Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28564
標題: 有機介質簡化養液栽培對胡瓜‘夏笛’生長發育之影響
Studies on Simplified Nutrition Management in Soilless Culture of Cucumber 'Sia Di' (Cucumis sativus L.) Growth and Development
作者: 詹惠雯
Chan, Hui-Wen
關鍵字: soilless
有機介質
calcium carbonate
dolomite
guano
phosphate rock
meat bone dust
cucumber
碳酸鈣
苦土石灰
海鳥磷肥
磷礦砂
肉骨粉
胡瓜
出版社: 園藝學系所
引用: 王銀波、吳正宗。1990。培養液之理論與實際。沈再發,許淼淼主編。養液栽培技術講習會專刊第三輯。行政院農業委員會。pp.14-26。 王銀波。1988。養液栽培之肥料與管理。沈再發,許淼淼主編。養液栽培技術講習會專刊第一輯。行政院農業委員會。pp.59-69。 王銀波。1989。培養液之化學性及其管理。沈再發,許淼淼和徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。pp.60-68。 台北農產運銷股份有限公司。1992。果菜分級包裝手冊(二)。台北農產運銷股份有限公司編印。 何念祖、孟賜福。1987。植物營養原理。上海科學技術出版社。pp.1-434。 吳正宗。2001。主要肥料簡介。王銀波主編。肥料要覽。行政院農業委員會。台灣。pp.48-68。 呂理福、呂理組。1989。本省養液栽培之現況及其改進方向。沈再發,許淼淼和徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。pp.4-16。 李文汕。1999。蔬菜無土介質容器栽培。蔬菜容器栽培技術研討會專集。pp.1-17。 李金龍、侯鳳舞。1989。養液栽培之發展方向與展望。沈再發,許淼淼和徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。pp.1-3。 李金龍、傅季郁。1988。本省養液栽培之發展方向與重點。沈再發,許淼淼主編。養液栽培技術講習會專刊第一輯。行政院農業委員會。pp.1-7。 李哖。1989。固體介質之養液栽培。沈再發,許淼淼和徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。pp.78-87。 李國權、林慧玲。1989。水耕蔬菜營養失調常見之症狀與診斷方法。沈再發,許淼淼和徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。pp.67-77。 沈再發、許淼淼。1989。作物的營養特性及影響養液組成之因素。沈再發,許淼淼和徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。pp.44-59。 卓文君。1998。設施葉菜類連作障礙之研究。國立中興大學園藝學系碩士論文。 林昭遠。2003。肥料之認識與檢定。教學園地-水土保持電子書。國立中興大學水土保持學系環境復育研究室。htttp://water.nchu.edu.tw/main/ LER_EBOOK/SOILLAB/CHAPT12/ch12.htm 林景和。2001a。腐植酸對土壤、磷礦石及鳥糞石養分有效性和作物養分吸收與錳毒害緩解之影響。國立台灣大學農業化學研究所。144p。 林學正。2001b。磷肥的型態與作物吸收同化。臺肥月刊。42(6):46-49。 胡美珊。1992。磷礦粉肥效之化學速測檢驗法及磷礦粉在土壤中的轉變。國立台灣大學農業化學研究所碩士論文。66p。 范美玲、黃泮宮、洪登村。1992。鈣、矽肥料處理對甜椒生長之影響。中國園藝38:117-127。 高德錚。1989。國內外各種養液栽培法特性之比較。沈再發,許淼淼和徐森彥主編。養液栽培技術講習會專刊第二輯。行政院農業委員會。pp.17-43。 張守敬。1951。臺灣省土壤肥力概述,第七章-臺灣土壤中的磷酸。臺灣省農業試驗所報告第七號。臺灣省農業試驗所。 張育菁。2004。鈣對小胡瓜及絲瓜葉片和果實礦物元素濃度之影響。國立中興大學園藝學系碩士論文。137p。 張則周、陳尊賢主編。1995。土壤分析手冊。中華土壤肥料學會主編。行政院農業委員會。465p。 莊作權、趙震慶、郭銘寶。1978。台灣旱作土壤之尿素轉化作用。Ⅰ.尿素施用量與大豆、玉米間作對土壤氮素及pH變化之影響。農林學報27:173-184。 連深。1991。酸性土壤之應用與改良。土壤管理手冊。國立中心大學土壤調查試驗中心。pp.263-276。 郭孚燿。1998。彩色甜椒生產技術-少量多樣化產品。台中區農推專訊22:14-22。 郭魁士。1990。土壤學。中國書局。台北。pp.210-453。 陳仁炫、丁美幸。1993。土壤pH與磷肥施用對酸性和石灰質土壤磷生物有效性的影響。中國農業化學會誌31:653-666. 陳仁炫。1991。土壤管理手冊。國立中興大學土壤調查試驗中心。pp.199-251。 陳仁炫。1993。強酸性土壤的問題及改良對策。農藥世界114:13-17。 曾明寶。1997。四種有機成分介質理化性變化及對盆栽植物的影響。國立中興大學園藝學系碩士論文。104p。 游雯蓉。2003。瓜類植株鈣之吸收與運移。國立中興大學園藝學系碩士論文。98p。 黃敏奇。2004。小白菜‘三鳳’無土薄層介質栽培技術之開發研究。國立中興大學園藝學系碩士論文。124p。 黃錦河。1995。本土化蔬菜穴盤育苗介質之開發利用。國立中興大學園藝學系碩士論文。132p。 楊秋忠、趙震慶、張永輝。1986。台灣酸性土壤接種菌根菌及施用磷礦石粉對玉米生長之影響。中華農學會報136:15-23。 楊秋忠。1989。土壤與肥料。農世股份有限公司。台中。pp.185-192。 葉士財。1998。五種有機介質於盆栽使用中之理化性變化。國立中興大學園藝學系碩士論文。104p。 廖玉婉、徐善德、林美華、謝永祥、吳弘達、鍾仁彬。1999。植物生理學。啟英文化事業有限公司。台灣:台北。pp.100-121。 蔡永皞。1996。農水產廢棄物堆肥化之開發及應用(Ⅱ)瓜類育苗介質之研製及其理化性質。高雄區農業改良場研究彙報8:24-29。 薛佑光。2000。介質理化特性及其對甘藍與番茄穴盤苗之影響。國立中興大學園藝學系碩士論文。92p。 謝明憲。2001。花胡瓜設施栽培。台南區農業專訊第35期。pp.4-10。 謝慶芳。1999。有機農業適用資材之探討。有機農業發展研討會專刊。台灣省台中區農業改良場。pp.5-12。 鍾仁賜、葉美雲、張則周。1994。酸性土壤中施用有機物對作物生長之影響及鋁錳之解毒作用。臺灣東部問題土壤改良研討會論文集。臺灣省花蓮區農業改良場。pp.179-197。 鍾仁賜。1999。有機肥料在作物生長上所扮演之角色。有機農業發展研討會專刊。台灣省台中區農業改良場。pp.37-68。 Adams, P. 1991. Effect of increasing the salinity of the nutrient solution with major nutrients or sodium chloride on the yield, quality and composition of tomatoes grown in rockwool. J. Hort. Sci. 66:201-207. Alexander, D. McE. and R. C. Woodham. 1970. Chemical composition of leaf tissues of Sultana vines grown in nutrient solutions deficient in macro-elements. Vitis. 9:207-217. Allen, E., D. Ming, L. Hossner, and D. Herninger. 1995. Modeling transport Kinetics in Clinoplilolite-phosphate rock system. Soil Sci. Soc. Am. J. 59:48-255. Allison, F. E. 1973. Soil Organic Matter and Its Role in Crop Production. Elsevier Scientific Publishing Company, London. Amarasiri, S. L. and S. R. Olsen. 1973. Liming as related to solubility of P and plant growth in an acid tropical soil. Soil Sci. Am. Proc. 37:763-766. Amer, F., K. R. Bouldin, C. A. Black and F. R. Duke. 1955. Characterization of soil phosphorus by anion exchange resin adsorption and 32P-equilibration. Plant Soil 6:391-408. Anjos, I. D. and D. L. Powell. 1987. The effect of lime on phosphorus adsorption and barley growth in three acid soils. Plant Soil. 103:75-83. Arenas, M., C. S. Vavrina, J. A. Cornell, E. A. Hanlon, and G. J. Hochmuth. 2002. Coir as an alternative to peat in media for tomato transplant production. HortSci. 37(2):309-312. Argo, W. R. and J. A. Biernbaum. 1994. Irrigation requirements, root-medium pH, and mutrient concentrations of Easter lilies grown in five peat-base media with and without an evaporation barrier. J. Amer. Soc. Hort. Sci. 119:1151-1156. Argo, W. R. and J. A. Biernbaum. 19995. Root-medium nutrient levels and irrigation requirements of poinsettias grown in five root media. J. Amer. Soc. Hort. Sci. 30:535-538. Argo, W. R. and J. A. Biernbaum. 1996a. The effect of lime, irrigation-water source, and water-soluble fertilizer on root-zone pH, electrical conductivity, and macronutrient management of container root media with impatiens. J. Amer. Soc. Hort. Sci. 121:442-452. Argo, W. R. and J. A. Biernbaum. 1996b. Availability and persistence of macronutrients from lime and preplant nutrient charge fertilizers in peat-based root media. J. Amer. Soc. Hort. Sci. 121:453-460. Argo, W. R. and J. A. Biernbaum. 1997. The effect of root media on root-zone pH, calcium, and magnesium management in container with impatiens. J. Amer. Soc. Hort. Sci. 122:275-284. Armiger, W. H. and M. Fried. 1957. The plant availability of various sources of phosphate rock. Soil Sci. Soc. Am. Proc. 21:183-188. Asher, C. J., and J. F. Loneragan. 1967. Response of plants to phosphate concentration in solution culture: I. Growth and phosphorus content. Soil Sci. 103:225-233. Badalucco, L., S. Grego, S. Dell''Orco and P. Nannipieri. 1992. Effect of liming on some chemical, biochemical, and microbiological properties of acid soils under spruce (Picea abies L.). Biol. Fertil. Soils 14:76-83. Baligar, V. C., T. B. Kinraide, R. J. Wright, O. L. Bennet, and M. D. Smedley. 1987. Aluminuim effects on growth and P、Ca and Mg uptake efficiency in red clover cultivars. J. Plant Nutri. 10:1131-1137. Bar-Tal, A., B. Aloni, L. Karni, J. Oserovitz, A. Hazan, M. Itach, S. Gantz, A. Avidan, I. Posalski, N. Tratkovski, and R. Rosenberg. 2001. Nitrogen nutrition of greenhouse pepper.Ⅰ. Effects of nitrogen concentration and NO3:NH4 ratio on yield, fruit shape, and the incidence of blossom-end rot in relation to plant mineral composition. HortScience 36:1244-1251. Batjes, N. H. 1997. A world data set of derived soil properties by Faounesco soil unit for global modeling. Soil Use Manage 13:9-16. Bolland, M. D. A. and J. W. Bowden. 1984. The initial and residual value for subterranean clover of phosphorous from Crandallite rock phosphates, apatite rock phosphates and superphosphate. Fert. Res. 5:295-307. Cabala-Rosand, J. and A. Wild. 1982. Direct use of low grade phosphate rock from Brazil as fertilizer. I. Effect of reaction time in soil. Plant Soil 65:351-362. Cramer, G., E. Epstein, and A. Lauchli. 1989. Na-Ca interactions in barley seedlings: Relationship to ion transport and growth. Plant Cell Environ. 12:551-558. Dalton, I. D., G. C. Russell and D. H. Sieling. 1952. Effect of organic matter on phosphate availability. Soil Sci. 73:173-177. De Boodt, M. and O. Verdonck. 1972. the physical properties of the substrates in horticulture. Acta Hort. 26:37-44. Delfine, S., F. Loreto, and A. Alvino. 2001. Drought-stress effects on physiology, growth and biomass production of rainfed and irrigated bell pepper plants in the Mediterranean region. J. Amer. Soc. Hort. Sci. 126:297-304. Föhse, D., N. Claassen, and A. Jungk. 1988. Phosphorus efficiency of plants. I. External and internal P requirement and P uptake efficiency of different plant species. Plant Soil 110:101-109. Fonteno, W. C., D. A. Bailey, T. E. Bliderback, R. E. Bir and P. V. Nelson. 1996. Substrate and water management for greenhouse nursery production. The first international symposium on pot flowers and bedding plants production in Taiwan. Taoyuan Dictrict Agricultural Improvement Station. pp.87-129. Forster, H. and K. Mengel. 1969. The effect of a short term interruption in the K supply during the early stage on yield formation, mineral content and soluble amino acid content. Z. Acker-u. Pflianzenbau. 130:203-213. Fox, R. C. and E. J. Kamprath. 1970. Phosphorus sorption isotherm for evaluating the phosphate requirements of soils. Soil Sci. Soc. Am. J. 34:902-906. Frossard, E., L. M. Condron, A. Oberson, S. Sinaj, and J. C. Fardeau. 2000. Processes governing phosphorus availability in temperate soils. J. Environ. Qual. 29: 12-53. Gahoonia, T. S., N. Claassen, and A. Jungk. 1992. Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant Soil 140:241-248. Handreck, K. A. 1983. Particle size and the physical properties of growing media for containers. Common. In Soil Sci. Plant Anal. 14:209-222. Hanger, B. C. 1979. The movement of calcium in plants. Commum. Soil Sci. Plant Anal. 10:171-193. Haynes, R.J. and R. Naidu. 1982. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical condition: a review. Nutrient Cycling Agroecosystems 51:123-137. He, X. T., S. J. Traina, and T. J.Logan. 1992. Chemical properties of municipal solid waste composts. J. Envrion. Qual. 21:318-329. Helling, C. S., G. Chesters and R. B. Corey. 1964. Contribution of organic matter and clay to soil cation exchange capacity as affected by the pH of the saturation solution. Soil Sci. Soc. Amer. Proc. 28:517-520. Heuer, B. 1991. Growth, photosynthesis and protein content in cucumber plants as affected by supplied nitrogen form. J. Plant Nutr. 14:363-373. Himelrick, D. G. 1991.Growth and nutritional response of nine grape cultivars to lowsoil pH. HortScience 26:269-271. Himelrick, D. G. and R. F. McDuffie, 1983. The calcium cycle: Uptake and distribution in apple trees. HortScience 18:147-151. Hinsinger, P., and R. J. Gilkes. 1996. Mobilization of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH. Eur. J. soil Sci. 47:533-544. Ho, L. C., P. Adams, X. Z. L., H. Shen, J. Andrews, and Z. H. Xu. 1995. Response of Ca-efficient and Ca-inefficient tomato cultivars to salinity in plant growth, Ca accumulation and blossom-end rot. J.Hort. Sci. 70:909-918. Hoffland, E. 1992. Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape. Plant Soil 140:279-289. Hohjo, M., C. Kuwata, K. Yoshikawa and T. Ito. 1995. Effect of nitrogen form, nutrient concentration and Ca concentration on the growth, yield and fruit quality in NFT-tomato plants. Acta. Hort. 396:145-152. Hoyt, P. B. 1981. Improvements in soil tilth and rapeseed emergence by lime applications on acid soils in the Peace River region. Can. J. Soil Sci. 61:91-98. Hue, N. V., I. Amien and J. Hansen. 1989. Aluminum detoxication with green manures. Commun. Soil Sci. Plant Anal. 70:1491-1511. Hunter, S. A., E. N. Hoffman and J. A. Yungen. 1961. Residual effects of phosphorus fertilization on an eastern Oregon soil. Soil Sci. Soc. Am. Proc. 25:218-221. Ingestad, T. 1973. Mineral nutrient requirements of cucumber seedlings. Plant Physiol. 52:332-338. Jairaj, V. P., D. A. Whitney and D. E. Kissel. 1991. Residual value of fertiliaer phosphorus in selected Kansas Soil. Soil Sci. Soc. Am. J. 55:399-404. Kazda, M. and P. Weilgony. 1988. Seasonal dynamics of major cations in xylem sap and needles of Norway spruce (Picea abies L. Karst.) in stands with different soil solution chemistry. Plant Soil 110:91-100. Keltjens, W. G. and J. H. Nijenstein. 1987. Diurnal variations in uptake, transport and assimilation of NO3- and efflux of OH- in maize plants. J. Plant Nutr. 10:887-900. Khasawneh, F. E. and E. C. Doll. 1978. The use of phosphate rock for direct application to soils. Adv. Agron. 30:159-206. Kirkby, E. A. 1979. Maximizing calcium uptake by plants. Commun. Soil Sci. PlantAnal. 10:89-113. Koranski, D. S. 1989. Production 101:Sorting the relationship between water quality, feeding programs and media components. Growertalks`on plugs. Growertalks magazine. pp.78-80. Kotsiras, A., C. M. Olympios, J. Drosopoulos, and H. C. Passam. 2002. Effect of nitrogen form and concentration on the distribution ions within cucumber fruits. Sci. Hort. 95:175-183. Latin, R. X. 1996. Noninfectious Disorders Nutritional Disorders. Compendium of Cucurbit Diseases. T. A., Zitter, D. L., Hopkins, and C. E., Thomas, eds. APS Press, Minnesota, U.S.A. pp.87. Läuchli, A. and R. L. Bieleski. 1983. Calcium nutrient of higher plants. Inorganic Plant Nutrient. Encyclopedia of plant physiology. New series v.15 pp.22-29. Lindsay, W. L. 1979. Chemical Equilibria in Soils. John Wiley and Sons, New York, USA, 449p. Lopez, H. I. D. and C. P. Burnham. 1974. The effect of pH on phosphorus adsorption in soils. J. Soil Sci. 25:207-216. Lukin, V. V. and Epplin F. M. 2003. Optimal frequency and quantity of agricultural lime applications. Agri. Systems. 76:949-967. Margóczi, K., E. Takács, L. Técsi, and I. Maróti. 1989. Photosynthesis and production of two Capsicum annuum L. cultivars at different nitrate supplies. Photosynthetica 23:441-448. Marschner, H. 1995. Mineral Nutrition of Higher Plants, 2nd Edition. Academic Press, London. Mattingly, G. E. G. 1975. Labile phosphate in soils. Soil Sci. 119:369-375. Mayfield, J. L., E. H. Simonne, C. C. Mitchell, J. L. Sibley, D. J. Eakes, R. T. Boozer, and E. L. Ⅲ. Vinson. 2001. Effect of liming materials on soil available nutrients, yield, and grade distribution of dry matter, Ca and K in tomato. J. Plant Nutr. 24:87-99. Mengel, K. and E. A. Kirkby. 1987. Principles of Plant Nutrition. 4th edn. International Potash Institute, Bern, Switzerland. 687p. Michael A. W. and B. G. Ellis. 1984. Influence of calcium solution activity and surface area on the solubility of selected rock phosphates. Soil Sci. 138: 354-358. Mills, H. A. and J. B. Jones. 1996. Plant analysis handbook II :a practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Inc. Georgia. pp.181. Molitor, H. D. 1990. The European perspective with emphasis on subirrigation and recirculation of water and nutrients. Acta Hort. 272:165-173. Mortson, J. L. 1963. Complexing of metals by soil organic matter. Soil Sci. Soc. Am. Proc. 27:179-186. Morvant, J. K., J. M. Dole, and E. Allen. 1997. Irrigation systems alter distribution of roots, soluble salts, nitrogen, and pH in the root medium. HortTechnology 7: 56-160. Murdock, J. T. and W. A. Seay. 1955. The availability to greenhouse crops of rock phosphate phorphorus and calcium in superphosphate-rock phosphate mixtures. Soil Sci. Soc. Amer. Proc. 19:199-203. Norrie, J., M. E. D. Graham, J. Charbonneau, and A. Gosselin. 1994. Impact of irrigation management of greenhouse tomato: yield, nutrition, and salinity of peat substrate. Can. J. Plant Sci. 74:497-503. Nukaya, A., K. Goto., H. Jang., A. Kano., and K. Ohkawa. 1995. Effect of K/Ca ratio in the nutrient solution on incidence of blossom-end rot and gold speaks of tomato fruit grown in rockwool. Acta. Hort. 396:123-130. Ozanne, P. G. 1980. Phosphate nutrition of plants-general treatise. The Role of Phosphorus in Agriculture. Eds. F. E. Khasawneh, E. C. Sample and E. J. Kamprath. American Socity of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, USA. pp.559-589. Parfitt, R. L. 1979. The availability of P from phosphate-goethite bridging complexes. Desportion and uptake by ryegrass. Plant Soil 53:55-65. Peñuelas, J., C. Biel, and M. Estiarte. 1993. Changes in biomass, chlorophyll content and gas exchange of beans and peppers under nitrogen and water stress. Photosynthetica 29:535-542. Poovaiah, B. R. 1988. Molecular aspect of calcium action in plant. HortScience 23:267-271. Prasad, M. and M. J. Maher. 1993. Physical and chemical properties of fractionated peat. Acta Hort. 342:257-264. Raghothama, K. G. 1999. Phosphate acquisition. Ann. Rev. Plant Physiol. Mol. Biol. 50:665-693. Ramirez, R., S. M. Fernandez, and J. I. Lizaso. 2001. Changes of pH and available phosphorus and calcium in rhizophere of aluminum-tolerant maize germplasm fertilized with phosphate rock. Commun. Soil Sci. Plant Anal. 32: 1551-1565. Riley, D., and S. A. Barber. 1971. Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci. Soc. Am. Proc. 35:301-306. Roth, C. H. and M. A. Pavan. 1991. Effects of lime and gypsum on clay dispersion and infiltration in samples of a Brazilian Oxisol. Geoderma. 48:351-361. Sarro, M. J., R. M. Paz, M. d. Caceres, and J. M. Penalosa. 1994. Effect of calcium/potassium rate ammonium supply on nutrition and yields of cucumber plants. J. Plant Nutr. 17:1489-1500. Scharrer, K. and J. Jung. 1955. The influence of the nutrition on the ration of cationsinplants. Z. Pflanzenernähr. Düng. Bodenk. 71:76-94. Schnek, M. and J. Wehrmann. 1979. The influence of ammonia in nutrient solution on growth and metabolism of cucumber plants. Plant Soil 52:403-414. Schon, M. K., M. P. Compton, E. Bell, and I. Burns. 1994. Nitrogen concentrations affect pepper yield and leachate nitrate-nitrigen from rockwool culture. HortScience 29:1139-1142. Scott, W. D., B. D. McCraw, J. E. Motes, and M. W. Smith. 1993. Application of Calcium to soil and cultivar affect elemental concentration of watermelon leaf and rind tissue. J. Amer. Soc. Hort. Sci. 118:201-206. Shear, C. B. 1975. Calcium-related disorders of fruits and vegetables. HortScience. 10:361-365. Smyth, J. T. and P. A. Sanchez. 1980. Effects of lime, silicate and phosphorus applications to an oxisol on phosphorus sorption and ion retention. Soil Sci. Soc. Am. J. 44:500-505. Spiers, J. M. 1987. Effect of K, Ca, and Mg leaves and N source on growth and leaf element content of Cheyenne blackberry. HortScience. 22:576-577. Spiers, J. M. 1993. Nitrogen, calcium, and magnesium fertilization affects growth and leaf elemental content of dormanred raspberry. J. Plant Nutri 16:2333-2339. Spiers, J. M. and J. H. Braswell. 1994. Response of ‘Sterling Muscadine’ grape to calcium, magnesium, and nitrogent fertilization. J. Plant Nutri. 17: 1739-1750. Tachibana, S. 1991. Import of calcium by tomato fruit in relation to the day-night periodicity. Sci. Hort. 45:235-243. Tisdale, S. L., W. L. Nelson and J. D. Beaton. 1985. Soil Fertility and Fertilizer, 4th ed. Macmillan Publishing Company. New York. pp.210-211. Vickers J. C. and J. M. Zak. 1978. Effect of pH, P, and Al on the growth and chemical composition of crownvetch. Agron. J. 70:748-751. Water, W. E. and V. F. Nettles. 1960a. The effect of calcium on growth responses, sex expression, fruit responses and chemical composity of the ‘Charleston Gray’ watermelon. J. Amer. Hort. Sci. 77: 508-512. Water, W. E. and V. F. Nettles. 1960b. The influence of hydrated lime and nitrogen on yield, quality, and chemical composition of ‘Charleston Gray’watermelon. J. Amer. Hort. Sci. 77:503-507. William, B. J., J. C. Peterson, and J. D. Utzinger. 1988. Liming Reactions in sphagnum peat-based growing media. J. Amer. Soc. Hort. Sci. 113:210-214. Wilson, S. B., P. J. Stoffella, and D. A. Graetz. 2002. Development of compost-based media for containerized perennials. Sci. Hort. 93:311-320. Yoshida, S., F. Dpuglosa, C. Janosh, and G. Gwaachai. 1976. Laboratory manual for physiological studies of rice. Internatuonal Rice Research Institute, Los Banos, Phillippines pp.46-49.
摘要: 本試驗探討介質添加碳酸鈣與苦土石灰兩種鈣肥以及海鳥磷肥、磷礦砂和肉骨粉等三種磷肥進行培育,測定其有效性鈣、磷元素含量,以做為簡化養液管理初步研究。並期望利用僅提供氮及鉀之簡化養液進行胡瓜‘夏笛’栽培試驗以改善養液配製不易,達到簡化管理之可行性。 利用介質添加0、1.5、3.0及4.5 g/L碳酸鈣或苦土石灰,以滴灌或維持濕潤之方式培育。兩種石灰於培育初期即具提升介質pH之效果,且隨著添加比例增加而升高,但添加量在3.0 g/L以上,提升pH值之能力趨緩,甚至不再增加,兩者以碳酸鈣酸性中和能力較佳,但差異不大。供給鈣肥的能力高且效果相似,添加量愈高,有效性鈣濃度愈高。另外介質添加不同比例之磷肥,對影響pH之能力以磷礦砂最高,其次為海鳥磷肥,肉骨粉最低,但效果皆不如添加石灰者。調整介質pH在6~7之間,磷礦砂、海鳥磷肥與肉骨粉皆能提供有效性磷,磷濃度隨著添加量增加而增加,以磷礦砂供給能力最高,肉骨粉最低。 胡瓜以簡化養液栽培在經石灰調整介質pH並添加磷肥之介質,在栽培期間所有處理之介質EC值逐漸增加,而處理組之介質pH隨生長日數增加明顯較對照組下降;另外以含氮175 ppm之養液栽培,各處理之介質EC值反而逐漸下降,而處理組之介質pH下降趨勢漸緩,對照組的pH反而提高下降速度。在試驗中使用0.5 g/L石灰即可使介質pH達6.0~6.5之間,使用碳酸鈣比苦土石灰有較高的酸性中和能力,但差異不大,在栽培期間介質有效性鈣並無明顯減少或增加;另外單獨或混合施用總量在0.9~1.0 g/L之磷礦砂、海鳥磷肥與肉骨粉,足以供給胡瓜生長所需,而在栽培期間介質有效性磷含量逐漸減少,使用磷礦砂或海鳥磷肥亦能供給有效性鈣與提升介質pH之能力,但效果不如碳酸鈣之施用。 試驗中胡瓜吸收養分能力與介質中有效性磷、鈣與鎂濃度明顯受到介質pH下降之影響,在胡瓜葉片中磷、鎂濃度偏低,但所有元素之濃度皆在適量範圍;而以含175 ppm氮肥養液栽培之葉片元素濃度亦在適當範圍內,與使用196 ppm氮肥養液栽培相較,可使葉片中氮濃度減低,增加磷、鎂之濃度。簡化養液處理之植株乾重大多顯著低於對照組,但植株鮮重多數較高於對照組,至於胡瓜株高、葉長、葉寬和葉片數則無顯著差異,而施用磷礦砂之處理則有提高胡瓜果實品質與產量的表現。 利用僅提供氮及鉀之簡化養液進行‘夏笛’胡瓜栽培試驗下,並不會影響植株生長與產量,在養液配製則亦簡單方便,且不需考慮養液成份間互相作用沈澱等問題,並因使用緩效性肥料而減少開放性栽培的養液使用上之浪費與污染。另外,亦可提供作為有機蔬菜養液栽培之探討。
This is an initial study of simplified nutrition management by detecting available Ca and P after adding two kinds of calcium fertilizers, calcium carbonate and dolomite, and three kinds of phosphate fertilizers, guano, phosphate rock, and meat bone dust into the media. Hopefully, to improve the complexity of making nutrition to achieve the possibility of simplified nutrition management by adding only N and K to this simplified nutrition in planting cucumber ‘Sia Di'. Adding 0, 1.5, 3.0, and 4.5 g/L of calcium carbonate or dolomite to the media by drip irrigation or maintenance wetness incubation. In early stage of incubation, pH value was increased and the value was increase proportional as quantity was increased. However, if the adding quantity was above 3.0 g/L, increasing capability slow down or even not increased. Calcium carbonate was better in acid-neutralizing capacity than that of dolomite. Available Ca is high and effect was similar in two kinds of calcium fertilizers. As supplying quantity increased, concentration of available Ca increased. The effect of pH value was highest on phosphate rock, following by guano, and lowest on meat bone dust when adding different kind and quantity of P fertilizers to the media. Adjusting the pH value between 6 to 7, three phosphate fertilizers all provide available P and increased as the input quantity was increased and was highest on phosphate rock and lowest on meat bone dust. Using simplified nutrition culture cucumber after adjusting the pH value by lime and adding phosphate fertilizer in the media, all of the media EC value increased during the cultivation period. As the cultivation period lengthened, media pH of treated was lower than that of the control. Besides, nutriculture with N 175 ppm, EC value of all treatment decreased, pH value of treatment set decrease slower than that of the control set. 0.5 g/L lime could adjust the media pH between 6.0 to 6.5. The acid-neutralizing capacity of calcium carbonate is higher than that of dolomite, however, no significant difference. During cultivation period, available Ca in the media did not significantly increase or decrease. Using single or mixed 0.9-1.0 g/L total weight of phosphate rock, guano, and meat bone dust, could provide sufficient for cucumber growth. However, the quantity of available P in the media decreased during cultivation period. Phosphate rock or guano could also provide available Ca and increase pH value, however, the effectiveness is less than lime. Nutrition absorbability capability of cucumber and available concentration of P, Ca and Mg in media was affected by pH value decrease. P and Mg concentration of leaves of cucumber went low, but all elements are in suitable range. In 175ppm N simplified nutriculture set, element of leaves are all in suitable range, and N concentration of leaves reduced and P and Mg concentration increased in comparison with those in 196 ppm N simplified nutriculture set. Dry weight of treatment sets of simplified nutrition management are lower than that of control set, however, fresh weight is opposite. Plant height, leaf length, leaf width of cucumber has no significant between the treatments. Fruit quality and yield of cucumber are improved in phosphate rock set. Simplified nutrition management by adding only N and K in soilless culture could not influence growth and yield of cucumber ‘Sia Di' and that was simple and convenient. Moreover, that did not consider the probable of chemical composition interacted and it could decreaes the waste and pollution of nutrient solution by using lime, guano, phosphate rock, and meat bone dust. Besides, that could provide for studing on organic vegetable nutriculture.
URI: http://hdl.handle.net/11455/28564
其他識別: U0005-0408200612593200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0502200710391500
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.