Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28641
標題: D型丙胺酸消旋酵素基因(D-AlaR)作為甘藍之葉綠體基因轉殖的篩選標誌基因之研究
Using D-Alanine Racemase Gene (D-AlaR) as the Selectable Marker Gene for Cabbage(Brassica oleracea L. var. capitata L.) Chloroplast Transformation
作者: 廖珮君
Liao, Pei-Chun
關鍵字: D-alanine racemase
D型丙胺酸消旋酵素
selectable marker gene
Chloroplast transformation
篩選標誌基因
葉綠體基因轉殖
出版社: 園藝學系所
引用: 朱宛茹。2010。D型胺基酸氧化酵素基因(daao)作為甘藍之葉綠體基因轉殖的篩選標誌基因之研究。國立中興大學園藝研究所碩士論文。 李歡、楊皓宇、燕景洲、許守明。2008。GFP在植物分子生物學研究中的應用。生物學雜志。25: 55-57。 杜鵑、趙峰、曹越平。2010。超聲波輔助農桿菌藉導轉化大豆gus基因在不同外殖體中的瞬時表達。上海交通大學學報(農業科學版)。28: 439-441。 姚春娜、王亞馥。 超聲波輔助發根農桿菌對黃瓜遺傳轉化的影響。2001。 園藝學報。28: 80-82。 侯丙凱、胡贊民、黨本元、石銳、陳正華。2002。定點整合抗蟲基因到油菜葉綠體基因組並獲得轉基因植株。植物生理與分子生物學學報。28: 87- 192。 姜玲。2004。 超聲波輔助農桿菌介導CP基因轉化番木瓜(Ca rioca papaya L.)的有效方法。實驗生物學報。37: 189-198。 徐恒、黎萬奎、謝志健、吳煉、張旭、周宇。2001。苜蓿愈傷組織誘導及gus基因瞬時表達。四川大學學報(自然科學版)。38: 905-908。 郝敏、邢達、謝波、周俊初、曾列先。2002。含有綠色螢光蛋白基因的質粒載體的構建及其在水稻白葉枯細菌中的表達。激光生物學報。11: 427-430。 曹毅、陳英、蔣彥、喬代蓉、 劉楊。2001。利用電擊法轉化玉米胚性愈傷組織獲得GUS 基因暫態表達的研究。四川大學學報(自然科學版)。38: 913-918。 陳鴻霖。2007。大量表現Bt基因於甘藍葉綠體之研究。國立中興大學分子生物學研究所碩士論文。 陳怡潔。2009。以離胺酸消旋酵素基因作為基因選殖的篩選標記。國立中興大學分子生物學研究所博士論文。 張中林、山松、陳曦、劉春英、錢凱先、沈桂芳。1999。除草劑抗性基因( bar)導入菸草葉綠體。作物學報。25: 574- 578。 張陽德、廖允軍。2001。綠色螢光蛋白及其在細胞生物學中的應用。中國現代醫學雜誌。11: 34- 37。 曾夢蛟、劉程煒。2004。甘藍之基因轉殖技術。植物基因轉殖與分子檢測技術-第二章:十字花科作物-第三節:p.57-74。植物生物技術教學資源中心主編。 楊國順、謝丙炎、楊宇紅、王曉武、盧向陽、蔣芳玲。2004。應用綠色螢光蛋白報告基因優化辣椒的遺傳轉化體系。園藝學報。31: 737-742。 劉程煒。2003。水稻農桿菌基因轉殖系統與甘藍及水稻葉綠體基因轉殖系統建立及應用。國立中興大學園藝研究所博士論文。 劉根齊、李秀麗、楊春玲、陳鐘、趙世民。2005。不同調控序列控制下的GUS 基因在水稻和毛白楊愈傷組織中的瞬時表達。植物生理與分子生物學學報。31: 327-330。 蘇甯、楊波、孟昆。2002。雙價抗蟲基因共轉化菸草葉綠體的研究。中國農業科學。 35: 394–398。 Amaterdam, A., S. Lin, L. G. Moss and H. Nancy. 1996. Requirements for green fluorescent protein detection in transgenic zebrafish embryos. Gene. 173: 99-103. Bogorad, L. 2000. Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products . Trends Biotechnol. 18: 257- 263. Boynton, J. E., N. W. Gillham, E. H. Harris, J. P. Hosler, A. M. Johnson, A. R, Jones, B. L. Randolph-Anderson, D Robertson, T. M. Klein and K. B. Shark.1988. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science.240: 1534 – 1538 Carrer, H., T. N. Hockenberry, Z. Svab and P. Maliga. 1993. Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet. 241: 49–56. Chacon O., L. E. Bermudez, D. K. Zinniel, H. K. Chahal, R. J. Fenton, Z. Feng, K. Hanford, L. G. Adams and R. G. Barletta. 2009. Impairment of D-alanine biosynthes is in Mycobacterium smegmatis determines decreased in tracellular survival in human macrophages. Microbiology. 155: 1440-145. Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward and D. C. Prasher.. 1994. Green fluorescent protein as a marker for gene expression. Science. 263: 802-805. Chiu, W. L., Y. Niwa, W. Zeng, T. Hirano, H. Kobayashi and J. Sheen .1996. Engineered GFP as a vital reporter in plants. Curr Biol. 6: 325-330. Christensen, A. H., R. A. Sharroch, and P. H. Quail. 1992. Maize polybiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 18: 675-689 Cosa, B. D., W. Moar, S. B. Lee, M. Miller and H. Daniell. 2001. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19: 71-74. Daniell, H. 2006. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnol J. 1: 1071-1079. Daniell, H. and B. A. Mcfadden. 1987. Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber eptioplasts. Proc Natl Acad Sci U S A. 84: 6349-6353. Daniell, H., P. R. Cohill and S. Kumar and N. Dufourmantel. 2004. Chloroplast genetic engineering. Molecular Biology and Biotechnology of Plant Organelles. Chapter16: 443- 490. Daniell, H., R. Datta, S. Varma, S. Gray and S. B. Lee. 1998. Containment of herbicide resistance through genetic engineering of the chloroplast genome . Nat Biotechnol. 16: 345–348 Daniell, H., S. B. Lee, T. Panchal and O. W. Peter. 2001. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol Biol. 311: 1001- 1009. Daniell, H., S. Chebou, S. Kumar, M. Singleton and R. Falconer. 2005. Chloroplast- derived vaccine antigens and other therapeutic proteins. Vaccine. 23: 1779-1783. DeGray, G., K. Rajasekaran, F. Smith, J. Sanford and H. Daniell. 2001. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol. 127: 852-862 Dhingra, A and H. Daniell. 2006. Chloroplast genetic engineering via organogenesis or somatic embryogenesis. Methods Mol Biol. 323: 245-262. Dreyer, E. B., C. K. Vorwerk, D. Zurakowski, S. Perikles and B. Jean. 1999. Infection with adeno-associated virus may protect against excitotoxicity. Neuroreport. 10: 2887-2890. EFSA . 2004. Opinion of the scientific panel on genetically modified organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. EFSA J. 48: 1-18. Epel, B. L., H. S. Padgett, M. Heinlein and R. N. Beachy. 1996. Plant virus movement protein dynamics probed with a GFP-protein fusion. Gene. 173: 75-79. expression of green fluorescent protein in mammalian cells. Biochem Biophys Res Commun. 236: 347-350. FDA. 1998. Guidance for industry: use of antibiotic resistance marker genes in transgenic plants. http://www.fda.gov/Food/GuidanceComplianceRegulatory Information/ GuidanceDocuments/Biotechnology/ucm096135.htm. Accessed 2. Sept. 1998. Flamm, E. 1993. Chymosin derived from Escherichia coli K12 and Bacillus stearothermophilus δ-amylase derived from Bacillus subtilis. . In OECD, Safety Evaluations of Foods Derived by Modern Biotechnology : Concepts and Principles, Fromm, M. E., L. P.Taylor and V. Walbot. 1986. Stable transformation of maize after gene transfer by electropo rat ion. Nature. 319 : 791- 793. Gallie, D. R., D. E. Sleat, J. W. Watts, P. C. Turner and T. M. Wilson. 1987. The 5’leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcript in vivo and in vitro. Nucl. Acids Res. 15: 3257-3273. Gubin, A. N., B. Reddy, J. M. N joroge and J. L. Miller. 1997. Long-term, stable Hao, L., J. Cao J. 2000. A double CaMV35S promoter efficiently enhances the level of transgenic expression in Arabidopsis. Plant Physiol Commun. 36: 517-519 (in Chinese) Heifetz, P. B. 2000. Genetic engineering of the chloroplast. Biochemi. 82: 655- 666 Heinlein, M., B. L. Epel, H. S. Padgett and R. N. Beachy. 1995. Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science. 270: 1983-1985. Hu, W. and C. L. Cheng. 1995. Expression of Aequorea green fluorescent protein in plant cells. FEBS Lett. 369: 331-334. Ingram, H. M., J. B. Power, K. C. Lowe and M. R. Davey. 1999. Optimisation of procedures for micoprojectile bombardment of microspore-derived embryos in wheat. plant cell tiss. Plant cell, tissue and organ culture. 57: 207-210. Jefferson, R. A., T. A. Kavanagh, M. W. Bevan. 1987. GUS fusions : beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO. J. 6: 3901-3907 Jones, M. 1991. Safety considerations in the evaluation of transgenic plants for human food. Risk assessment in genetic engineering,New York. pp. 64-82. Kanda, N. A., Y. Yasuda and K. Tochikubo. 2000. Isozymicnature of spore coat- associated alanine racemase of Bacillus subtilis. Amino Acids.18: 375-387. Kanevski, I., P. Maliga, D. F. Rhoades and S. Gutteridge. 1999. Plastome engineering of ribulose-1, 5-b isphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol.119: 133- 142 Kavanagh, T.A., N.D.Thanh, N. T. Lao, N. M. Grath, S. O. Peter E. M. Horvath, P. J. Dix and P. Medgyesy. 1999. Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152: 1111–1122. Khan, M. S. and P. Maliga. 1999. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat. Biotechnol. 17: 910–915. Kiegle, E., C. A. Moore, J. Haseloff, M. A. Tester and M. R. Knight. 2000. Cell-type-specific calaium responses to drought , salt and cold in the Arbidopsis root. Plant J. 23: 267- 278. Klein, T. M., E. D. Wolf, R. Wu and J. C. Sanford. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature. 327: 70-73 Kohler, R. H., J. Cao, W. R. Zipfel, W. W. Webb and M. R. Hanson. 1997. Exchange of protein molecules through connections between higher plant plastids. Science. 276: 2039-2042. Kohli, A., S. Griffiths, N. Palacios, R. M Twyman, P. Vain, D. A. Laurie, and P. Christou. 1999. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J. 17: 591-601. Kost, B., P. Soielhofer and H. A. Chuan. 1998. A GFP-mouse talin fusion protein labels Kota, M., H. Daniel, S. Varma, S. F. Garczynski, F. Gould and W. J. Moar. 1999. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt - resistant insects. Proc Natl Acad Sci U S A. 96: 1840-1845. Kuang, M., S. H. Wang, Y. Li, D. L. Shen and C. K. Zeng. 1998. Transient expression of exogenous gus gene in Porphyra yezoensis (Rhodophyta). Chin. J. Oceanol. Limnol. 16: 56-61. Kumar, S., A. Dhingra and H. Daniell. 2004. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance.Plant Physiol. 136: 2843-2854 Leelavathi, S.and V. S. Reddy. 2003. Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed. 11: 49- 58. Liu, C-W., C-C. Lin, J-C. Yiu, J. J. W. Chen, and M-J. Tseng. 2008. Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor. Appl. Genet. 117:75–88. Lutz, K. A., J. E. Knapp and P. Maliga. 2001. Expression of bar in the plastid genome confers herbicide resistance. PlantPhys io. 125: 1585- 1590. Mcbride, K. E., Z. Svab, D. J.Schaal, P. S. Hogan, D. M. Stalker and P. Maliga. 1995. Amplilication of a chimeric Bacillus geng in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Nat. Biotechnol. 13: 362–365. Michel, G.C. 1991. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of chlamydomonas. Nucl. Acids Res. 19: 4083-4089. Miki, B., and S. McHugh. 2004. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 107: 193-232. Millan, A.F-S, M. C.Ange, M. Miller and H. Daniell. 2003. A Chloroplast transgenic approach to hyper- express and purify human serum albumin, a protein highly susceptible to proteolytic egradation. Plant Biotechnol. 1: 71- 79. Molina A., I. J. Veramend and S. Hervas-Stubbs. 2005. Induction of neutralizing antibodies by a tobacco chloroplast-derived vaccine based on a B cell epitope from canine parvovirus. Virology. 34: 266- 275. Molina A., S. Hervas-Stubbs, H. Danill, A. M. Mingo-Castel and J. Veramendi. 2004. High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechol J. 2: 141-153 Morise, J. G., O. Shimomura, F. H. Johnson and J. Winant. 1974. Intermolecular energy transfer in the bioluminescent system of Aequouea. Biochemistry.13: 2656-2662. Paris, France: OECD. pp. 21-30. Patterson, G. H., S. M. Knobel, W. D. Sharif, S. R. Kain and D. W. Piston. 1997. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J. 73: 2782-2790. Persons, D. A., J. A. Allay, E. R. Allay, R. J. Smeyne, R. A. Ashmum, B. P. Sorrentino and A. W. Nienhuis. 1997. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood. 90: 1777-1786. plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes.The Plant Journal. 16: 393-401. Prasher, D. C., V. K. Eckenrode, W. W. Ward, F. G. Prendergast and M. J. Cormier. 1992. Primary structure of the Aequorea victoria green-fluorescent protein. Gene. 111: 229-233 Rasco-Gaunt, S., A. Riely and P. Barcelo. 1999. Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep. 19: 118-127. Rasco-Gaunt, S., A. Riely, M. Cannell, P. Barcelo and P. A. Lazzeri. 2001. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot. 52: 865-874 Ropp, J. D., C. J. Donahue, D.Wolfgang-Kimball, J. J. Hooley, Y. W. Chin, R. A. Cuthbertson and K. D. Baue. 1996. Aequorea green fluorescent protein: simultaneous analysis o f wild-type and blue-fluor escing mutant by flow cytometry. Cytometry. 24: 284- 288. Ruiz, O. N., H. S. Hussein, N. Terry and H. Daniell. 2003. Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol. 132: 1344-1352. Sheen, J., S. Hwang, Y. Niwa, H. Kobayashi and D. W. Galbraith. 1995. Green fluorescent protein as a new vital marker in plant cells. Plant J. 8: 777-784. Shimomura, O., F. H. Johnson and Y. Saiga. 1962. Extraction purification and properties of Aequoria, a bioluminescent protein from the luminous Hydromedusan, Aequorea. J Cell Comp Physiol. 59: 223-239. Songstad, D. D., F. G. Halaka, D. L. Deboer, C. L. Armstrong, M. A. W. Hinchee, C. G. Ford-Santino, S. M. Brown, M. E. Fromm and R. B. Horsch. 1993. Transient expression of GUS and anthocyanin constructs in intact maize immature embryos following electroporation . Plant Cell Tiss Org. 33: 195- 201. Staub, J. M., B. Garcia, J. Graves, P. T. J. Hajdukiewicz, P. Hunter, N. Nehra, V. Paradkar, M. Schlittler, J. A. Carroll, L. Spatola, D. Ward, G. Ye and D. A. Russell. 2000. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nature Biotechnol. 18: 333–338. Staub, J.M. and P. Maliga. 1993. Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J. 12(2): 601–606. Streatfield, S J. 2006. Engineered chloroplasts as vaccine factories to combat bioterrorism. Trends Biotechnol. 24: 339- 342. Susanne, R., P. D. Fraser, J. W. Kiano, C. A. Shipton, N. Misawa, W. Schuch and P. M. Bramley. 2000. Elevat ion of the provitam in A content of transgenic tomato flowers. Nat Biotechnol. 18: 666-669. Svab, Z. and P. Maliga. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. 90: 913–917. Thiruvengadam, V., I.C. Chen, W.D. Lin and W.H. Hsu. 2010. Alanine racemase as a novel positive selectable marker for plant transformation. J Biotechnol. Special Abstracts Thompson A., H. Griffin and M J Gasson. 2002. Characterization of an alanine racemase gene from Lactobacillus reuteri. Curr Microbiol. 44: 246-250. transferase in the chloroplast: a selectable marker for site-directed transformation of chiamydomonas. Nucl. Acids Res. 19: 4083-4089. Trick, H. N. and J. J. Finer. 1997. SAAT: sonication - assisted Agrobacterium-mediated transformation. Transgenic Res. 6: 329-336. Varda, M., H. Mark, P. Iris and J. Hirschberg. 2000. Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol. 18: 888-892. Wang, H. H., W. B. Yin, and Z. M. Hu. 2009. Advances in chloroplast engineering. J. Genet. Genomics 36: 387-398. Ward, W. W. and S. H. Bokman. 1982. Reversible denaturation of Aequorea green fluorescent protein : physical separation and characterization of the renatured protein. Biochemistry. 21: 4535-4540. Wood, W. A. and I. C. Gunsalus. 1950. D-alanine formation:a racemase in Stretococcus faecalis. J Biol Chem. 9: 403-416. Yan, X., Y. Gai, L. Liang, G. Lin and H. Tan. 2007. A gene encoding alanine racemase is involved in spore germination in Bacillus thuringiensis. Arch Microbio. 187: 371-378. Yang, Y., G. Q. Lin and L. F. Yan. 2001. Expression of Chlamydomonas actin-gfp fusion gene in tobacco suspension cell and polymerizat ion of the actin-gfp protein in vitro. Chinese Sci Bull. 46: 806-811. Yoshimura, T. and N. Esaki. 2003. Amino acid racemases: Functions and mechanisms. J Biosci Bioeng. 96: 103-109. Yoshimura,T. and M. D. Goto. 2008. D-amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases. FEBS J. 275: 3527-3537. Zhang, C. X., Y. Gai, W. Wang, Y. Zhu, X. Chen and X. Jiang. 2008. Construction and analysis of a plant transformation binary vector, pBDGG harboring a bi-directional promoter fusing dual visible reporter genes. J Genet Genomics. 35: 245-249.
摘要: 甘藍 (Brassica oleracea L. var. capitata L.) 是世界重要經濟蔬菜,也是台灣栽培面積最廣的葉菜類蔬菜,有其重要的民生及經濟地位。過去五十年來,傳統育種工作對改良甘藍特質已有許多成效,但由於難以突破物種間基因資源的利用,使得在有限的種源親本間優良遺傳組合因子已達極限。發展甘藍基因轉殖技術,將可為改良甘藍品系提供一嶄新的途徑。植物葉綠體基因轉殖具有:增加轉殖基因大量表現,不會造成基因污染、基因靜寂及插入位置效應,與較細胞核基因轉移穩定等優點。因此開發葉綠體基因轉殖技術為近代生物技術的主力研發工作。由於葉綠體基因的大量表現轉殖基因,因此對非耐抗生素基因的篩選標誌基因的需求,更具必要性及急迫性。D型丙胺酸消旋酵素(D-alanine racemase, D-AlaR)藉由消旋化(racemization)反應,將D型丙胺酸催化形成L型丙胺酸。本研究以甘藍作為葉綠體基因轉殖研究之材料,探討以D-AlaR基因作為一安全性篩選標誌基因的可行性。並比較D-AlaR基因及aadA基因作為甘藍葉綠體基因轉殖篩選標誌之優劣。 本研究轉殖的載體攜帶有D-AlaR及aadA基因作為篩選標誌基因,egfp及gus作為報導基因,分別以prrn為啟動子,以psbA為終結子,命名為pMT91-RE(D-AlaR:egfp)、pMT91-REA (D-AlaR:egfp:aadA)、pMT91-RG (D-AlaR:gus)和pMT91-RGA(D-AlaR:gus:aadA)。利用基因槍法將其轟擊至''初秋''甘藍之下胚軸所誘導的癒傷組織,培殖體經4 mM D-alanine或15 ppm spectinomycin篩選6週後,平均存活率分別為27%及32%。但經spectinomycin篩選成活之培殖體無法再生成植株,最終死亡。D-alanine篩選成活之培殖體,獲得17株再生植株,其中14株具有D-AlaR基因。PCR及RT-PCR分析結果顯示,外源基因(D-AlaR、aada、gus、egfp)均已轉殖入甘藍葉綠體基因組中,並表現其mRNA。GFP綠色螢光及GUS活性染色分析結果,顯示在轉殖egfp或gus基因的植株中可觀察到綠色螢光的放射及藍色GUS反應。 綜合以上之結果顯示以D-AlaR基因作為甘藍之葉綠體基因轉殖的篩選標誌基因是可行的。以D-AlaR作為篩選標誌基因,配合D-alanine作為篩選藥劑,較aadA作為篩選標誌基因,配合spectinomycin抗生素作為篩選藥劑,具有容易判斷、篩選轉殖植株與少逃脫篩選的優點。
Cabbage (Brassica oleracea L. var. capitata L.) is one of the most important vegetable crops grown worldwide, and also has been the most widely cultivated leafy vegetables in Taiwan. Traditional breeding methods have been very successful in making major improvements in the yield and quality of cabbage over the past fifty years; however, the traditional breeding methods have been limited by genetic resources. Currently, gene transformation offers new possibilities for improving the quality and quantity of cabbage. Chloroplast transgenic plants have several unique advantages, including increased the expression of transgene, not caused genetic pollution, affected silence gene and position of gene insertion, more stable gene transfer, etc. Therefore, the development of chloroplast transgenic techniques has become the main research and development in modern biotechnology. Because of the high expression of chloroplast transgene, the selection markers of non-antibiotic resistance gene have been urgently needed. D-alanine racemase (D-AlaR) catalyzes the racemization of D-alanine to produce L-alanine. This research is used cabbage as the material of chloroplast transgenic experiment, and D-AlaR gene as the feasibility of a safety selection marker gene. It also compares the fitness of D-AlaR gene and aadA gene as the selection marker of cabbage chloroplast transformation. This transformation research's vector carrying D-AlaR and aadA gene as gene selection markers, egfp and gus as reporter genes, Prrn as the promoter, and T-psbA as the terminator; named as pMT91-RE (D-AlaR-egfp), pMT91-REA (D-AlaR-egfp-aadA), pMT91-RG (D-AlaR-gus), and pMT91-RGA (D-AlaR-gus-aadA). The plastid transformation vector contained the gene clusters between the trnV--rrn16S and trnI--trnA--rrn23S regions, which was designed to be inserted into the chloroplast genome by homologous recombination after biolistic bombardment. We used biolistic bombardment to bombard the leaves or hypocotyls-induced calli of ''K-Y cross'' cabbage, and the survival rates of explants were 27% and 32% after six weeks of selection by 4 mM D-alanine or 15 ppm spectinomycin, respectively. There were no plants regenerated from survival explants which were selected by spectinomycin. Seventeen regenerated plants were obtained from the survival explants which were selected by D-alanine, fourteen of them contained the D-AlaR gene. The results of PCR and RT-PCR analysis indicated that transformed genes (D-AlaR, aada, gus, and egfp) were integrated into the plastid genome of transplastomic cabbage plants, and expressed its mRNA. GFP fluorescence and GUS histochemical staining analyses showed the emission of green fluorescence and blue-color reaction which were presented in the egfp or gus gene of transformed transplastomic cabbage plants. The results indicated that D-AlaR gene can be used as selection marker gene of cabbage's chloroplast transgene. D-AlaR as selection marker gene with D-alanine as selection agent is easier to determined transgenic plants and has fewer escaped-selection, compared to aadA as selection marker with spectinomycin as selection agent.
URI: http://hdl.handle.net/11455/28641
其他識別: U0005-1808201119261900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808201119261900
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.