient solution increased. EC5 treatment had no effect on the plant growth of ‘Golden Lady' during flowering or 15 days after fruit setting, while the treatment did improve the fruit quality. EC 8 treatment reduced the chlorophyll content of the 10th leaf above the fruit set position in both cultivars, the values being 2.08 and 1.46 mg/g DW, respectively. In terms of fruit total soluble solids, EC 8 treatment increased the content of the ‘Summer Phoenix' muskmelon to 13.8 °Brix, which did not differ significantly from that of the control, at 13.2 °Brix. In addition, EC 8 treatment and flowering-period EC 5 treatment significantly increased the total soluble solids of ‘Golden Lady' to 15.4 and 16.0 °Brix, respectively. In conclusion, analysis of leaf photosynthesis revealed the selection criteria for a suitable cultivar, showing the factors that might affect physiological performance. Among the 4 cultivars, when vertical one or two-branch pruning methods were used, 12 leaves were retained above the fruit setting position, the fruit setting position was maintained at nodes 12-15 on the primary branch, and the nutrient solution was adjusted to EC 5 with NaCl, For producing the fruit with the highest quality.
URI: http://hdl.handle.net/11455/28539
其他識別: U0005-1108201114504000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108201114504000
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.