Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28654
標題: 培養基添加有機酸對蝴蝶蘭瓶苗生長之影響
Effects of Organic Acid on Plantlet Growth of Phalaenopsis In Vitro
作者: 高雯琪
Kao, Wen-Chi
關鍵字: Phalaenopsis
蝴蝶蘭
malic acid
citric acid
gas
tissue culture
carbon dioxide
ethylene
蘋果酸
檸檬酸
氣體
組織培養
二氧化碳
乙烯
出版社: 園藝學系所
引用: 參考文獻 朱建鏞、王美陽. 1996. 光和二氧化碳對玫瑰花組織培養培殖體生長的影響. 農林學報 45(1):23-32. 吳昌祐、朱德民. 1994. 植物在缺氧逆境下之適應調節. 科學農業 42: 140-146. 邱雯卉. 2002. 環境因子、乙烯與培養基添加物對蝴蝶蘭瓶苗品質的影響. 中興大學園藝所碩士論文. 143pp. 柯勇. 2004. 植物生理學. 藝軒圖書出版社. 台北. 277pp. 徐淑芬. 2004. 乙烯對蝴蝶蘭葉片再生及出瓶期對組培苗品質之影響. 中興大學園藝所碩士論文. 96pp. 楊于萱. 2003. 培養基成分、IBA及香蕉成熟度對朵麗蝶蘭瓶苗生長的影響. 中興大學園藝所碩士論文. 116pp. 賴宏輝. 1978. CAM植物的二氧化碳固定作用. 中央研究院植物研究所專刊. 2: 14-28. 關淑卿. 1989. 有機添加物對蝴蝶蘭幼苗生長的影響及原球體增殖之探討. 台灣大學園藝所碩士論文. 143pp. Adams, W. W. III and C. B. Osmond. 1988. Internal CO2 supply during photosynthesis of sun and shade grown CAM plants in relation to photoinhibition. Plant Physiol. 86: 117-123. Archie, R. and J. Portis. 1992. Regulation of ribulose 1,5-bisphosphate carboxylase / oxygenase activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 415-437. Arigita, L., A. Gonzalez and R. S. Tames. 2002. Influence of CO2 and sucrose on photosynthesis and transpiration of Actinidia deliciosa explants in vitro. Physiol. Plant. 115:166-173. Bio-Rad Laboratories. 1976. Bio-Rad protein assay. Tech. Bull. 1051. Bio-Rad Lab. Richmond, CA. Black, C. C., J. Q. Chen, R. L. Doong, M. N. Angelow and S. J. S. Sung. 1996. Alternative carbonhydrate reserves used in the daily cycle of Crassulacean acid metabolism. In: Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. K. Winter and J. A. C. Smith (ed). Spinger Verlag, Berlin p.31-45. Borland, A. M. and H. Griffiths. 1997. A comparative study on the regulation of C3 and C4 carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchöe daigremontiana and the C3-CAM intermediate Clusia minor. Planta 201: 368-378. Borland, A. M. and T. Taybi. 2004. Synchronization of metabolic processes in plants with Crassulacean acid metabolism. J. Exp. Bot. 55:1255-1265. Bowes, G. 1991. Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant Cell Environ. 14: 795-806. Campbell, M. K. 1995. Biochemistry. Saunders College Pub. p.479-485. Campbell, W. J., L. H. Allen, J. R. and G. Bowes, 1990. Response of Soybean canopy photosynthesis CO2 concentration, light, and temperature. J. Exp. Bot. 41:427-433. Cheng, S. E., B. D. Moore and J. R. Seemann. 1998. Effect of short-and long-term elevated CO2 on the expression of Rubisco genes and carbohydrate accumulation in leaves of Arabidopsis Thaliana L. Heynh. Plant Physiol. 116:715-723. Chu, C., Z. Dai, M. S. B. Ku and G. E. Edwards. 1990. Induction of Crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. Plant Physiol. 93:1253-1260. Cushman, J. C. and A. M. Borland. 2002. Induction of crassulacean acid metabolism by water limitation. Plant Cell Environ. 25:295-310. Dimasi-Theriou, K. and A. M. Bosabalidis. 1997. Effects of light, magnesium and sucrose on leaf anatomy, photosynthesis, starch and total sugar accumlulation, in kiwifruit cultured in vitro. Plant Cell Tiss. Org. Cult. 47: 127-134. De Jiménez, E. S., L. Medrano and E. Martínez-Barajas. 1995. Rubisco activase, a possible new member of the molecular chaperone family. Biochem. 34:2826-2831. Dodd, A. N., A. M. Borland, R. P. Haslam, H. Griffiths and K. Maxwell. 2002. Crassulacean acid metabolism: plastic, fantastic (Review) J. Exp. Bot. 53:569-580. Drennan, P. M. and P. S. Nobel. 2000. Response of CAM species to increasing atmospheric CO2 concentration. Plant Cell Environ. 23: 761-781. Edwards, G. E., Z. Dai, S. H. Cheng and M. S. B. Ku. 1996. Factors affecting the induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum. In: Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. K. Winter and J. A. C. Smith (ed.). Springer Verlag, Berlin. p.119-134. Endo, M. and I. Ikusima. 1989. Diurnal rhythm and characteristics of photosynthesis and respiration in the leaf and root of a Phalaenopsis plant. Plant Cell Physiol. 30: 43-47. Erner, Y. and O. Reuveni. 1981. Promotion of citrus tissue culture by citric acid. Plant Physiol. 67(Suppl.). 27(Abst. 146). p27. Figueira, A., A. Whipkey and J. Janick. 1991. Increased CO2 and light promote in virto shoot growth and development of Theobroma cacao. J. Amer. Soc. Hort. Sci. 116: 585-589. Gerorge, E. F. and P. D. Sherrington. 1984. Tissue culture media. Plant propagation by tissue culture. p.184-244. Gouk, S. S., J. He and C. S. Hew. 1999. Changes in photosynthetic capability and carbohydrate production in an epiphytic CAM orchid plantlet exposed to super-elevated CO2. Environ. Exp. Bot. 41:219-230. Gouk, S. S., J. W. H. Yong and C. S. Hew. 1997. Effects of super-elevated CO2 on the growth and carboxylating enzymes in an epiphytic CAM orchid plantlet. J. Plant Physiol. 151:129-136. Graham, E. A. and P. S. Nobel. 1996. Long-term effects of a doubled atmospheric CO2 concentration on the CAM species Agave deserti. J. Exp. Bot. 47: 61-69. Grams, T. E. E. and S. Thiel. 2002. High light-induced switch from C3-photosynthesis to crassulacean acid metabolism is mediated by UV-A/blue light. J. Exp. Bot. 53: 1475-1483. Griffiths, H., M. S. J. Broadmeadow, A. M. Borland and C. S. Hetherington. 1990. Short-term changes in carbon-isotope discrimination identify transitions between C3 and C4 carboxylation during Crassulacean acid metabolism. Planta 181: 604-610. Hastock, T. L. and P. S. Nobel. 1976. Watering converts a CAM plant to daytime CO2 uptake. Nature 262: 574-576. Hildebrandt, A. C., A. J. Riker and J. L, Watertor. 1954. Growth and inhibition of tissue cultures on media with different concentrations of organic acid. Phytopathology 44: 422-428. Holthe, P. A., L. Das., L. Sternberg and I. P. Ting. 1987. Development control of CAM in Peperomia scandens. Plant Physiol. 84:743-747. Hopkins, W. G. 1995. Photosynthesis: carbon metabolism. In: W. G. Hopkins, Introduction to Plant Physiology. John Wiley & Sons, Inc, New York. p.189-214. Idso, S. B. and B. A. Kimball. 1992. Above-ground inventory of sour orange trees exposed to different atmospheric CO2 concentration for three full years. Agricultural and Forest Meteorology 60: 145-151. Isopp, H., M. Frehner, S. P. Long and J. Nosberger. 2000. Sucrose phosphate synthase responds differently to source-sink relations and to photosynthetic rates: Lolium perenne L. growing at elevated PCO2 in the field, Plant Cell Environ. 23: 597-607. Jensen, R. G.. 2000. Activation of Rubisco regulates photosynthesis at high temperature and CO2. Proc. Natl. Acad. Sci. USA 97: 12937-12938. Jeong, B. R., C. S. Yang and J. C. Park. 1996. Growth of Gerbera hybrida in vitro as affected by CO2 concentration and air exchange rate of the vessel. Acta Hort. 440:510-514. Kanechi, M., Ochi, M. Abe, N. Inagaki and S. Maekawa. 1998. The effects of carbon dioxide enrichment, natural ventilation, and light intensity on growth, photosynthesis, and transpiration of cauliflower plantlets cultured in vitro photoautotrophically and photomixophically. J. Amer. Soc. Hort. Sci. 123(2):176-181. Kao, C. H. 2002. A glossary of carbohydrate metabolism. Chinese Agron. J. 12: 241-266. Keeley, J. E. 1996. Aquatic CAM photosynthesis. In: Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. K. Winter and J. A. C. Smith (ed.). Springer Verlag, Berlin. p.281-295. Keys, A. J., I. Major, and M. A. J. Parry. 1995. Is there another player in the game of Rubisco regulation? J. Exp. Bot. 46: 1245-1251. Kluge, M. and I. P. Ting. 1978. Crassulacean acid metabolism: Analysis of an ecological adaptation. Ecological Studies. V.30 Spinger-Verlag, Berlin. Kozai, T. 1989. Autotrophic (sugar-free) micropagation for a significant reduction of production costs. Chronica Hort. 29: 19-20. Kozai. T. 1991. Photoautotrophic micropropagation. In Vitro Cell. Dev. Biol. Plant 279:47-51. Kozai, T., Y. Kitaya, C. Kubota, R. Kobayashi and S. Watanabe. 1996. optimization of photoautotrophic micropropagation conditions for sweetpotato (Ipomoea batatas (L.) LAM.) plantlets. Acta Hort. 440:566-569. Kubota, S., T. Hisamatsu and M. Koshioka. 1997. Estimation of malic acid metabolism by measuring pH of hot water extracts of Phalaenopsis leaves. Sci. Hortic. 71: 251-255. Kumar, P. P., D. M. Reid and T. A. Thorpe. 1987. The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons of Pinus radiata in vitro. Physiol. Plant. 69: 244-252. Kwa, S. H., Y. C. Wee and P. P. Kumar. 1995. Role of ethylene in production of sporophytes from Platycerium coronarium (Koenig) Desv. Frond and rhizome pieces cultured in vitro. J. Plant Growth Regul. 14: 183-189. Laing, W. A., W. L. Ogren and R. H. Hageman. 1974. Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2 and ribulose 1,5-diphosphate carboxylase. Plant Physiol. 54: 678-685. Li, C. R., L. J. Gan, K. Xia, X. Zhou and C. S. Hew. 2002. Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment. Plant Cell Environ. 25:369-377. Lüttge, U., T. H. Darmstadt and Schnittspahnstraße. 1988. Day-night changes of citric-acid levels in crassulacean acid metabolism: phenomenon and ecophysiological significance. Plant Cell Environ. 11: 445-451. Majada, J. P., M. L. Centeno, I. Feito, B. Fernandez and R. Sanchez-Tames. 1998. Stomatal and cuticular traits on carnation tissue culture under different ventilation conditions. Plant Growth Reg. 25:113-121. Malda, G., H. Suzan and R. Backhaus. 1999. In vitro culture as a potential method for the conservation of endangered plants possessing crassulacean acid metabolism. Scientia Hort. 81:71-87. Malda, G., R. A. Backhaus and C. Martin. 1999. Alterations in growth and crassulacean acid metabolism (CAM) activity of in vitro cultured cactus. Plant Cell Tiss. Org. Cult. 58:1-9. Mattos, E. A. D. and U. Lüttge. 2001. Chlorophyll fluorescence and organic acid oscillations during transition from CAM to C3-photosynthesis in Clusia minor L. (Clusiaceae). Ann. Bot. 88:457-463. Maxwell, K., A. M. Borland, R. P. Haslam, B. R. Helliker, A. Roberts and H. Griffiths. 1999. Modulation of Rubisco activity during the diurnal phases of the crassulacean acid metabolism plant Kalanchoë daigremontiana. Plant Physiol. 121: 849-856. Maxwell, K., M. R. Badger and C. B. Osmond. 1998. A comparison of CO2 and O2 exchange patterns and the relationship in C3 and CAM plants. Austral. J. Plant Physiol. 25: 45-52. Morison, J. I. L. 1998. Stomatal response to increased CO2 concentration. J. Exp. Bot. 49:433-452. Nobel, P. S. 1988. Environmental biology of agaves and cacti. New York: Cambridge University Press. Nobel, P. S., A. A. Israel and N. Wang. 1996. Growth, CO2 uptake, and responses of the carboxylating znzymes to inorganic carbon in two highly productive CAM species at current and doubled CO2 concentrations. Plant Cell Environ. 19:585-592. Osmond, C. B. 1978. Crassulacean acid metabolism: a curiosity in context. Ann. Rev. Plant Physiol. 29: 379-414. Ota, K., K. Morioka and Y. Yamamoto. 1991. Effects of leaf age, inflorescence, temperature, light intensity and moisture conditions on CAM photosynthesis in Phalaenopsis. J. Japan. Soc. Hort. Sci. 60(1): 125-132. Parry, M. A., P. J. Andralojc, R. A. C. Mitchell, P. J. Madgwick and A. J. Keys. 2003. Manipulation of Rubisco: the amount, activity, function and regulation. J. Exp. Bot. 54: 1321- 1333. Peter, J. L. and C. L. Richard. 1999. Plant Biochemistry and Molecular Biology, 2nd edn. John Wiley&Sons Ltd. pp.1-28. Portis, A. R. 1995. The regulation of Rubisco by Rubisco activase. J. Exp. Bot. 46: 1281-1291. Portis, A. R. 1992. Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43: 415-437. Sage, F. R., Y. P. Cen and M. Li. 2002. The activation state of Rubisco directly limits photosynthesis at low CO2 and low O2 partial pressures. Photosynth. Res. 71: 241-250. Salvucci, M. E. and S. J. Crafts-Brandner. 2004. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol. Plant. 120: 179-186. Salvucci, M. E. and W. L. Ogren. 1996. The mechanism of Rubisco activase: Insights from studies of the properties and structure of the enzyme. Photosynth. Res. 47: 1-11. Sanada, Y., K. Nishida, and G. Edwards. 1988. Prolonged survival of CAM-mode Mesembryanthemum crystallinum in darkness and its possible dependence on malate. Phant Cell Physiol. 29: 117-122. Sasek, T. W., E. H. Delucia and B. R. Strain. 1985. Reversibility of photosynthetic inhibition in cotton after long-term exposure to elevated CO2 concentration. Plant Physiol. 78: 619-622. Sharkey, T. D., J. R. Seemann and J. A. Berry. 1986. Regulation of ribulose-1,5-bisphosphate carboxylase activity in response to changing partial of O2 and light in Phaseolus vulgaris. Plant Physiol. 81: 788-791. Schmitt, J. M., B. Fißlthaler, A. Sheriff, B. Lenz, M. BÄßler and G. Meyer. 1996. Environment control of CAM induction in Mesembryanthemum crystallinum- a role for cytokininm, abscisic acid and jasmonate? In: Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. K. Winter and J. A. C. Smith(ed.). Springer/Verlag Berlin Heidelberg New York. p.159-175. Sinha, R. K. 2004. Modern Plant Physiology. Alpha Science International Ltd. 620pp. Steponkus, P. L. and F. O. Lanphear. 1967. Refinement of the triphenyltetrazolium chloride method of determining cold injury. Plant Physiol. 42: 1423-1426. Streusand, V. J. and A. R. Portis. 1987. Rubisco activase mediates ATP-dependent activation of ribulose bisphosphate carboxylase. Plant Physiol. 85: 152-154. Thorsten, E., E. Grams and S. Thiel. 2002. High light-induced switch from C3-photosynthesis to Crassulacean acid metabolism is mediated by UV-A/blue light. J. Exp. Bot. 53:1475-1483. Ting, I. P., A. Patel, S. Kaur, J. Hann and L. Walling. 1996. Ontogenetic development of Crassulacean acid metabolism as modified by water stress in Peperomia. In: Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. K. Winter and J. A. C. Smith (ed.). Springer Verlag, Berlin. p.204-215. Taiz, L. and E. Zeiger. 2002. Plant Physiology. Sinauer Associates, Inc., Sunderland. 690pp. Tomasz, P. W. and U. E. Lüttge. 2003. Contribution of C3 carboxylation to the circadian rhythm of carbon dioxide uptake in a Crassulacean acid metabolism plant Kalanchoë daigremontiana. J. Exp. Bot. 54: 1471-1479. Usuda, H., M. S. B. Ku and G. E. Edwards. 1985. Influence of light intensity during growth on photosynthetic anzymes in a C4 plants (Zea mays). Physiol. Plant. 63: 65-70. Vina, G. de la, F. Pliego-Alfaro, S. P. Drisoll, V. J. Michell, M. A. Parry and D. W. Lawlor. 1999. Effect of CO2 and sugars on photosynthesis and composition of avocado leaves grown in vitro. Plant Physiol. Biochem. 37:587-595. Winter, K. and J. A. C. Smith. 1996. Crassulacean acid metabolism: current status and perspectives. p.389-426. In: Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution. K. Winter and J. A. C. Smith(ed.). Springer Verlag, Berlin. Yu, Y. B. and S. F. Yang. 1980. Biosynthesis of wound ethylene. Plant Physiol. 66: 281-285. Zhang, N., R. P. Kallis, R. G. Ewy and A. R. Portis. 2002. Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco actvase isoform. Proc. Natl. Acad. Sci. USA 99: 3330-3334. Zotz, G. and K. Winter. 1993. Short-term regulation of crassulacean acid metabolism activity in a tropical hemiepiphyte, Clusia uvitana. Plant Physiol. 102: 835-841.
摘要: 本試驗之目的為探討培養基中分別添加不同濃度蘋果酸及檸檬酸對大白花蝴蝶蘭I-Hsin Cream‘KHM246’分生瓶苗氣體組成成份及生育的影響,以及對瓶苗Rubiso活性之影響。 培養基添加不同濃度的蘋果酸,瓶內乙烯及二氧化碳的含量皆會隨蘋果酸濃度的增加而提高,瓶內二氧化碳濃度具有日韻律變化現象,明期開始後4小時內,二氧化碳濃度急遽上升,之後趨於平緩,待至明期末又快速下降,進入暗期後,瓶內二氧化碳濃度又逐漸向上攀升至暗期結束,繼代至56天時最高可達0.55%。瓶內乙烯濃度隨著株齡增加而有上升的趨勢,暗期的乙烯濃度較高,最高可達0.12 ppm。瓶苗在暗期具有蘋果酸的累積,隨處理的濃度提高,葉片蘋果酸含量有增加的趨勢,顯示瓶苗CAM代謝路徑逐漸增強。蘋果酸的添加可促進瓶苗根部生長,以90 mg/l蘋果酸處理表現較佳,根長及根寬分別比對照組增加15.6%及8.4%,根數約達4.1條。 培養基添加不同濃度檸檬酸試驗中,除對照組外,瓶內二氧化碳的含量隨檸檬酸濃度及培養天數的增加而降低,明期開始瓶內二氧化碳濃度逐漸向上攀升,在明期8小時達到最高峰,之後開始下降。瓶內乙烯濃度在繼代培養初期較高,隨著培養時間的增加,呈現下降趨勢。瓶苗在暗期具有蘋果酸的累積,隨著培養時間的增加,呈現緩慢下降的趨勢,顯示瓶苗具有C3和CAM植物之光合特性,且C3代謝路徑較強。檸檬酸的添加可促進瓶苗根部生長,以60 mg/l檸檬酸處理表現較佳,根長及根寬分別較對照組增加17.8%及5.5%,根部乾、鮮重較對照組增加27.8%及37.9%。 蘋果酸及檸檬酸對瓶苗Rubiso活性影響呈現不同的結果,繼代培養28天時,培養基添加蘋果酸可提高Rubiso活性,以60 mg/l蘋果酸處理表現最佳,Rubisco活性高達0.97 n mol RuBP carboxylase mg protein-1 min-1,隨著培養天數增加,各處理之酵素活性逐漸下降;培養基添加檸檬酸試驗中,隨著株齡及培養天數的增加,瓶苗Rubisco活性變動並不大,繼代培養70天時,Rubisco活性以120 mg/l檸檬酸處理為最高,達0.98 n mol RuBP carboxylase mg protein-1 min-1。
The study was to seek effects of malic acid and citric acid on Phalaenopsis I-Hsin Cream ‘KHM246' plantlet growth and components of the gaseous environment in vitro, and effects of Rubisco enzyme activity. Adding different malic acid concentration in medium, ethylene and carbon dioxide content in flask increased accompanied with malic acid concentration. There was diurnal rhythm of carbon dioxide content in the flask for every stage. The carbon dioxide content increased rapidly in 4 hours after the beginning of light period and decreased rapidly in the end of light period and increased gradually during dark period, 58 days after subculture was highest and the value was 0.55%. The ethylene content in flask increased with increasing plant age. Ethylene content was higher in dark period (0.12 ppm) then light period (0.02 ppm). Malic acid contents increased accompanied with chemicals concentration at the end of dark period. These indicated CAM pathway of Phalaenopsis I-Hsin Cream ‘KHM246' plantlet was strengthened gradually. Malic acid would promote root growth. In addition, the finest performance for root length and root diameter which gave 15.6% and 8.4% were found in malic acid 90 mg/l, root number also increased to 4.1. Adding different citric acid concentration in medium, besides control, carbon dioxide content in flask decreased accompanied with citric acid concentration and growing days. The carbon dioxide content increased in 8 hours after the beginning of light period. Ethylene content was higher in initial stage of subculture and decreased slowly along with increase of growing days. The plantlet has malic acid accumulation in the dark period. These indicated plantlet has characteristic of C3 and CAM photosynthesis, then the C3 pathway was strengthened gradually. Citric acid would promote root growth. In addition, the finest performance for root length and root diameter which gave 17.8% and 5.5%, and fresh weight and dry weight of root which gave 27.8% and 37.9% were found in citric acid 60 mg/l. Malic acid and citric acid in medium for Rubisco activity of plantlet was appeared different results. 60 mg/l malic acid would promote Rubisco activity which gave 0.97 n mol RuBP carboxylase mg protein-1 min-1 in 28 days after subculture. The Rubisco activity decreased gradually along with increase of growing days. The oscillation of Rubisco activity was maintained constant along with increase of plantlet age and growing days in the citric acid test. 120 mg/l citric acid would promote Rubisco activity which gave 0.98 n mol RuBP carboxylase mg protein-1 min-1 in 70 days after subculture.
URI: http://hdl.handle.net/11455/28654
其他識別: U0005-1508200612021900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707200614182700
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.