Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28619
標題: 氯化銨處理對尖葉萵苣及小白菜生育及硝酸鹽 含量之影響
Effects of The Supplement of Ammonium Chloride on Growth and Nitrate Contents in Lettuce (Lactuca sative L.) and Pak-choi (Brassica rapa L. var. Chinensis Olsson)
作者: 李郁淳
Lee, Yu-Chun
關鍵字: nitrate
硝酸鹽
hydroponic
lettuce
pak-choi
ammonium chloride
水耕栽培
萵苣
小白菜
氯化銨
出版社: 園藝學系所
引用: 柒、參考文獻 王三太、李子凱。2005。小白菜。台灣農家要覽農作篇(二)pp.423-428。 王銀波。1989。培養液的化學性及其管理。養液栽培技術講習會專刊第二輯pp.60-68。 王銀波、吳正宗。1992。水耕養液中的氮素問題。養液栽培技術講習會專刊第四輯pp.15-27。 沈再發。1997。養液之配製與管理。設施園藝技術 pp.182-190。 沈再發、許淼淼。1989。作物營養特性及影響養液組成之因素。養液栽培技術講習會專刊第二輯 pp.44-59。 李偉立。2004。養液栽培及氮濃度對‘麗香’與‘奇雅’辣椒植株生長及果實辣味之影響。國立中興大學園藝所碩士論文。 李郁淳、洪進雄、蔡智賢、呂明雄。2001。日週期對植物體中硝酸離子吸收及累積之影響。科學農業 49(11,12): 288-292。 吳正宗、王銀波。1992。一些影響小白菜硝酸態氮含量的環境因子。中國農業化學會誌 33(2) :125-133。 林淑妃。1998。利用栽培管理與貯藏方式降低葉菜類硝酸離子含量試驗。國立台灣大學園藝所碩士論文。 林棟樑。2005。萵苣。台灣農家要覽農作篇(二)pp.409-412。 高德錚。1986。水耕栽培-精緻蔬菜生產技術之開發。台中區農推專訊 56: 22-31。 陳建中。2002。多種肥培管理措施對小白菜硝酸態氮含量之影響。國立中興大學土壤環境科學系碩士論文。 柯勇。2004。植物的礦物營養。植物生理學 pp.105-144。 張盛添、高德錚、梁純玲、王夏玲、張惠真。1989。溫度、光照、氮肥、收穫後貯藏及烹調方式對設施蔬菜品質之影響。第二屆設施園藝研討會專集 pp.226-240。 鄔家琪、張喜寧。2001。硝酸離子含量對蔬菜品質的影響。科學農業 49(1, 2): 1-6。 鍾仁賜。2002。氮素在土壤與植體中之轉化。有機栽培作物硝酸態氮含量講習會pp.9-17。 譚鎮中、李振州、王銀波。2001。硝化抑制劑對小白菜植體中硝酸態氮含量之影響。土壤與環境 4(1): 47-54。 Abdelbaki, G. K., F. Siefritz, H. M. Man, H. Welner, R. Kaldenhoff, and W. M. Kaiser. 2000. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ. 23: 515-521. Alfocea, F. P., M. T. Estan, A. S. Cruz, and M. Bolarin. 1993. Effects of salinity on nitrate, total nitrogen, soluble protein and free amino acid levels in tomato plants. J. Hort. Sci. 68(6): 1021-1027. Amr, A. and N. Hadidi. 2001. Effect of cultivar and harvest date on nitrate and nitrite content of selected vegetables grown under open field and greenhouse conditions in Jordan. J. Food Comp. Analy. 14:59-67. Anastasios S. 2000. Nitrate levels in lettuce at three times during a diurnal period. J. veg. crop prod. 6(2): 37-42. Angeles, M. B., A. Cerda, and S. H. Lips. 1994. Kinetics of NO3- and NH4+ uptake by wheat seedlings. Effect of salinity and nitrogen source. J. Plant Physiol. 144: 53-57. Aslam, M., R. Huffaker, and D. W. Rains. 1984. Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol. 76: 321-335. Aslam, M., R. L. Travis, and D. W. Rains. 2001. Different effect of amino acids on nitrate uptake and reduction systems in barley roots. Plant Sci. 160: 219-228. Basu, T. K. and C. J. Schorah. 1982. Vitamin C in the health and disease. The Avi Publishing Com. West Port, Connecticut. Bates, L. S., R. P. Waldren, I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207. Bender, C. and C. Kies. 1994. Nitrate and vitamin C from fruits and vegetables: Impact of intake variations in nitrate and nitrite excretions of humans. Plant Foods Human Nutri. 45: 71-80. Blom-Zandstra, M. and H. T. M. Koot, J. Hattum, and A. C. Borstlap. 1990. Interaction of uptake malate and nitrate into isolated vacuoles from lettuce leaves. Planta 183: 10-16. Boon, J. V. D., J. W. Steenhuixen, and E. G.. Steingrover. 1990. Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration, NH4+ / NO3- ratio and temperature of the recirculating nutrient solution. J. Horti. Sci. 65(3): 309-321. Botella, M. A., C. Cruz, M. A. M. Loucao, and A. Cerda. 1993. Nitrate reductase activity in wheat seedlings as affected by NO3-/NH4+ ratio and salinity. J. Plant Physiol. 142: 531-536. Botrel, A. and M. Kaiser. 1997. Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201: 496-501. Buchanan, B. B., W. Gruissem, and R. L. Jones. 2000. Nitrogen and sulfur. Biochemistry and Molecular Biology of P. P.789. Campbell H. W. 1999. Nitrate reductase structure,function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Miol. 50: 277-303. Carrasco, G. A. and S. W. Burrage. 1993. Diurnal fluctuations in nitrate uptake and nitrate accumulation in lettuce (Lactuca sativa L.). Acta Hort. 339:137-147. Cataldo, D. A., M. Haroon, L. E. Schrader, and V. L. Youngs. 1975. Rapid colorimetric of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci. Plant Anal. 6: 71-80. Cerezo, M., A. P. Garcia, M. D. Serna, and M. E. Primo. 1997. Kinetics of nitrate uptake by Citrus seedlings and inhibitory effects of salinity. Plant Sci. 126: 105 -112. Cerezo, M., A. P. Garcia, M. D. Serna, and M. E. Primo. 1999. Influence of chloride and transpiration on net 15NO3- uptake rate by Citrus roots. Ann. Bot. 84: 117-120. Chen, B., Z. Wang, S. Li, and G.. Wang. 2004. Effect of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 167:635-643. Cram, V. J. 1973. Internal factors regulating nitrate and chloride influx in plant cells. J. Exp. Bot. 24: 328-341. Cramer, M. D., A.Schierholt, Y. Z. Wang, and S. H. Lips. 1995. The influence of salinity on the utilization of root anaplerotic carbon and nitrogen metabolism in tomato seedlings. J. Exp. Bot. 46: 1569-1577. Crawford, N. M. 1995. Nitrate: nutrient and signal for plant growth. Plant Cell 7: 859-868. Dapoigny, L. S. Tourdonnet, J. R. Estrade, M. H. Jeuffroy, and A. Fleury. 2000. Effect of nitrogen on growth and nitrate accumulation in lettuce (Lactuca sativa L.), under various conditions of radiation and temperature. Agronomie 20: 843-855. Deane-Drummond C. E. and D. M. Glass. 1982. Studies of nitrate influx into barley roots by the use of 36CIO as a tracer for nitrate. 1. Interaction with chloride and other ions. Can. J. Bot. 60: 2147-2153. Dey P. M. and J. B. Harborne. 1997. Plant biochemistry. Academic Press, Inc. 281-285. Duncan, C., H. Li, R.Dykhuizan, R. Franzer, G. MacKnight, L. Smith, K. Lamza, M. Golden, N. Benjamin, and C. Leifert. 1997. Protection against oral and gastrointestinal diseases: importantce of dietary nitrate intake, oral nitrate reduction and enterosalivary nitrate circulation. Comp. Biochem. Physiol. 118: 939-948. Figueira, E. M. A. and G. C. N. Caldeira. 2005. Effect of nitrogen nutrition on salt tolerance of Pisum sativum during vegetable growth. J. Plant Nutri. Soil Sci. 168:359-363. Flores, P., M. A. Botella, and A. Cerda. 2000. Ionic and osmoitc effects on nitrate reductase activity in tomato seedlings. J. Plant Physiol. 156: 552-527. Flores, P., M. A. Botella, A. Cerda, and V. Martinez. 2004. Influence of nitrate level on nitrate assimilation in tomato (Lycopersicon esculentum) plants under saline stress. Can. J. Bot. 82: 207-213. Flores, P., M. A. Botella, V. Martinez, and A. Cerda. 2002. Response to salinity of tomato seedlings with a split-root system: Nitrate uptake and reduction. J. Plant Nutri. 25(1): 177-187. Gill, M. A. and H. M. Reisenauer. 1993. Nature and characterization of ammonium effects on wheat and tomato. J. Agron. 85: 874-879. Gojon A., R. Wakrim, L. Passama, and P. Robin. 1991. Regulation of NO3- assimilation by anion availability in excised soybean leaves. Plant Pyhisol. 96: 398-405. Gouia, H., M. H. Ghorbal, and B. Touraine. 1994. Effect of NaCl on flows of N and mineral ions and on NO3- reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiol. 105:1409-1418. Haba, P., E. Aguera, L. Benitez, and J. M. Maldonado. 2001. Modulation of nitrate reductase activity in cucumber (Cucumis sativrs) roots. Plant Sci. 161: 231-237. Hare, P. C., W. A. Cress, and J. Staden. 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J. Exp. Bot. 333: 413-434. Heeb, A., B. Lundegardh, T. Ericsson, and G. P. Savage. 2005. Effect of nitrate-, ammonium-, and organic-nitrogen-based fertilizers on growth and yield of tomatoes. J. Plant Nutri. Soil Sci. 168: 123-129. Hernandez, L. E., A. M. Ramon, R. O. Carpena-Ruiz, and A. Garate. 1995. Evaluation of nitrate nutrition indexes in maize leaves: Metabolic nitrate, total nitrate content and nitrate reductase activity. J. Plant Nutri. 18: 869-887. Hill, M. J. 1991. Nitrate and Nitrites in food and water. Ellis Horwood. p.163-187. Hotchkiss, J. H. and R. G. Gassens. 1987. Nitrate, nitrite and nitrogen compounds in foods. Food Technol. 41(4): 127-136. Ivashikina, N. V. and O. A. Sokolov. 1997. Regulation of nitrate distribution in maize seedlings by nitrate, nitrite, ammonium and glutamate. Plant Sci. 123: 29-37. Jaenicke, H., H. S. Lips, and W. R. Ullrich. 1996. Growth, ion distribution, potassium and nitrate uptake of Leucaena leucocephala, and effect of NaCl. Plant Physiol. Biochem. 34: 743-751. Jawoski, E. G. 1971. Nitrate reductase assay in intact plant tissues. Biochem. Biopphyd. Res. Commu. 43: 1274-1279. Karaivazonglou, N. A., D. K. Papakosta, and S. Divanidis. 2005. Effect of chloride in irrigation water and from of nitrogen fertilizer of Virginia (flue-cured) tobcco. Field Crop Res. 92: 61-74. Khan, M. G.., M. Silberbush, and S. H. Lips. 1994. Physiological studies on salinty and nitrogen interaction in alfalfa. І. Biomass production and root development. J. Plant Nutri. 17(4): 657-668. Lacuesta, M., B. G. Maro, C. G. Murua, and A. M. Rurda. 1990. Temporal study of the effect of phosphinothricin on the activity of glutamine synthetase, glutamate dehydrogenase and nitrate reductase in Medicago sativa L. J. Plant Physiol. 136: 410-414. Lichtenthaler. 1987. Chlorophyll and carotenoids pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382. Lin, C. C. and C. H. Kao. 1996. Proline accumulation is associated with inhibition of rice seedling root growth caused by NaCl. Plant Sci. 114: 121-128. Liu, L. and B. J. Shelp. 1995. Impact of chloride on nitrate absorption and accumulation by broccoli (Brassica oleracea var. italica). Can. J. Plnat Sci. 76: 367-377. Lowry, D. H., N. J. Rosebrough, A. L. Farr, and R. J. Randal. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275. Lutts, S., J. M. Kinet, and J. Bouharmont. 1996. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) crltivars differing in salinity resistance. Plant Growth Regul. 19: 207-218. Matrinez, V. and A. Cerda. 1989. Nitrate reductase activity in tomato and cucumber leaves as influenced by NaCl and N source. J. Plant Nutri. 12: 1335-1350. Mccall, D. and J. Willumsen. 1998. Effects of nitrate, ammonium and chloride application on the yield and nitrate content of soil-grown lettuce. J. Horti. Sci. Bio. 73 (5): 698-703. Meloni, D. A., M. R. Gulotta, C. A. Martinez, and M. A. Oliva. 2004. The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Braz. J. Plant Physiol. 16(1): 39-46. Mengel, K. and E. A. Kirkby. 1982. Principles of Plant Nutrition. 7. International Institute Potash. Mengel, K. and D. J. Pilbean. 1992. Proceedings of the phytochemical society of Europe 33: Nitrogen Metabolism of Plants. Oxford Scirnce Publications. New York. p.329-334. Miller, A. J. and S. J. Smith. 1996. Nitrate transport and compartmentation in cereal root cells. J. Exp. Bot. 47: 843-854. Oak, A., I. Stulen, K. Jones, M. J. Winspear, S. Misra, and I. L. Boesel. 1980. Enzymes of nitrogen assimilation in maize roots. Planta. 148: 477-484. Oertli, J. J. and R. Ruh. 1992. Use of critical level curves to manage nitrate concentration in vegetable. Commun. Soil Sci. Plant Anal. 23: 2711-2728. Pardossi, A., G. Bagnoli, F. Malorgio, C. A. Campitotti, and F. Tognoni. 1999. NaCl effects on celery (Apium graveolens L.) grown in NFT. Sci. Hort. 81: 229-242. Parida, A. K. and A. B. Das. 2004. Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. J. Plant Physiol. 161: 921-928. Peuke, A. D. and W. D. Jeschke. 1999. The characterization of inhibition of net nitrate uptake by salt in salt-tolerant barley (Hordeum vulgare L. cv. California Mariout). J. Exp. Bot. 50: 1365-1372. Rao, R. K. and A. Gnanam. 1990. Inhibition of nitrate and nitrite reductase activities by salinity stress in Sorghum Vulgare. Phytochemistry 29: 1047-1049. Raven, J. A. 1985. Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol. 101: 25-77. Reddy, K. S. and R. C. Menary. 1990. Nitrate reductase and nitrate accumulation in relation to nitrate toxicity in Boronia megastigma. Physiol. Plant. 78: 430-434. Richharica A., S. Kavita, and R. S. Dubey. 1997. Nitrate reducase from ric seedlings: partial purification, characterization and the effects of in situ and in vitro NaCl salinity. J. Plant Physiol. 155: 316-322. Riens, B. and H. W. Heldt. 1992. Decrease of nitrate reduction activity in spinach leaves during a light-dark transition. Plant Physiol. 98:573-577. Rosen, H. 1957. A modified ninhydrin colorimetri analysis for amino acid. Arch. Biochem. Biophys. 67: 10-15. Ruiz, J. M., R. M. Rivero, P. C. Garcia, M. Baghour, and L. Romero. 1999. Role of CaCl2 in nitrate assimilation in leaves and roots of tobacco plant (Nicotiana tabacum L.). Plant Sci. 141:107-115. Samuelson, M. E., W. H. Campbell, and C. M. Larsson. 1995. The influence of cytokinins in nitrate regulation of nitrate reductase activity and expression in barley. Physiol. Plant. 93: 533-539. Scaife, A. and K. L. Stevens. 1983. Monitoring sap nitrate in vegetable crops: comparison of test strips with electrode methods, and effects of time of day and leaf position. Commun Soil Sci. Plant Anal. 14(9): 761-771. Shannon M. C., J. W. Gronwald, M. Tal. 1987. Effects of salinity on growth and accumulation of organic and inorganic ions in cultivated and wild tomato species. J. Amer. Hor. Sci. 112: 416-423. Sharat, D. G., P. A. Vanden, V. J. Feron, C. Janzowsky. 1994. Nitrate, nitrite and N-nitroso compounds. Euro. J. Pharm. Envir. Toxi. and Pharm. Sec. 292: 1-38. Siddiqi, M. Y., B. Malhotra, X. Min, and A. D.M. Glass. 2002. Effect of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop. J. Plant Nutri. Soil Sci. 165: 191-197. Sivasankar, S. and A. Oaks. 1995. Regulation of nitrate reductase during early seedling growth. Plant Physiol. 107: 1225-1231. Soussi, M., A. Ocana, and C. Liuch. 1998. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J. Exp. Bot. 49: 1329-1337. Steingrover, E., P. Ratering., and J. Siesling. 1986. Daily changes in uptake, reduction and storage of nitrate in spinach grown at low light intensity. Physiol. Plant. 66:550-556. Steponkus, P. L. and F. O. Lamphear. 1967. Refinement of the triphenyltetrazolium chloride method of determining cold injury. Plant Physiol. 42: 1423-1426. Taiz L. and E. Zeiger. 2002. Plant Physiology. The Benjamin/Cummings Publishing Company, Inc. pp.302-307. Tanner, W. and H. Beevers. 1990. Dose transpiration have an essential function in long-distance ion transport in plants? Plant Cell Envir. 13: 745-750. Terada, M. 1987. Differential rapid analysis of ascorbic acid and ascorbic acid-2-sulfate by dinitrophenyl-hydrazine method. Anal. Biochem. 84: 604-608. Ullrich, W. R., M. Larsson, C. M. Larsson, S. Lesch, and A. Novacky. 1984. Ammonium uptake in Lemna gibba G1, related membrane potential changes, and inhibition of anion uptake. Physiol. Plant. 61: 369-376. Ullrich, W. R. 1992. Transport of nitrate and ammonium through plant membranes. In: Nitrogen Metabolism of Plants. Oxford university press. Oxford. p.121-137. Volk, R. J. 1997. Unidirectional fluxes of nitrate into and out of maize roots: measurement and regulation by prior nitrate nutrition. Plant Sci. 123:1-7. Walters, C. L. 1991. Nitrate and nitrite in food .In Hill, M. J. eds. Nitrate and Nitrite in Food and Water. Ellis Horwood. 93-112. Weatherburn M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39: 971-974. Wilcox, G. E., J. R. Magalhaes, and F. L. I. M. Silva. 1985. Ammonium and nitrate concentration as factors in tomato growth and nutrient uptake. J. Plant Nutri. 8: 989:998. Yin, Y. X. 1993. An investigation of nitrate content of vegetables is Yin Chuan and of methods of contamination evaluation and prevention. Ningxia J. Agro-Forestry Sci. Technol. 1: 40-43. Yoshida, S., F. Dpuglosa, C. Janosh, and G. Gwaachai. 1976. Laboratory manual for physiological studies of rice. International Rice Research Institute, Los Banos, Phillippines pp. 46-49.
摘要: 本試驗之目的為利用水耕養液中添加氯化銨之方法,以探討氯離子和硝酸根離子競爭吸收的機制,而期能降低植物根部對硝酸根離子之吸收,進而減少硝酸根離子累積於葉片,以達到提高產量及改善品質之效果。試驗以Hoagland養液配方為基礎(control),分別添加50、100及200ppm氯化銨於養液中,進行尖葉萵苣‘ Hsing Nong NO.1’(Lactuca sativa L.)及小白菜 ‘San Feng’(Brassica rapa L. var. Chinensis Olsson)之栽培試驗。 由定植後二十天分析結果顯示,氯化銨處理提供的銨態氮可顯著增加尖葉萵苣及小白菜葉片之銨離子含量及麩胺醯胺合成酶(GS)之活性,進而顯著增加葉片之總蛋白質含量、葉綠素含量及光合作用速率,進而使植體之株高、鮮重及葉面積等生育性狀顯著高於對照組。 氯化銨處理可顯著降低植物體各部位之硝酸根離子含量,以50 ppm及100 ppm氯化銨處理分別可使尖葉萵苣及小白菜葉片之硝酸根離子含量顯著降至最低,分別較對照組減少20.7 %及16.8 %,在不同季節及以不同分析方法皆得相似趨勢之結果。進一步試驗證實,氯離子為主因,由於氯和硝酸根離子皆為陰離子,氯離子會干擾、競爭及取代,而抑制根部吸收硝酸根離子,進而減少葉片硝酸根離子含量,又因受質減少而導致硝酸還原酶活性(NRA)下降。 綜合上述,養液中分別添加50 ppm及100 ppm氯化銨處理,既可顯著降低尖葉萵苣及小白菜體內硝酸根離子含量,又可提高蔬菜之生長量,可達以低成本生產高品質且高產量之安全蔬菜。
The objectives of this study were to evaluate the effects of applying NH4Cl at concentration of 0, 50, 100 and 200 ppm on the growth and nitrate contents in two leafy vegetables, lettuce ‘Hsing Nong No.1' and pak-choi ‘San Feng', hydroponicly cultured in Hoagland solution. Results indicated that supplement of NH4Cl in Hoagland solution had significant effects on increasing NH4+ contents, glutamine synthetase activity and total protein contents in both lettuce and pak-choi leaves. Chlorophyll contents and photosynthetic rates were found also increased, and consequently, the plants with NH4Cl supplement showed significant increases in plant height, leaf area and other horticultural characteristics as compared to the control. Supplement of NH4Cl to hydroponic solution showed quadratic effects on the decrease of NO3- contents in the leaves of both vegetables. The most effective concentration of NH4Cl were found at 50 ppm on lettuce and at 100 ppm on pak-choi, and the NO3- contents were 20.7% and 16.8% lower than the control, respectively. The trends of the decrease in NO3- in both vegetables were found similar in winter season and in summer season. Further experiments showed that the presence of Cl- in the solution was possibly the main reason that caused the reduction in NO3- concentration. It is postulated that the anion competition between Cl- and NO3- inhibited the absorption of NO3- and subsequently decreased the NO3- contents in the leaves of both lettuce and pak-choi. The decrease of NRA activity as observed in this study may due to the decrease in NO3- because NRA is a substrates activate enzyme. In conclusion, the supplement of NH4Cl at 50 ppm or at 100 ppm to hydroponic solution had dramatic effects not only on the decrease of nitrate contents in lettuce and in pak-choi but also on the increase of growth and yield. It is worthy of further study for the commercial production of vegetables of high yield and safety.
URI: http://hdl.handle.net/11455/28619
其他識別: U0005-1008200610301100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108200614380200
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.