Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28553
標題: 胡瓜‘夏笛’ 無土有機栽培技術之研究
Studies on the organic cultivation techniques of Cucumber 'Shia Di' (Cucumis sativus L.) in Soilless Culture
作者: 許韻聲
Hsu, Yun-Sheng
關鍵字: cucumber
胡瓜
organic nutrition
oil-palm ash
potassium humate
有機養液
棕櫚灰
腐植酸鉀
出版社: 園藝學系所
引用: 于振文、梁曉芳、李延奇、王雪。2007。施鉀量和施鉀時期對小麥氮素和鉀吸收利用的影響。應用生態學報。18(1): 69-74。 王才義。1989。理想栽培介質之調製。設施園藝研習會專集。pp. 65-75。 何念祖、孟賜福。1987。植物營養原理。上海科學技術出版社。434pp.。 吳正宗。2001。。主要肥料簡介。王銀波主編。肥料要覽。行政院農業委員會。台灣。pp. 48-68。 吳昌佑、朱德民。1994。植物在缺氧逆境下之適應調節。科學農業 42(5,6):140-146。 呂彥誠。2008。胡瓜‘夏笛’有機養液栽培之研究。國立中興大學碩士論文。124pp.。 李文汕。2011。有機栽培介質的生產製造及應用。台灣有機廢棄物的再利用─有機質肥料之生產及應用研究。pp. 101-126。 李冬梅、魏珉、張海森、孔祥波、王秀峰。2005。氮磷鉀不同用量及配比對日光溫室黃瓜產量和品質的影響。中國農學通報。21(7): 262-265。 李冬梅、魏珉、張海森、王秀峰。2006。氮、磷、钾用量和配比對温室黄瓜葉片相關代謝酶活性的影响。植物營養與肥料學報。12(3): 382-387。 李佛琳、彭桂芬、蕭鳳回。1999。我國煙草鉀素研究的現狀與展望。中國煙草科學。1 : 22-25。 李金龍、候鳳舞。1989。養液栽培之發展方向與展望。沈再發,許淼淼及徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。pp. 1-3 李金龍、傅季郁。1988。本省養液栽培之發展方向與重點。養液栽培技術講習會專刊第一輯。行政院農業委員會。pp. 1-7。 李哖。1989。。固體介質之養液栽培。沈再發,許淼淼及徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。pp. 78-87 李國權、林慧玲。1989。水耕蔬菜營養失調常見之症狀與診斷方法。養液栽培技講習會專刊第二輯。行政院農業委員會。pp. 67-77。 邢亞南、鄭陽、郝建軍、於洋、付淑傑、李峰、閔國春。2006。不同濃度碳酸氫鉀對黃瓜幼苗光合作用的影響。安徽農業科學。34(3) : 421 – 423。 孟煥文、程智慧、程小金、黃華甯、張忠新、楊玉梅、劉濤. 2004. 授粉對黃瓜果實發育和品質的影響.西北植物學報12:2307-2311. 林永鴻、洪崑煌。2000。土壤中鉀的行為對作物吸收鉀的影響。科學農業。48(1、2): 36-41。 林景和。2001。腐植酸對土壤、磷礦石及鳥糞石養分有效性和作物養分吸收與錳毒害緩解之影響。國立台灣大學農業化學研究所。144pp.。 柯勇。2004。植物生理學。藝軒出版社。762pp.。 孫騫、楊軍、張紹陽、張鳳琪、丁士林。2006。鉀營養與果樹光合生理及果實品質關係研究進展。廣東農業科學。12: 126-129。 張竹青、魯劍巍、孫向陽。2007。氮鉀配合施用對桑樹生長和桑葉產量的影響。貴州農業科學。35(2): 65-66。 張育菁。2004。鈣對小胡瓜及絲瓜葉片和果實礦物元素濃度之影響。國立中興大學園藝學系碩士論文。137p。 曹冬梅、王雲山、康黎芳、王中英。2002。鉀對蘋果幼數水分狀況的影響。果樹學報。19(1): 64-66。 陳仁炫。1991。土壤管理手冊。國立中興大學土壤調查試驗中心。pp. 199-251。 郭魁士。1990。。土壤學。中國書局。台北。pp. 210-453。 曾明寶、林深林、張武男。1997。四種有機成分介質理化性變化。興大園藝 22(2): 47-58。 游雯蓉。2003。瓜類植株鈣之吸收與運移。國立中興大學園藝學系碩士論文。98pp.。 黃敏奇。2004。小白菜‘三鳳’無土薄層介質栽培技術之開發研究。國立中興大學園藝學系碩士論文。124pp.。 黃裕銘、陳建中、吳正宗。2003。養液鉀氮比及夜間停止養液供應對小白菜生長及養分吸收之影響。農林學報。52(2): 61-67。 黃錦和、張武男、林深林。1993。數種本土化介質之物理性與化學性分析。興大園藝 18:73-88。 詹惠雯。2006。有機介質簡化養液栽培對胡瓜‘夏笛’生長發育之影響。國立中興大學碩士論文。125pp.。 廖乾華、陳錦木、葉俊嚴。2001。廢棄盆栽花卉栽培介質堆肥化回收利用之研究。土壤肥料試驗彙報。 pp. 171-176。 劉惠菱。2009。麻竹筍採後生理與貯藏技術之研究。國立中興大學碩士論文。127pp.。 劉詠梅、王鵬、談鋒、李坤培。2000。鉀營養對番紅花水分關係的影響。西南農業大學學報。 22(4): 356-364。 蔡正宏。2007。鈣、鉀元素對養液栽培胡瓜‘夏笛’植株生育及果實品質之影響。國立中興大學碩士論文。90pp.。 蔡永皞。1996。農水產廢棄物堆肥化之開發及應用 (Ⅱ)瓜類育苗介質之研製及其理化性質。高雄區農業改良場研究彙報 8(1):43-54。 蔡金川、李孟穎、蕭吉雄譯。1997。生理障害。胡瓜栽培與營養、生理障害。財團法人農友社會福利基金會。pp. 24-37。 蔣德安、饒立華、彭佐權。1988。低鉀條件下水稻的光合特性。植物生理學報。14(1) : 50-55。 羅鳳來。2006。氮磷钾平衡施用對葱產量和品質的影響研究。福建農業學報。21(4): 393-397。 饒立華、蔣德安、薛建明。1989。鉀營養對水稻光合器功能的效應與穀粒產量的影響。植物生理學報。15(2) : 191-197。 Adeli, A. and J. J. Varco. 2002. Potassium management effect on cotton yield, nutrition,and soil potassium level. J. plant nutr. 25: 2229-2242. Albert U. Imbufe, Antonio F. Patti, David Burrow, Aravind Surapaneni, Argo, W. R. and J. A. Biernbaum. 1995. Root-medium nutrient levels and irrigation requirements of pointsettias grown in five root media. J. Amer. Soc. Hort. Sci. 30(1): 535-538. Argo, W. R. and J. A. Biernbaum. 1996. Componet comparisons: coconut coir. GrowerTalks 59: 62-66. Argo, W. R. and J. A. Biernbaum. 1996. The effect of lime, irrigation-water source, and water-soluble fertilizer on root-zone pH, electrical conductivity, and macronutrient management of container root media with impatiens. J. Amer. Soc. Hort. Sci. 121:442-452. Aslam, M., R. L. Travis, and D. W. Rains. 2001. Different effect of amino acids on nitrate uptake and reduction systems in barley roots. Plant Sci. 160: 219-228. Atkin, K and M. A. Nichols. 2004. Organic Hydroponics. Acta Hort 648:121-127. Bacci, L., M.C. Picanco, A.H.R. Gonring, R.N.C. Guedes, and A.L.B. Crespo. 2006. Critical yield components and key loss factors of tropical cucumber crops.Crop Protection 25:1117–1125. Bergmann W. 1992. Nutritional disorder of plant. Gustav fischer verlag jena. Stuttgart, New York. p. 69-97. Bilderback, T. E. and W. C. Fonteno. 1987. Effects of container geometry and media physical properties on air and water volumes in containers. J. Environ. Hort. 5(4): 180-182. Boonkorkaew, P., S. Hikosaka, and N. Sugiyama. 2008. Effect of pollination on cell division, cell enlargement, and endogenous hormones in fruit development in a gynoecious cucumber. Scientia Horticulturae 116:1–7. Buchanan, B. B., W. Gruissem, and R. L. Jones. 2000. Nitrogen and sulfur. Biochemistry and Molecular Biology of P. P.789. Cakmak, I. 2005. The role of potassium in alleviating detrimental effects of abiotic stressesin plant. J. Plant Nutr. Soil Sci. 168: 521-530. Catterall, W. A. 1995. Structure and function of voltage-gated ion channels. Annu. Rev. Biochem. 64:493-531. Chapagain, B. P. and Z. Wiesman. 2004. Effect of Nutri-Vant-PeaK foliar spray on plant development, yield, and fruit quality in greenhourse tomatoes. Sci. Hort. 102: 177-188. Chapagain, B. P., and Z. Wiesman. 2004. Effect of potassium magnesium chloride in the fertigation solution as partial source of potassium on growth, yield and quality of greenhouse tomato. Sci. Hort. 99: 279-288. Crawford, N. M. 1995. Nitrate: nutrient and signal for plant growth. Plant Cell 7: 859-868. De Boodt, M. and O. Verdonck. 1972. The physical properties to the substrates in horticulture. Acta Hort. 26:37-44. Delfine, S., F. Loreto, and A. Alvino. 2001. Drought-stress effects on physiology, growth and biomass production of rainfed and irrigated bell pepper plants in the Mediterranean region. J. Amer. Soc. Hort. Sci. 126:297-304. Dingkuhn M. 1989. Net photosynthesis, water use efficiency, leaf water potential and leaf rolling as affected by water deficit in tropical upland rice. Aust Journal of Experimental Agriculture. 40(6): 1171-1181. Doman, D. C. and D. R. Donald. 1979. Supplied foliar potassium on phloem loading in Beta vulgaris L.. Plant Physiol. 64: 528-533. Drzal, M. S., D. K. Cassel, and W. C. Fonteno. 1999. Pore fraction analysis: a new pool for substrate testing. Acta Hort. 481: 43-54. Evans, M. R., S. Konduru, and R. H. Stamps. 1996. Source variation in physical and chemical properties of coconut coir dust. HortSci. 31: 965-967. Fonteno, W. C. and P. V. Nelson. 1990. Physical properties of and plant response to rockwool amended media. J. Amer. Soc. Hort. Sci. 115: 375-381. Fonteno, W. C., D. A. Bailey, T. E. Bliderback, R. E. Bir and P. V. Nelson. 1996. Substrate and water management for greenhouse nursery production. The first international symposium on pot flowers and bedding plants production in Taiwan. Taoyuan Dictrict Agricultural Improvement Station. pp.87-129. Forster, H. and K. Mengel. 1969. The effect of a short term interruption in the K supply during the early stage on yield formation, mineral content and soluble amino acid content. Z. Acker-u. Pflanzenbau 130: 203-213. Frossard, E., L. M. Condron, A. Oberson, S. Sinaj, and J. C. Fardeau. 2000. Processes governing phosphorus availability in temperate soils. J. Environ. Qual. 29: 12-53. Gahoonia, T. S., N. Claassen, and A. Jungk. 1992. Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant Soil. 140:241-248. Guo, X. S., S.Y. Ye, and W. J. Wang. 2004. Effect of different Ksources and rates on the yield and quality of cucumber. Plant Nutrition and Fertilizer Science.10 (3) : 292-297. Hammett, L. K., C. H. Miller, W. H. Swallow, and C. Harden. 1984. Influence of N source, N rate, and K rate on the yield and mineral concentration of sweet potato. J. Amer. Soc. Hort. Sci. 109: 294-298. Handreck, K. A.1983. Particle size and the physical properties of growing media for containers. Commun. in Soil Sci. Plant Anal. 14(3): 209-222. Harada, Y., K.Haga, T. Osada, and N. Koshino. 1991. Proceedings of symposium on pig waste treatment and composting Ⅱ. Quality aspects of animal waste compost. Taiwan. pp. 54-76. He, X. T., S. J. Traina, and T. J. Logan. 1992. Chemical properties of municipal solid waste composts. J. Envrion. Qual. 21:318-329. Hikosaka, S. and N. Sugiyama. 2004. Characteristics of flower and fruit development of multi-pistillate type cucumbers. J. Hort. Sci. Biotechnol. 79(2):219-222. Hoitink, H. A. J. and P. C. Fahy. 1986. Basis for the control of soil-borne plant pathogens with composts. Ann. Rev. Phytopathol. 24: 93-114. Ingestad, T. 1973. Mineral nutrient requirements of cucumber seedlings. Plant Physiol. 52:332-338. Jenkins, J.R. and W.M. Jarrell. 1989. Predicting physical and chemical properties of container mixtures. HortScience. 24(2):292-295. Jones, D.L. and A. Hodge, 1999. Biodegrad kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Bio. Biochem. 31:1331-1342. Jones, D.L., 1998. Amino acid biodegradation and its potential effects on organic nitrogen capture by plants. Soil bio. biochem. 31:613-622 Jones, David L., John R.Healey, Victoria B. Willett, John F.Farrar, and Angela Hodge, 2005. Dissolved organic nitrogen uptake by plants – an important N uptake pathway? Soil bio.biochem.37:413-423. Kaiser, W. M. 1982. Correlation between changes in photosynthetic activity and changes in total p rotop last volume in leaf tissuefrom hygro2, meso2, and xeyophytes under osmotic stress. Planta. 154: 538-545. Kazda, M. and P. Weilgony. 1988. Seasonal dynamics of major cations in xylem sap and needles of Norway spruce (Picea abies L. Karst.) in stands with different soil solution chemistry. Plant Soil. 110(11):91-100. Latin, R. X. 1996. Noninfectious Disorders Nutritional Disorder. Compendium of Cucubit Diseases. T. A., Zitter, D. L., Hopkins, and C. E., Thomas, eds. APS Press, Minnesota, U.S.A. pp.87 Leggett, J. L., Sims J. L., and Gpssett et al. 1977. Potassium and magnesium nutrition effects on yield and chemical composition of burley tobacco leaves and smoke. Journal of Plant Science. 57: 159-166. Lester, G. E. 2005.Whole plant applied potasium:effect on Cantaloupe fruit sugar content and related human wellness compounds. Acta Hort. 682: 487-492. Lester. G. E., J. L. Jifon, and G. Rogers. 2005. Supplemental foliar potassium applications during muskmelon fruit development can improve fruit quality, ascorbic acid, and bata-carotene contents. J. Amer. Soc. Sci. 130: 649-653. Lin, D., D. Huang, and S. Wang. 2004. Effects of potassium levels on fruit quality of muskmelon in soilless medium culture. Sci. Hort. 102: 53-60. Mackowiak, C. L., G. W. Stutte, J. L. Garland, B. W. Finger, and L. M. Ruffe. 1997. Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues. Adv. Space Res. 20:2017-2022. Mackowiak, C. L., J. L. Garland, and J. C. Sager. 1996. Recycling crop residues for use in recirculating hydroponic crop production. Acta Hort 440:19-24. Mackowiak, C. L., J. L. Garland, R. F. Strayer, B. W. Finger and R. M. Wheeler. 1996. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system. Adv. Space Res. 18:(1/2)281-(1/2)287 Mackowiak, C. L., R. M. Wheeler, G.. W. Stutte, N. C. Yorio and J. C. Sager. 1997. Use of biologically reclaimed minerals for continuous hydroponic potato production in a celss. Adv. Space Res. 20:1815-1820. Marschner, H. 1995. Mineral nutrition of higher plants, 2nd editon. London: Academic Press. Marti, H. R. and H. A. Mills. 2002. Nitrogen and potassium nutrition affect yield, dry weight partitioning, and nutrient-use efficiency of sweet potato. Commun. Soil Sci. Plant Anal. 33(1&2): 287-301. Mengel, K. and D. J. Pilbean. 1992. Proceedings of the phytochemical society of Europe 33: Nitrogen Metabolism of Plants. Oxford Scirnce Publications. New York. p.329-334. Mengel, K. and E.A. Kirkby. 1987. Principles of plant nutrition. 4th edn. International Potash Institute, Bern, Switzerland. :687. Milk, R. R., W. C. Fonteno, and R. A. Larson. 1989a. Hydrology of horticultural substrates: Ⅱ. Predicting physical properties of media in containers. J. Amer. Soc. Hort. Sci. 114(1): 53-56. Milk, R. R., W. C. Fonteno, and R. A. Larson. 1989b. Hydrology of horticultural substrates: Ⅲ. Predicting air and water content of limited-volume plug cells. Hort. Sci. 114(1): 57-61. Mills, H. A. and J. B. Jones. 1996. Plant analysis handbook II :a practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Inc. Georgia. pp.181. Moinuddin, K. S., and S. K. Bansal. 2005. Growth, yield, and economics of potato in relation to progressive application of potassium fertilizer. J. plant nutr. 28: 183-200. Moinuddin, K. S., S. K. Bansal, and N. S. Pasricha. 2004. Influence of graded levels of potassium fertilizer on growth, yield, and economic parameters of potato. J. plant nutr. 27: 239-259. Nielsen, K. L and K. Thorup-Kristensen. 2004 Growing media for organic tomato plantet production. Acta Hort 644:183-187. Nkongolo, N. V. and J. Caron. 1999. Bark particle size and the modification of the physical properties of peat substrate. Can. J. Soil. Sci. 79 (1): 111-116. Norrie, J., M. E. D. Graham, J. Charbonneau, and A. Gosselin. 1994. Impact of irrigation management of greenhouse tomato: yield, nutrition, and salinity of peat substrate. Can. J. Plant Sci. 74:497-503. Ozanne, P.G. 1980. Phosphate nutrition of plants-general treatise. The role of phosphorus in agriculture. Eds. F. E. Khasawneh, E. C. Sample, and E. J. Kamprath. American Socity of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, USA. pp.559-589. Papadopoulos, A. P. and S. Khosla. 1993. Limitations of the K:N ration in the nutrient feed of drip-irrigated greenhouse tomatoes as a crop-management tool. Can. J. Plant Sci. 73: 289-296. Peoples, T. R. and D. W. Koch. 1979. Role of potassium in carbon dioxide assimilation in Medicago sativa L.. Plant Physiol. 63: 878-881. Peterson, T. A. and D. T. Krizek. 1992. A flow-through hydroponic system fo the study of root restriction. J. Plant Nutr. 15(6&7): 893-911. Peterson, T. A., J. D. Cohen, J. G. Buta, and D. T. Krizek. 1991. Influence of root restriction on tomato: changes in leaf cell expansion, abscisic acid and indole-3-acetic acid. Plant Physiol. 96 (suppl.):78. Peterson, T. A., M. D. Rensel, and D. T. Krizek. 1991a. Tomato (Lycopersicon esculentum Mill. cv. ‘Better Bush’) plant response to root restriction. Ⅰ. Alteration of plant morphology. J. Exp. Bot. 42(243): 1233-1240. Peterson, T. A., M. D. Rensel, and D. T. Krizek. 1991b. Tomato (Lycopersicon esculentum Mill. cv. ‘Better Bush’) plant response to root restriction. Ⅱ. Root respiration and ethylene generation. J. Exp. Bot. 42(243): 1241-1249. Pettigrew, W. T. 1999. Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton. Agron. J. 91: 962-968. Polacco J. C. 1977. Nitrogen metabolism of plants clarendon press, oxford urea utilization and urease synthesis require Ni2+. Plant Physoil. 59:827-830 Prasad, M. and M. J. Maher. 1993. Physical and chemical properties of fractionated peat. Acta Hort. 342:257-264. Raghothama, K. G. 1999. Phosphate acquisition. Ann. Rev. Plant Physiol. Mol. Biol. 50:665-693. Schachtman, D. P. and Schroeder, I. J. 1994. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature. 370:655-658. Schmilewski, G. 1988. An international comparative study on the physical and chemical analysis of horticulture substrates. Acta Hort. 211: 425-441. Schultheis1, Jonathan R., John T. Ambrose, Stephen B. Bambara, and Wyatt A. Mangum. 1994. Selective bee attractants did not improve cucumber and watermelon yield. HortScience 29(3):155-158. Taiz L. and E. Zeiger. 2002. Plant Physiology. The Benjamin/Cummings Publishing Company, Inc. pp.302-307 Tisdale, S. L., W. L. Nelson and J. D. Beaton. 1985. Soil fertility and fertilizer, 4th ed. Macmillan Publishing Company. New York. pp.210-211. Trudel, M. J., Ozbun J. L. 1971. Influence of potassium on carotenoid content of tomato fruit. J. Amer. Soc. Hort. Sci. 96: 763-765. Ullrich, W. R. 1992. Transport of nitrate and ammonium through plant membranes. In: Nitrogen Metabolism of Plants. Oxford university press. Oxford. p.121-137. Wilcox, G. E., J. R. Magalhaes, and F. L. I. M. Silva. 1985. Ammonium and nitrate concentration as factors in tomato growth and nutrient uptake. J. Plant Nutri. 8: 989-998. William Roy Jackson and Alvin D. Milner. 2005. Effects of potassium humate on aggregate stability of two soils from Victoria, Australia. Geoderma 125:321–330. Wilson, S. B., P. J. Stoffella, and D. A. Graetz. 2002. Development of compost-based media for containerized perennials. Sci. Hort. 93:311-320. Xu, G., S. Wolf, and U. Kafkafi. 2002. Ammonium on potassium interaction in sweet pepper. J. plant nutr. 25: 719-734.
摘要: 研究探討於介質中添加棕櫚灰做為鉀肥的可行性,且分析泥炭土、椰土、稻殼和木屑的理化性,嘗試以調配胡瓜‘夏笛’的栽培介質。此外,於胡瓜‘夏笛’有機養液栽培上,研究以棕櫚灰和腐植酸鉀為鉀源時,對胡瓜生育與產量上的影響。 介質中添加以1.4 mm過篩的0、5、10及15 g/L棕櫚灰,以維持濕潤的方式進行模擬。介質模擬試驗結果顯示,介質添加棕櫚灰導致pH值過高,至60天pH值介於6.8至7.34之間,且模擬初期EC值過高,以及介質中的交換性鉀含量高可能造成拮抗作用,故排除於介質中添加棕櫚灰為鉀肥的可行性。 有機介質的理化性調查,MⅣ介質配方(泥炭土:稻殼:椰土=40:15:45)在粒徑分析上與M0配方相似,且因椰土比例較高,具有較佳的保水性,極有效水達36.28%。物理性分析方面較其他處理有較高的總體密度、總孔隙度及容器容水量,且充氣孔隙度也在理想範圍內(20~30%)。化學性分析上,pH值也較其他配方高,鉀鎂鐵銅含量較其他介質配方高 試驗三以MⅣ配方(泥炭土:稻殼:椰土=40:15:45)為有機混合介質,分別添加以1.4 mm過篩的1、2、3與4 g/L苦土石灰,且同時分別添加0.5 g/L的磷礦砂和肉骨粉。介質模擬栽培試驗結果顯示,所有處理之介質pH值在8至16天間可達到穩定平衡的狀態,其中添加苦土石灰2 g/L之處理,其pH值在64天的模擬期間內可維持在5.99至6.50之間,且EC值並無超過4 ms/cm,介質適合胡瓜生長範圍。因此,MⅣ配方介質中添加以1.4 mm過篩的苦土石灰2 g/L作為鈣、鎂源及維持介質pH值的穩定以供生長發育。 試驗四以試驗三經模擬栽培的介質,再以胺基酸、腐植酸鉀及棕櫚灰配成有機簡化養液,固定氮濃度為200 ppm及兩種不同的鉀濃度分別為300和400 ppm,進行胡瓜‘夏笛’的栽培比較試驗。栽培期間調查結果顯示,在栽培期間所有處理的介質EC值逐漸增加,而介質pH值隨栽培日數增加而緩慢下降,至栽培第70天,有機養液A和C處理的pH值已低至5.27~5.28間,但不影響生長勢,而有機養液B和D處理的pH值仍維持在適當範圍內。生育性狀方面,各處理的株高在256.8至280.5 cm之間,單株葉片數在26.7至28.7片之間,鮮重為386.4至449.4 g之間,乾重為34.29至46.48 g/株之間,以及葉面積為6868至7867 cm2之間,各處理間並無顯著差異,但有機養液B處理在前中期時,營養生長速度較其他處理快。元素分析上,介質有效性鉀含量以有機養液A處理明顯較其它處理低,而前中期以有機養液B處理具有較高的有效性鉀含量,但有機養液C和D處理在後期仍維持較高的有效性鉀含量。葉片分析部份,至栽培第56天後,以有機養液C處理仍維持在Mills和Jones(1996)建議合理範圍內,僅銅含量不足,但不影響生育狀況。果實產量與品質調查顯示,以棕櫚灰為鉀源的有機養液B處理,其果實具有較佳的硬度和果肉脆度,但以棕櫚灰和腐質酸鉀各半的有機養液C和D處理,在果長、周徑、結果數、雌花數、著果率、可售果率、單株產量、乾果重、糖度和碳水化合物上則有較佳的表現。此外,以鉀濃度為300 ppm的有機養液C處理在果長、果周、結果數、雌花數、著果率、可售果率和單株產量勝過以鉀濃度為400 ppm的有機養液D處理,這表示有機養液以氮鉀比為1:1.5且棕櫚灰和腐質酸鉀各半時,於胡瓜栽培上具有較佳的表現。
This research studies on the feasibility of added oil-palm ash as potash in medium, and investigating to physical and chemical characteristics of four organic medium (peat moss, coconut coir, rice hull and saw dust) for mixing media on cucumber cultivation. In addition, research studies on the influence between oil-palm ash and potassium humate as potash of liquid organic nutrition to growth and yield of organic cucumber ‘Sia Di' (cucumis sativus L.) in soilless culture. Adding 0, 5, 10 and 15 g/L of 1.4-mm oil-palm ash to the media by maintain wetness incubation. The results showed that medium added oil-palm ash have high pH value, and, the pH value maintained between 6.8 and 7.34 at sixtieth day. In addition, The initial EC value was more than 4 ms/cm, and exchange K content of medium was too high that may resulted antagonism. Therefore, excluding form the feasibility of added oil-palm ash as potash in medium. Surveying physical and chemical characteristics of four organic medium, the MⅣmedia formulation (composed of peat moss: rice hull: coconut coir = 40: 15: 45) in the particle size analysis is similar to M0 media formulation, and because a higher proportion of coconut coir with better water retention, and the easily available water up to 36.28%. Physical analysis, MⅣ media formulation has high bulk density, total porosity and the container capacity, and the Air-filled porosity is in the ideal range (20-30%). Chemical analysis, MⅣ media formulation has higher pH values than other formulations of media. Element analysis, MⅣ media formulation has a number of nutrient content than other media formulations, such as potassium, magnesium, iron and copper. Adding 1, 2, 3 and 4 g/L of 1.4-mm dolomite , bone meal 0.5 g/L and phosphate 0.5 g/L to the media by maintain wetness incubation. The result showed that within 8 to 16 days, the pH of the medium was steady and balanced. In addition, within the sixty-four-day cultivation period, the pH of the MⅣ media formulation containing 2 g/L dolomite maintained between 5.99 and 6.50, and the EC did not exceed 4 ms/cm, which is considered an appropriate environment for cucumbers to grow. As a result, the MⅣ media formulation with added 2 g/L of 1.4-mm dolomite could provide cucumbers the proper pH and stable sources of calcium and magnesium for development. Based on Experiment Three's organic medium, which containing 2 g/L dolomite, bone meal 0.5 g/L and phosphate 0.5 g/L, Experiment Four compared the cucumber development of nutrition (with set the concentration of 200 ppm of nitrogen and potassium in two different concentrations were 300 and 400ppm) to that organic substance consisted with amino acid and oil-palm ash and potassium humate. Using organic nutrition culture cucumber, during the cultivation period, all of the media EC value increased, while all of the media pH value decreased slowly with increased the number of days. At seventieth day, the pH value of the organic nutrition treatment of A and C decreased to between 5.27 and 5.28, while the pH value of the organic nutrition treatment of B and D maintained at ideal range . Although the medium turned slightly acidic, it had no harmful effects on cucumber growth. Fertility traits analysis, the height of plant was between 256.8 and 280.5 cm, the leaf number per plant was between 26.7 and 28.7, the fresh weight per plant was between 386.4 and 449.4 g, the dry weight per plant was between 34.29 and 46.48 g, and the leaf area was between 6868 and 7867 cm2. Results showed no significant difference among the treatments, but the organic nutrition B treatment in the before-medium period, the vegetative growth rate faster than the other treatments. Element analysis, the exchange potassium content of the organic nutrition A treatment was significantly low than other treatments, and the organic nutrition B treatment in the before-medium period has higher exchange K content than others, but the organic nutrition treatment of C and D in the later period was still to maintain the higher of exchange K content. To 56 days after planting, the leaf element content of at the organic nutrition B treatment remains in Mills and Jones (1996) suggested a reasonable range, only the lack of copper content, but does not affect fertility. Surveyed fruit yield and quality, the results showed that the organic nutrition B treatment with oil-palm ash as a potassium source has better hardness and brittleness on fruit, but the organic nutrition treatment of C and D with the half of oil-palm ash and potassium humate have better performance on fruit circumference, the number of fruits, the number of female flowers, the fruit set rate, fruit sellable rate, yield, dry fruit weight, sugar and carbohydrates . In addition, the potassium concentration of 300ppm of organic nutrition C treatment has better than the potassium concentration of 300ppm of organic nutrition D treatment on the fruit length, fruit weeks, the number of results, the number of female flowers, the fruit set, fruit sellable rate and yield. The result showed that the organic nutrition with nitrogen and potassium ratio of 1:1.5 and half of oil-palm ash and potassium humate has better performance on cucumber cultivation.
URI: http://hdl.handle.net/11455/28553
其他識別: U0005-1508201104594800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1508201104594800
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.