Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28726
標題: 不同栽培介質對蝴蝶蘭生長及模擬貯運之影響
Effect of Growing Medium on Growth and transport of Phalaenopsis
作者: 林立航
Lin, Li-Hang
關鍵字: Phalaenopsis
蝴蝶蘭
growing medium
ethylene
栽培介質
乙烯
出版社: 園藝學系所
引用: 中華民國對外貿易發展協會邁阿密台灣貿易中心,2004。美國掀起蘭花熱潮-蝴蝶蘭獨秀勝群芳。台灣花卉園藝。台灣。40: 40-46。 王明吉。1991。蝴蝶蘭幼年性、光度對生長與開花之影響及葉片酸度之變化。國立台灣大學研究園藝學研究所碩士論文。台灣。94pp.。 汪沛洪、薛嵩。1996。水分脅迫對植物光合作用影響研究進展。科學農業。44: 130-134。 李哖、李菁敏。1987。蝴蝶蘭之花期調節。台中區農業改良場特刊。10: 27-44. 李哖。1976。花卉無土栽培。豐年半月刊。26: 18-25。 李哖、林雨森。1992。蝴蝶蘭花朵之呼吸作用。中國園藝。38: 228-240。 李嘉慧、李哖。1990。蝴蝶蘭形態解剖及光度、花芽發育對碳水化合物含量之影響。國立台灣大學研究園藝學研究所碩士論文。台灣。pp24-32。 林忠逸。2004。蝴蝶蘭裸根及黑暗模擬貯運對蝴蝶蘭植株生長之影響。國立中興大學園藝學研究所碩士論文。台灣。112pp.。 林晉卿。1999。天南星科觀葉植物之本土化盆栽介質。台南區農業專訊。30:4-8。 林菁敏。1983。溫度、無稽氧分與栽培介質對蝴蝶蘭生長與開花之影響。台灣大學園藝學研究所碩士論文。121pp.。 林菁敏、李哖。1988。蝴蝶蘭葉面積之估算與溫度對葉片生長之影響。中國園藝。34:73-80。 胡志賢。1992。水分及氮、磷元素對台灣原種蝴蝶蘭生理代謝影響之研究。國立中興大學理學院植物學研究所碩士論文。台灣。121pp.。 高紀清。2002。蝴蝶蘭種苗產業現況及問題。植物種苗。4: 59-63。 郝岫音。2005。分進合擊的藍海策略~台灣蝴蝶蘭外銷策酪(下)。台灣花卉園藝。218: 42-46。 張永達、楊冠政。1988。臺灣水韮景天酸代謝現象(CAM) 之研究。師大生物學報。23: 157-166。 張耿衡、侯鳳舞、戴廷恩。2005。人工水苔之開發及利用研究。台灣花卉園藝。 209: 38-41。 郭瑋君。1999。蝴蝶蘭光合作用特性之研究。國立台灣大學園藝學研究所碩士論文。台灣。158pp.。 陳文輝、邱明森、位國慶、楊秀蘭。1994。蝴蝶蘭。亞熱帶地區花卉設施栽培技術。台灣省農業試驗所。台灣。220-229pp.。 陳加忠。2006。水苔或樹皮? 蝴蝶蘭栽培介質的物理性質量測。http://bse.nchu.edu.tw/new_page_189.htm。中興大學生物系統工程研究室。 陳素琴、施佳宏。2005。台灣蝴蝶蘭附帶栽培水草盆株—全球首例成功輸銷美國。台灣花卉園藝月刊。台灣。210:24-27。 陳彥睿、易美秀、魏芳明、蔡宛育。2003。應用1-MCP對不同蝴蝶蘭屬及朵麗蝶蘭屬盆花模擬外銷貯運之研究。台中區農業改良場研究彙報。79: 1-10。 黃曙香、楊純明、張惠媜、蘇慕容。2001。土壤缺水對水稻植株水分狀況之影響。技術服務。45: 26-29。 楊祥發、郭純德、李美蘭、蔡平里。1986。乙烯之生理合成及作用。中國園藝。32: 214-223。 蔡淳瑩。1999。栽培介質及肥料對四季蘭假球莖增值之影響。花蓮區農業改良場研究彙報。17: 65-72。 賴本智。1988。蘭花種苗產銷技術。園藝種苗產銷技術研討會專集。77-94。 盧美君、黃鵬林。1994。花瓣老化之乙烯生成及基因表現。中國園藝。40:235-242. Ables, F. B., P. W. Morgan, and M. E. Saltveit. Jr. 1992. Ethylene in plant biology (second edition). Academic press, San Diego. 414p. Aharoni, N. and M. Lieberman. 1979. Patterns of ethylene production in senescing leaves. Plant Physiol. 6: 796-800. Apelbaum, A. and S. F. Yang. 1981. Biosynthesis of stress ethylene induced by water deficit. Plant Physiol. 68: 594-596. Bassett, C. L. 2001. The molecular biology f plant hormone reception. Hort. Rev. 26:49-84. Barry, C. S., B. Blume, M. Bouzayen , W. Cooper , A. J..Hamilton, and D.Grierson. 1996.Differential expression of the 1-amino-cyclopropane-1- carboxylate oxidase gene family of tomato. Plant J. 9: 525–535. Belfield, E. J., B. Ruperti, J. A. Roberts, and S. M. Mason. 2005. Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J. Exp. Bot. 56: 817-823. Borland, A. M. and H. Griffiths. 1997. A comparative study on the regulation of C3 and C4 carboxylatin processes in the constitutive Crassilacean acid metabolism(CAM)plant Kalanchoë daigremontiana and the C3-CAM intermediate Clusia minor. Planta. 201:368-378. Carlson, R. M. 1978. Automated separation and conductimetric determination of ammonia and dissolved carbon dioxide. Anal. Chem. 50: 1528-1531. Carter, M.R., and B.C. Ball. 1993. Soil porosity. In M.R. Carter (ed.) Soil sampling methods of soil analysis. Lewis Publ., Boca Raton, FL. p. 581–588. Cervantes, E. and A. Tocino. 2005. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development . J. Plant Physiol. 162: 1038-1045. Chen, Y. F, M. D. Randlett, J. L. Findell, and G. E. Schaller. 2002. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J. Biol. Chem. 277: 19861–19866. Chen, Y. F., N. Etheridge, and G. E. Schaller. 2005. Ethylene signal transduction. Ann. Bot. 95: 901-915. Collier, D.E. and B. A. Thibodeau. 1995. Changes in respiration and chemical content during autumnal senescence of Populus tremuloides and Quercus rubra leaves. Tree Physiol. 15: 759–764. De Herralde, F., C. Biel, R. Savé, M. A. Morales, A. Torrecillas, J. J. Alarcón, and M. J. Sánchez-Blanco. 1998. Effect of water and salt stress on the growth, gas exchange an water relations in Argyranthemum cooronopifolium plants. Plant Sci. 139: 9-17. Eliasson, L., G. Bertell, and E. Bolander. 1987. Inhibitory Action of Auxin on Root Elongation Not Mediated by Ethylene. Plant Physiol. 91: 310–314. Endo, M. and I. Ikuima. 1989. Diurnal rhythum and characterisrics of photosynthesis and respiration. Plant Cell Physiol. 30(1): 43-47. Faria, R. T. D., L. D. V. Rego., A. Bernardi, and H. Molinari. 2001. Performance of different genotypes of Brazilian orchid cultivation in Alternatives substrates. Fujiki, Y., Y. Yoshikawa, T. Sato, N. Inada, M. Ito, I. Nishida, A. Watanabe. 2001. Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol. Plant 111: 345-/352. Gibbs, J., S. Morrell, A. Valdez, T. L. Setter, and H. Greenway. 2000. Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. J. Exp. Bot. 51: 785-796. Grichko, V. P. and B.R Glick. 2006.Ethylene and flooding stress in plants. Plant. Physiol. Biochem. 39: 1–9. Haase, D. L. and R. Rose. 1993. Soil moisture stress induces transplant shock in stored and unstored 2 + 0 Douglas fir ,seedlings of varying root volumes. For. Sci. 39: 275-294. Hasegawa, P. M.2002. Stress Physiology. In ‘Plant Physiology’. Edited by Taiz, L. and E. Zeiger. Sinauer Assoxiated Inc. pp. 591-623. Herppich, W. B. and K. Peckmann.1997. Responses of gas exchange, photosynthesis, nocturnal acid accumulation and water relations of Aptenia cordifolia ti short-term drought and rewatering. J. Plant Physiol. 150: 467-474. Herppich, W. B. and K. Peckmann. 2000. Influence of drought on mitochondrial activity, photosynthesis, nocturnal acid accumulation and water relations in the CAM plants Prenia sladeniana (ME-type) and Crassula lycopodioides (PEPCK-type) Ann. Bot. 86: 611-620. Herrera, A., M. D. Fernandez, and M. A. Taisma. 2000. Effects of drought on CAM and water relations in plant of Peperomia carnevalii. Ann. Bot. 89: 511-517. Hetherington, E. 1987. Bark- A quiet cultural revolution. American Orchid Society Bulletin. 56: 1038-1042. Hopkins, W. G. 1996. Introduction to plant physiology. Second Edition. John Wiley & Sons. Inc.204-208. Hoyer, L. 1985. Bud and flower drop in Begonia-elatior ‘Sirene’ caused by ethylene and darkness. Acta Hort. 167: 387-394. Hua, J. and E. M. Meyerowitz. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 94: 261–271. Kende, H. 1993. Ethylenen biosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44: 283-307. Kiber, J. 2002. Ethylene: the gasous hormone. In ‘Plant Physiology’. Edited by Taiz, L., and E. Zeiger. Sinauer Associates Inc. 519-536. Kim, G. H. and R. B. H. Wills. 1995. Effect of ethylene on storage life of lettuce. J. Sci. Food Agric. 69: 197-201. Kluge, M. and I. P. Ting. 1978. Morphology, anatomy, and ultrastructure of CAM plant. In Crassulacean acid metabolism analysis of an ecological adaptation. Konings, H. and M. Jackson. B. 1979. A relationship between rates of ethylene production by roots and the promoting or inhibiting effects of exogenous ethylene and water on root elongation. Z. Pflanzenphsiol. 92: 385-397. Le, J., F. Vandenbussche, D. S. D. Van, and J. P. Verbelen. 2001. In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol. 125: 519-522. Lee, H. S. J. and H. Griffiths. 1987. Induction and repression of CAM in Sedum telephium L. in response to photoperiod and water stress. J. Exp. Bot. 38: 834-841. Liang, X., S. Abel, J. A. Keller, N. Shen, and A. Theologist. 1992. The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Proc. Natl. Acad. Sci. 89: 11046-11050. Lindroth, R. L., T. L. Osier, H. R. H. Barnhill , and S. A. Wood. 2002. Effects of genotype and nutrient availability on phytochemistry of trembling aspen (Populus tremuloides Michx.) during leaf senescence. Biochemical Systematics and Ecology 30: 297-307. Liu, Y., N.E. Hoffman, and S. F. Yang, 1985. Promotion by ethylene of the capability to convert 1-aminicyclopropane-1-carboxylic acid to ethylene in preclimacteric tomato and cantaloupe fruits, Plant Physiol. 77: 407–411. Lizada, M. C. C. and S. F. Yang. 1979. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal. Biochem. 100: 140-145. Londers, E., J. Ceusters, I. Vervaeke, R. Deroose, and M. P. De Proft. 2005. Organic acid analysis and plant water status of two Aechmea cultivas growth under greenhouse conditions: implications on leaf quality. Scientia Horticulturae. 105: 249-262. Lüttge, U. 2004. Ecophysiology of Crassulacean acid metabolism(CAM). Ann. Bot. 93: 629-652. Martin, C. E., M. Higley, and W. Z. Wang. 1988. Ecophysiological significance of CO2- recycling via Crassulacean acid metabolism in Talinum calycinum Engelm. (Portulacaceae). Plant Physiol. 86: 562-568. Marousky, F. J. and B. K. Harbaugh. 1980. Foliar chlorosis of Klanchoe blossfeldiana Poelln. As influenced by temperature, darkness, and ethylene. Proc. Gla. State Hort. Soc. 93: 175-178. McWilliams, E. L. 1970. Comparatierates of bark CO2 uptake and acidification jn the Ortega, M. C., M. T. Moreno, J. Ordovás, and M. T. Aguado. 1996. Behaviour of different horticultural species in phytotoxicity bioassays of bark substrates. Scientia Horticulturae. 66: 125-132. Mekeon, T. A. and S. F. Yang. 1984. Biosynthesis an metabolism of ethylene. Plant hormones and their role in plant growth and development. pp.94-109 Osmond, C. B. 1978. Crassulacean acid metabolism: a curiosity in context. Ann. Review Plant Physiol. 29: 379-414. Osmond, C. B., H. Ziegler, W. Stichler, and P. Trimborn. 1975. Carbon isotope discrimination in alpine succulent plants supposed to be capable of crassulacean acid metabolism (CAM). Oecologia 18: 209–217. Pierik, R., W. Verkerke, R. A. C. J. Voesenek, K. W. P. M. Blom, and E. J. W. Visser. 1999. Thick root syndrome in cucumber (Cucumis sativus L.): a description of the phenomenon and an investigation of the role of ethylene. Ann. Bot. 84: 755-762. Poole, R. T. and C. A. Conover. 1979. Influence of shade and nutrition during production and dark storage simulating shipment on subsequent quality and chlorophyll content of foliage plants. HortScience. 14: 614-617. Quick, W. P., M. M. Chaves, R. Wendler, M. David, M. L. Rodrigues, J. A. Pasaharinho, J. S. Pereira, M. D. Adcock, R. C. Leegood, and M. Stitt. 1992. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant, Cell and Environ. 15: 25-35. Reis, M., Martinez, F. X., Soliva, M., and Monteiro, A.A. 1998. Composted organic residues as a substrate component for tomato transplant production. Acta Hort. 469: 263-274. Schubert, S., E. Schubert, and K. Mebgel. 1990. effect of low pH of the root medium on proton release, growth and nutrient uptake of field beans(Vicia faba). Plant Soil. 124: 239-244. Sexton, R., Durbin, M. L., Lewis, L. N., and W. W. Thomson. 1980. Use of cellulose antibodies to study leaf abscission. Nature. 283: 873-874. Skillman, J. B. and K. Winter. 1997. High photosynthetic capacity in a shade tolerant crassulacean acid metabolism plant. Plant Physiol. 113: 441-450. Smith, J. A. C. and Lüttage, U. 1985. Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana. Planta. 163:72-282. Steponkus, P. L. and F. O. Lanphear. 1967. Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol. 42: 1423-1426. Su, V., B. D. Hsu, W. H. Chen. 2001. The photosynthetic activities of bare rooted Phalaenopsis during storage. Scientia Horticulturae. 87: 311-318. Taiz, L. and E. Zeiger. 2002. Plant Physiology. Sinauer Associates, Inc., Sunderland. 690pp. Tingey, D. T. 1980. Stress ethylene production – a measure of plant response to stress. HortScience. 15: 630-633. Thaxton, D. R., J. W. Kelly, and J. J. Frett. 1988. Control of Hibiscus rosa-sinensis L. bud abscission during shipping. Sci. Horti. 34: 131-137. Trusty, S. E. and W. B. Miller. 1991. Postproduction carbohydrate level in pot chrysanthemums. J. Amer. Soc. Hort. Sci. 116: 1013-1018. Wang, K. L., Li, H. and Ecker, J. R. 2002. Ethylene biosynthesis and signaling networks. Plant Cell. 14: 131-151. Wang, Y. T. 1998. Deferring flowering of greenhouse-grown phalaenopsis orchids by alternating dark and light. J. Amer. Soc. Hort. Sci.123: 56-60. Wang, Y. T. and E. A. Konow. 2002. Fertilizer source and medium composition affect vegetative growth and mineral nutrition of a hybrid moth orchid. J. Amer. Soc. Hort.Sci. 127: 442-447. Wang, Y. T. and L. L. Gregg. 1994. Medium and fertilizer affect the performance of Phalaenopsis orchids during two flowering cycles. HortScience. 29: 269-271. Weaver, M. and R. M. Amasino. 2001. Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol. 127: 876-886. Yan, F. S. Schubert , and K. Mengel. 1992. Effect of low root medium pH on net proton release, root respiration , and root growth of corn (Zea mays L.) and broad bean(Vicia faba L.) plant physiol. 99: 415-421. Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 115-189. Zachariah, C. F. 1991. Succussfully growing phalaenopsis in new Zealand sphagnum. American Orchid Society bulletin. 60: 885-887.
摘要: 本試驗主要在探討蝴蝶蘭以混合的栽培介質樹皮混合碎水苔,以及樹皮混合泥炭土栽培後其生長發育之狀況,以及應用在外銷輸美裸根方式後對於外觀品質之影響。藉以評估可否取代水苔作為新的蝴蝶蘭栽培介質。利用水苔作為對照組,將1.5吋盆幼苗栽培15週與29週後進行生長調查,並嘗試以模擬貯運方式去觀察貯運期間的變化,以觀察樹皮混合碎水苔與樹皮混合泥炭土的盆苗在產業管理上的適用性。 三種蝴蝶蘭栽培介質中在葉面積與根長以及植株乾鮮重上,樹皮混合泥炭苔(BP)和水苔(CK)有相同的生長勢。三種栽培介質栽培蝴蝶蘭經29週後介質皆呈現酸化,pH皆低於4.9。 蝴蝶蘭進行裸根模擬貯運七天,生育調查顯示介質裸根後六小時內即有乙烯的生成,隨著裸根時間增加蝴蝶蘭乙烯含量在第二天與第三天生成量最高,以水苔(1.1413 nl/g.h)增加的倍數最高達2.55。三種栽培介質裸根後六小時呼吸率呈明顯上升,以水苔處理呼吸率最高,達3.24 ml/kg.h。在蝴蝶蘭葉片ACO活性在第三天與第五天活性最高,而根部則在第三天活性達最高。蝴蝶蘭三種介質處理ACC含量的變化上顯示,ACC含量主要在第三天合成量最高,在第五天則減少。蝴蝶蘭裸根貯運七天下位葉葉綠素含量、全可溶性糖與澱粉皆呈現減少。
The effect of different growing medium on growth of Phal. hybrid ‘H92117’ plantlets, and transportation stress on phalaenopsis of different medium appearance and quality were studied. To estimate the different medium which could be replace a new growing medium for phalaenopsis. In this experiment as sphagnum moss was the control, then investigated the growth of seedling in 15th and 29th weeks. To view the change of equal volume of bark and sliced sphagnum moss(1:1,BM) and bark and peat moss(1:1,BP)treat on phalaenopsis during the stimulated storage,and pursued survivor capacity of bared root plantlets for phalaenopsis transportation to USA. The effect of different growing on leaf area、root length、plant fresh weight and dried weigh of Phal. hybrid ‘H92117’ seedling. The BP and CK had same growth potential. The three growing medium cultured for 29 week were become acidity,the pH were below 4.9. The phalaenopsis plantlets were subjected stimulated storage for 7 days, the result shows within 6 hours bared root had ethylene production, by the time past raising the highest ethylene production were occurred on 2end and 3rd day, the ethylene production of sphagnum moss treatment had raise 2.55 times than potted. The respiration of three medium treatment had risen,and the CK had highest production at 3.24 ml/kg.h. The highest of ACO activity of leaf were occurred at 3rd and 5th day, and ACO activity of the root was at third day. The change of ACC content in the root of phalaenopsis with three growing medium treatment show, the ACC content had increased at 3rd day and decreased at 5th day. The chlorophyll content、total soluble sugar of phalaenopsis leaf decrease with the stimulated transplanted.
URI: http://hdl.handle.net/11455/28726
其他識別: U0005-2308200617160200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2407200610231600
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.