Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28761
標題: 煙燻水對台農二號番木瓜種子發芽、幼苗生長、抗真菌性病害及採收後果實品質的影響
Effects of Smoke-water on Seed Germination, Seedling Growth, Antifungal Activities and Postharvest Fruit Quality of Papaya (Carica papaya cv. Tainung No. 2)
作者: 陳湄禎
Chumpookam, Jenjira
關鍵字: smoke-water
煙燻水
seed germination
seedling growth
damping-off disease
anthracnose
fruit rots
postharvest quality
papaya
種子發芽
幼苗增長
猝倒病
炭疽病
果實腐爛
採後品質
番木瓜
出版社: 園藝學系所
引用: Agrios, G.N. 2005. Plant Pathology, 5th ed. Elsevier Academic Press, San Diego. 922 p. Ahmed, A.K., K.A. Johson, M.D. Burchett, and B.J. Kenny. 2006. The effects of heat smoke, leaching, scarification, temperature and NaCl salinity on germination of Solanum centrale (the Australian bush tomato). Seed Sci. Technol. 34:33-45. Anderson, E.B. and T.E. Long. 2010. Imidazole- and imidazolium-containing polymers for biology and material science applications. Polym. J. 51:2447-2454. Asgar, A., T.M.M. Mahmud, S. Kamaruzaman, and S. Yasmeen. 2011. Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chem. 124:620-626. Baldwin, I.T., L. Staszak-Kozinski, and R. Davidson. 1994. Up in smoke. I. Smoke-derived germination cues for post-fire annual, Nicotiana attenuate Torr ex Watson. J. Chemical Ecology. 20:2345-2371. Barzic, M.R. and E. Guittet. 1996. Structure and activity of persicomycins, toxins produced by a Pseudomonas syringae pv. persicae/Prunus persica isolate. Eur. J. Biochem. 239:702-709. Bautista-Banos, S., A.N. Hernandez-Lauzardo, M.G. Velazquez-del Valle, M. Hernandez-Lopez, E. Ait Barka, E. Bosquez-Molina, and C.L. Wilson. 2006. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot. 25:108-118. Bautista-Banos, S., M. Hernandez-Lopez, E. Bosquez-Molina, and C.L. Wilson. 2003. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruits. Crop Prot. 22:1087-1092. Benhamou, N. 1992. Ultrastructural and cytochemical aspects of chitosan on Fusarium oxysporum f. sp. radicis-lycopersici, agent of tomato crown and root rot. Phytopathol. 82:1185-1193. Benhamou, N., P.J. Lafontaine, and M. Nicole. 1994. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathol. 84:1432-1444. Bennett, M.A., V.A. Fritz, and N.W. Callan. 1992. Impact of seed treatments on crop stand establishment. HortTechnol. 2:345-349. Bhaskar-Reddy, M.V., P. Angers, F. Castaigne, and J. Arul. 2000. Chitosan effects on blackmold rot and pathogenic factors produced by Alternaria alternata in postharvest tomatoes. J. Am. Soc. Hort Sci. 125:742-747. Bhattacharya, J. and S.S. Khuspe. 2001. In vitro and in vivo germination of papaya (Carica papaya L.) seeds. Sci. Hortic. 91:39-49. Boucher, C. and M. Meets. 2004. Determination of the relative activity of aqueous plant-derived smoke solutions used in seed germination. S. Afr. J. Bot. 70:313-318. Brent, K.J. 1995. Fungicide resistance in crop pathogens, How can it be managed. J. Global Crop Protection Federation, Brussels. Bron, I.U. and A.P. Jacomino. 2006. Ripening and quality of “Golden” papaya fruit harvested at different maturity stages. Braz. J. Plant Physiol. 18:389-396. Brown, N.A.C. and J. Van Staden. 1997. Smoke as a germination cue: a review. Plant Growth Regul. 22:115-124. Brown, N.A.C., J. Van Staden, M.I. Daws, and T. Johnson. 2003. Patterns in the seed germination response to smoke in plants from the Cape Floristic Region, South Africa. S. Afr. J. Bot. 70:559-581. Bruehl, G.W. 1987. Soilborne plant pathogens. Macmillan publishing company, London. P.326. Brummell, D.A. and M.H. Harpster. 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47:311-340. Chan, Y.K. and R.E. Paull. 2008. ‘Caricaceae' in Janick, J. and R.E. Paull. The Encyclopaedia of Fruit & Nuts, Wallingford, UK. CAB International, 237-247. Chen, Y., S. Tessier, C. Cavers, X. Xu, and F. Monero. 2005. A survey of crop residue burning practices in Manitoba. Appl. Eng. Agric. 21:317-323. Chien, P. and C. Chou. 2006. Antifungal activity of chitosan and its application to control postharvest quality and fungal rotting of Tankan citrus fruit (Citrus tankan hayata). J. Sci Food Agric. 86:1964-1969. Chien, P.J., F. Sheu, and H.R. Lin. 2007. Coating citrus (Murcott tangor) fruit with low molecular weight chitosan increase postharvest quality and shelf life. Food Chem. 100:1160-1164. Chiwocha, S.D.S., K.W. Dixon, G.R. Flematti, E.L. Ghisalberti, D.J. Merritt, D.C. Nelson, J-A.M. Riseborough, S.M. Smith, and J.C. Stevens. 2009. Karrikins: a new family of plant growth regulators in smoke. Plant Sci. 177:252-256. Ciafardini, G. and B.A., Zullo. 2003. Antibacterial activity of oil mill water polyphenols on the phytopathogen Xanthomonas campestris spp. Ann. Microbiol. 53:283-290. Commander, L.E., D.J. Merritt, D.P. Rokich, G.R. Flematti, and K.W. Dixon. 2008. Seed germination of Solanum spp. (Solanaceae) for use in rehabilitation and commercial industries. Aust. J. of Botany. 56:333-341. Cuero, R.G., G. Osuji, and A. Washington. 1991. N-carboxymethyl chitosan inhibition of aflatoxin production: role of zinc. Biotechnol. Lett. 13:41-444. Daws, M.I., J. Davies, H.W. Pritchard, N.A.C. Brown, and J. Van Staden. 2007. Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regul. 51:73-82. De Lange, J.H. and C. Boucher. 1990. Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S. Afr. J. Bot. 56:700-703. De Lange, J.H. and C. Boucher. 1993. Autecological studies on Audouinia capitata (Bruniaceae). 8. Role of fire in regeneration. S. Afr. J. Bot. 59:188-202. Dhindwal, A.S., B.P.S. Lather, and J. Singh. 1991. Efficacy of seed treatment on germination, seedling emergence and vigour of cotton (Gossypium hirsutum) genotypes. Seed Res. 19:59-61. Dixon, K.W., D.J. Merritt, G.R. Flematti, and E.L. Ghisalberti. 2009. Karrikinolide-a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hort. 813:155-170. Dixon, K.W. and S. Roche. 1995. The role of combustion products (smoke) in stimulating ex-situ and in-situ germination of Western Australian plants. Proc Int Plant Prop Soc. 45:53-56. Doherty, L.C. and M.A. Cohn. 2000. Seed dormancy in red rice (Oryza sativa). XI. Commercial liquid smoke elicits germination. Seed Sci. Res. 10:415-421. Dreweres, F.E., M.T. Smith, and J. Van staden. 1995. The effect of plant-derived smoke extract on the germination of light-sensitive lettuce seed. Plant Growth Regul. 16:205-209. Du, J., H. Gemma, and S. Iwahori. 1997. Effects of chitosan coating on the storage of peach, Japanese pear and kiwifruit. Hort. Sci. 66:15-22. Duan, J., S.I. Park, M.A. Daeschel, and Y. Zhao. 2007. Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese. J. Food Sci. 72: 355-362. Egerton-Warburton, L.M. 1998. A smoke-induced alteration of the sub-testa cuticle in seeds of the post-fire recruiter Emmenanthe penduliflora Benth. (Hydrophyllaceae). J. Exp. Bot. 49:1317-1327. El-Ghaouth, A., J. Arul, and A. Asselin. 1992. Potential use of chitosan in postharvest preservation of fruits and vegetables. In: Brines, C.J., P.A. Sandfors, J.P. Zikakis, (Eds.), Advances in Chitin and Chitosan 1991. Elsevier Applied Science, London and New York, pp. 440-452. El-Ghaouth, A., J. Arul, R. Ponnampalam, and M. Boulet. 1991. Chitosan coating effect on storability and quality of fresh strawberries. J. Food Sci. 56:1618-1631. El-Ghaouth, A., R. Ponnamapalam, F. Castaigene, and J. Arul. 1992. Chitosan coating to extend the storage life of tomatoes. HortScience. 27:1016-1018. Eweis, M., S.S. Elkholy, and M.Z. Elsabee. 2006. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Int. J. Biol. Macromol. 38:1-8. Faoro, F., S. Sant, M. Iriti, and A. Appiano. 2001. Chitosan-elicited resistance to plant viruses: a histochemical and cytochemical study. In: Muzzarelli, R.A.A. (Ed.), Chitin Enzymology. Atec, Italy, pp. 57-62. Flematti, G.R., E.L. Ghisalberti, K.W. Dixon, and R.D. Trengove. 2004. A compound from smoke that promotes seed germination. Science 305, 977. Franklin, L. 2001. Damping-off disease. University of California. San Pablo Avenue, Oakland. Freepons, D. 1991. Chitosan, does it have a place in agriculture? Proc. Plant Growth Regulators Soc. Am. 11-19. Gamagae, S.U., D. Sivakumar, R.S. Wilson Wijeratnam, and R.L.C. Wijesundera. 2003. Use of sodium bicarbonate and Candida oleophila to control anthracnose in papaya during storage. Crop Prot. 22:775-779. George B. L., C.L. Campbell, L.T. Lucas. 1992. Introduction to plant diseases: identification and management. 2nd ed. New York. Ghebrehiwot, H.M., M.G. Kulkarni, K.P. Kirkman, and J. Van Staden. 2008. Smoke-water and a smoke-isolated butenolide improve germination and seedling vigour of Eragrostis tef (Zucc.) Trotter under high temperature and low osmotic potential. J. Agron. Crop Sci. 194:270-277. Grimmett, M.R. 1997. Imidazole and benzimidazole synthesis. Academic Press. Hadwiger, L.A., D.F. Kendra, B.W. Fristensky, and W. Wagoner. 1986. Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In: Muzzarelli, R.A.A., C. Jeuniaux, G.W. Gooday. (Eds.), Chitin in Nature and Technology. Plenum Press, New York, pp. 209-214. Hahlbrock, K. and D. Scheel. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol. 40:347-369. Harris, A.R. and P.G. Adkins. 1999. Versatility of fungal and bacterial isolates for biological control of damping-off disease caused by Rhizoctonia solani and Pythium spp. J. Biological control. 15:10-18. Hernandez-Lauzardo, A.N., S. Bautista-Banos, M.G. Velazquez-del Valle, M.G. Mendez-Montealvo, M.M. Sanchez-Rivera, and L.A. Bello-Perez. 2008. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb:Fr.) Vuill. Carbohydratr Polymers. 73:541-547. Hirano, S., C. Itakura, H. Seino, Y. Akiyama, I. Nonata, and N. Kanbara. 1990. Chitosan as an ingredient for domestic animal feeds. J. Agric. Food Chem. 38:1214-1217. Holmes, G.J. and J.W. Eckert. 1999. Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathol. 89:716-721. Hunter, J.E and I.W. Buddenhagen. 1969. Field biology and control of Phytophthora parasitica on papaya (Carica papaya) in Hawaii. Ann. Appl. Biol. 63:55-60. Hunter, J.E and R.K. Kunimoto. 1974. Dispersal of Phytophthora parasitica sporangia by wind-blown rain. Phytopathol. 64:202-206. Hussain, T., H.L. Siddiqui, M. Zia-ur-Rehman, M.M. Yasinzai, and M. Parvez. 2009. Anti-oxidant, anti-fungal and anti-leishmanial activities of novel 3-[4-(1H-imidazol-1-yl) phenyl]prop-2-en-1-ones. Eur. J. Med. Chem. 44:4654-4660. Jager, A.K., M.E. Light, and J. Van Staden, 1996. Effects of source of plant material and temperature on the production of smoke extracts that promote germination of light-sensitive lettuce seeds. Environ. Exp. Bot. 36:421-429. Jan, H. Nasman. 1993. 3-Methyl-2(5H)-furanone. Org. Synth. Coll. Vol. 1:396. Jain, A.K., V. Ravichandran, M. Sisodiyal, and R.K. Agrawal. 2010. Synthesis and antibacterial evaluation of 2-substituted-4,5-diphenyl-N-alkyl imidazole derivatives. Asian Pac. J. Trop. Med. 471-474. Jain, N. and J. Van Staden. 2007. The potential of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2-one as a priming agent for tomato seeds. Seed Sci. Res. 17:175-181. Jay, J.M. 1996. Modern food microbiology (5th ed.). New York NY: Chapman and Hall. Jiang, Y. and Y. Li. 2001. Effects of chitosan coating on postharvest life and quality of longan fruit. Food Chem. 73:139-143. Jiang, Y., Li, J., and W. Jiang. 2005. Effects of chitosan coating on shelf life of cold-stored litchi fruit at ambient temperature. LWT-Food Sci. Technol. 38:757-761. Joule, J.A. and K. Mills. 2000. Heterocyclic Chemistry 4th ed. Blackwell Science Publishing: Oxford, UK. Keeley, J.E. 1993. Smoke-induced flowering in the fire-lily Crytanthus ventricosus. S. Afr. J. Bot. 59:638. Keeley, J.E. and W.J. Bond. 1997. Convergent seed germination in South African fynbos and Californinan chaparral. J. Plant Ecol. 133:153-167. Keeley, J.E. and C.J. Fotheringham. 2000. Role of fire in regeneration from seed. In: Fenner, M. (Ed.), Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed. CABI Publishing, Wallingford, UK. ISBN: 0-85199-432-6, pp. 311-330. Keeley, S.C. and M. Pizzorno. 1986. Charred wood stimulated germination of two fire-following herbs of the California chaparral and the role of hemicelluloses. Am. J. Bot. 73:1289-1297. Kittur, F.S., K.R. Kumar, and R.N. Tharanathan. 1998. Functional packaging properties of chitosan films. Z Lebensm Unters Forsch A. 206:44-47. Ko, W.H. 1994. Phytophthora fruit rot and root rot. In: Ploetz, R.C., G.A. Zentmyer, W.T. Nishima, K.G. Rohrbach, and H.D. Ohr. Compendium of tropical fruit disease. St. Paul, APS Press. P. 61-62. Kucera, B., M.A. Cohn, and G. Leubner-Metzger. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15:281-307. Kulkarni, M.G., G.D. Ascough, and J. Van Staden. 2007. Effects of foliar applications of smoke-water and a smoke-isolated butenolide on seedling growth of okra and tomato. HortScience. 42:179-182. Kulkarni, M.G., G.D. Ascough, and J. Van Staden. 2008. Smoke-water and a smoke-isolated butenolide improve growth and yield of tomatoes under greenhouse conditions. HortTechnology. 18:449-454. Kulkarni, M.G., G.D. Ascough, L. Verschaeve, K. Baeten, M.P. Arruda, and J. Van Staden, 2010. Effect of smoke-water and a smoke-isolated butenolide on the growth and genotoxicity of commercial onion. Sci. Hortic. 124:434-439. Kulkarni, M.G., S.G. Sparg, M.E. Light, and J. Van Staden. 2006. Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide. J. Agron. Crop Sci. 192:395-398. Krock, B., S. Schmidt, C. Hertweck, and I.T. Baldwin. 2002. Vegetation-derived abscisic acid and four terpenes enforce dormancy in seeds of the post-fire annual, Nicotiana attenuata. Seed Sci. Res. 12:239-252. Lam, N.D. and T.B. Diep. 2003. A preliminary study on radiation treatment of chitosan for enhancement of antifungal activity tested on fruit-spoiling strains. Nuclear Sci. Technol. 2:54-60. Lange, A.H. 1961. Effect of sarcotesta on the germination of papaya seed. Bot. Gazette. 122:305-311. Lazan, H. and Z. M. Ali. 1993. Cell wall hydrolases and their potential in the manipulation of ripening of tropical fruits. Asean Food J. 8:47-53. Leubner-Metzger, G., L. Petruzzelli, R. Waldvogel, R. Vogeli-Lange, and F.M. Jr. 1998. Ethylene responsive element binding protein (EREBP) expression and the transcriptional regulation of class I s-1,3-glucanase during tobacco seed germination. Plant Molec Biol. 38:785-795. Li, H. and T. Yu. 2000. Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit. J. Sci. Food Agric. 81:269-274. Li, Y., Y. Kawamura, N. Fujiwara, T. Naka, H. Liu, X. Huang, K. Kobayashi, and T. Ezaki. 2004. Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. Int. J. Syst. Evol. Microbiol. 54:819-825. Light, M.E., M.I. Daws, and J. Van Staden. 2009. Smoke-derived butenolide: towards understanding its biological effects. S. Afr. J. Bot. 75:1-7. Light, M.E., M.G. Kulkarni, G.D. Ascough, and J. Van Staden. 2007. Improved flowering of a South African Watsonia with smoke treatment. S. Afr. J. Bot. 73: 298. Light, M.E. and J. Van Staden. 2004. The potential of smoke in seed technology. S. Afr. J. Bot. 70:97-101. Lloyd, M.V., K.W. Dixon, and K. Sivasithamparam. 2000. Comparative effects of different smoke treatments on germination of Australian native plants, Aust. Ecol. 25:610-615. Ma, Z. and T.J. Michailides. 2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot. 24:853-563. Manenoi, A and R.E. Paull. 2007. Papaya fruit softening, endoxylanase gene expression, protein and activity. Physiol Plantarum. 131:470-480. Mandal, K.G., A.K. Misra, K.M. Hati, K.K. Bandyopadhyay, P.K. Ghosh, and M. Mohanty. 2004. Rice residue-management options and effects on soil properties and crop productivity. J. Food Agr Environ. 2:224-231. Martinez-Romero, D., N. Alburquerque, J.M. Valverde, F. Guillen, S. Castillo, and D. Valero. 2006. Postharvest sweet cherry quality and safety maintenance by Aloe vera treatment: A new edible coating. Postharvest Biol. Technol. 39:92-100. McCann, M., B. Coyle, J. Briody, F. Bass, N. O'Gorman, M. Devereux, K. Kavanagh, and V. McKee. 2003. Synthesis and antimicrobial activity of (Z)-3-(1H-imidazol-1-yl)-2-phenylpropenenitrile and its metal complexes: X-ray crystal structures of the Zn(II) and Ag(I) complexes. J. Polyhedron. 22:1595-1601. Meng, X., L. Yang, J.F. Kennedy, and S. Tian. 2010. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate polymers. 81:70-75. Merritt, D.J., K.W. Dixon, G. Flematti, L.E. Commander, and S.R. Turner. 2005. Recent findings on the activity of butenolide-a compound isolated from smoke that promotes seed germination. In: Abstr. 8th. Intl. Wkshp. on Seeds, Brisbane, Australia. pp. 8-13. Merritt, D.J., M. Kristiansen, G.R. Flematti, S.R. Turner, E.L. Ghisalberti, R.D. Trengove, and K.W. Dixon. 2006. Effects of a butenolide present in smoke on light-mediated germination of Australian Asteraceae. Seed Sci Res. 16:29-35. Modi, A.T. 2004. Short-term preservation of maize landrace seed and taro propagules using indigenous storage methods. S. Afr. J. Bot. 70:16-23. Morton, J.F. 1987. Fruits of Warm Climates, Winterville, U.S.A., Creative Resources, Inc., 336-346. Munoz, Z., A. Moret, and S. Garces. 2009. Assessment of chitosan for inhibition of Colletotrichum sp. on tomatoes and grapes. Crop Prot. 28:36-40. Muthukumar, A., A. Eswaran, S. Nakkeeran, and G. Sangeetha. 2010. Efficacy of plant extracts and biocontrol agents against Pythium aphanidermatum inciting chilli damping-off. Crop Prot. 29:1483-1488. Nautiyal, C.S., P.S. Chauhan, and Y.L. Nene. 2007. Medicinal smoke reduces airborne bacteria. J. Ethnopharmacology. 114:446-451. No, H.K., S.P. Meyers, W. Prinyawiwatkul, and Z. Xu. 2007. Applications of chitosan for improvement of quality and shelf life of foods: A review. J. Food. Sci. 72:82-100. Paasonen, M., A. Hannukkala, S. Ramo, H. Haapala, and V. Hietaniemi. 2003. Smoke-a novel application of a traditional means to improve grain quality. Nordic Association of Agricultural Scientists 22nd Congress, Turku, Finland. Palaniswamy, V. and K. Ramamoorthy. 1987. Seed germination studies in papaya. Prog. Hort. 19:253-255. Paraskeva, P. and E. Diamadopoulos. 2006. Review technologies for olive mill wastewater (OMW) treatment: a review. J. Chem. Tech. Biotechnol. 81:1475-1485. Paull, R.E. and N.J. Chen. 1989. Waxing and plastic wraps influence water loss from papaya fruit during storage and ripening. J. Amer. Soc. Hort. Sci. 114:937-942. Paull, R.E., B. Irikura, P. Wu, H. Turano, and N.J. Chen. 2008. Fruit development, ripening and quality related genes in the papaya genome. Tropical Plant Biol. 1:246-277. Paulitz, T.C., K. Adams, and M. Mazzola. 2003. Pythium abappressorium-a new species from eastern Washington. J. Mycologia. 95:80-86. Pereira, T., P.S. Almeida, I.G. Azevedob, M. da Cunha, J.G. Oliveirac, M.G. da Silva, and H. Vargas. 2009. Gas diffusion in ‘Golden' papaya fruit at different maturity stages. Postharvest Biol. Technol. 54:123-130. Perez, R.M.N. and J.C. Cneva. 1980. Germination of two Papaya varieties; Effect of seed aeration, K-treatment, removing of the sarcotesta, high temperature, soaking in distilled water and age of seed. J. Agr. Univ Puert Rico. 64:173-180. Prusk, D. 1996. Pathogen quiescence in postharvest disease, Annu. Rev. Phytopathol. 34:413-434. Raccach, M. 1984. The antimicrobial activity of phenolic antioxidants in foods: a review. J. Food Safety. 6:141-170. Rawal, R.D. 2010. Fungal diseases of papaya and their mangement. Acta Hort. 851:443-446. Riley, J.M. 1981. Growing rare fruit from seed. California Rare Fruit Growers Yearbook. 13:1-47. Roche, S., J.M. Koch, and K.W. Dixon. 1997. Smoke enhanced seed germination for mine rehabilitation in the southwest of Western Australia. Rest. Ecol. 5:191-203. Romanazzi, G., F. Nigro, and A. Ippolito. 2001. Chitosan in the control of postharvest decay of some Mediterranean fruits. In: Muzarelli, R.A.A. (Ed.), Chitin Enzymology, 2001. Atec, Italy, pp. 141-146. Romanazzi, G., F. Nigro, A. Ippolito, D. Di Venere, and M. Salerno. 2002. Effects of pre and postharvest chitosan treatments to control storage grey mold of table grapes. J. Food Sci. 67:1862-1867. Romanazzi, G., F. Milkota Gabler, and J.L. Smilanik. 2005. Chitosan treatment to control postharvest gray mold of table grapes. Phytopathol. 95:90. Sandford, P., 1989. Chitosan: commercial uses and potential applications. In: Skjak-Braek, G., T. Anthosen, P. Standford, (Eds.), Chitin and Chitosan. Sources, Chemistry, Biochemistry. Physical Properties and Applications. Elsevier Applied Science, London and New York, pp. 51-69. Sanglard, D., F. Ischer, M. Monod, and J. Bille. 1996. Susceptibilites of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob. Agents Chemother. 40:2300-2305. SAS Institute. 2002. SAS for Windows, version 9.2. SAS Institute, Inc., Cary, NC. Senaratna, T., K.W. Dixon, E. Bunn, and D. Touchell. 1999. Smoke-saturated water promotes somatic embryogenesis in geranium. Plant Growth Regul. 28:95-99. Selvaraj, Y., M.D., Subramanyan, and C.P.A. Iyer. 1982. Changes in the chemical composition of four cultivars of papaya (Carica papaya L.) during growth and development. J. Hort. Sci. 57:135-143. Seymour, G.B., J.E. Taylor, and G.A. Tucker, (Eds.). 1993. Biochemistry of fruit ripening. pp. 1-454. Schwachtje, J. and I.T. Baldwin. 2004. Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata. Seed Sci. Res. 14:51-60. Singh, S.P. 2011. Papaya (Carica papaya L.). In: Postharvest biology and technology of tropical and subtropical fruits. Volumn 4. UK. P. 86-124. Sparg, S.G., M.G. Kulkarni, and J. Van Staden. 2006. Aerosol smoke and smoke-water stimulation of seedling vigor of a commercial maize cultivar. Crop Sci. 46:1336-1340. Soengas, P., P. Hand, J.G. Vicente, J.M. Pole, and D.A. Pink. 2007. Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. Campestris in Brassica rapa. Theor. Appl Genet. 114:637-645. Soos, V., A. Juhasz, M.E. Light, J. Van Staden, and E. Balazs. 2009. Smoke-water-induced changes of expression pattern in Grand Rapids lettuce achenes. Seed Sci. Res. 19:37-49. Stehmann, C., and de M.A. Waard. 1996. Factors influencing activity of triazole fungicides towards Botrytis cinerea. Crop Prot. 15:39-47. Stephens, C.T., L.J. Herr, and A.F. Schmitthenner. 1982. Characterization of Rhizoctonia isolates associated with damping-off of bedding plants. Plant Dis. 66:700-703. Srinivasa, P.C., R. Baskaran, M.N. Armes, K.V. Harish Prashanth, and R.N. Tharanathan. 2002. Storage studies of mango packed using biodegradable chitosan film. Eur. Food Res. Technol. 215:504-508. Sutcliffe, M.A., and C.S. Whitehead. 1995. Role of ethylene and short chain saturated fatty acids in the smoke-stimulated germination of Cyclopia seed. J. Plant Physiol. 145:271-276. Taylor, J.L.S. and J. Van Staden. 1996. Root initiation in Vigna radiata (L.) Wilczek hypocotyl cuttings is stimulated by smoke-derived extracts. Plant Growth Regul. 18:165-168. Thomas, T.H., and J. Van Staden. 1995. Dormancy break of celery (Apium graveolens L.) seeds by plant-derived smoke extract. Plant Growth Regul. 17:195-198. Thompson, A.K. 2003. Fruit and vegetables: harvesting, handling and storage. 2rd. Oxford, UK. Tsukamoto, S., T. Kawabata, H. Kato, T. Ohta, H. Rotinsulu, R.E. Mangindaan, R.W. Van Soest, K. Ukai, H. Kobayashi, and M. Namikoshi. 2007. Cytotoxic imidazole alkaloids from the Indonesian marine sponge Leucetta chagosensis. J. Nat. Prod. 70:1658-1660. Vanachter, A., E. Van Wembeke, and C. Van Assche. 1983. Potential danger for infection and spread of root disease of tomatoes in hydroponics. Acta Hort. 133:119-127. Van Staden, J., F.E. Drewes, and A.K. Jager. 1995. The search for germination stimulants in plant-derived smoke extracts. S. Afr. J. Bot. 61:260-263. Van Staden, J., N.A.C. Brown, A.K. Jager, and T.A. Johnson. 2000. Smoke as a germination cue. Plant. Spec. Biol. 15:167-178. Van Staden, J., A.K. Jager, M.E. Light, and B.V. Burger. 2004. Isolation of the major germination cue from plant-derived smoke. S. Afr. J. Bot. 70:654-659. Van Staden, J., S.G. Sparg, M.G. Kulkarni, and M.E. Light. 2006. Post-germination effects of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2-one, and its potential as a preconditioning agent. Field Crops Res. 98:98-105. Verschaeve, L., J. Maes, M.E. Light, and J. Van Staden. 2006. Genetic toxicity testing of 3-methyl-2H-furo[2,3-c]pyran-2-one, an important biologically active compound from plant-derived smoke. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 611:89-95. Wang, P.H., H.T. Chao, C.L. Chen, and C.C. Yuan. 2006. Single-dose sertaconazole vaginal tablet treatment of vulvovaginal candidiasis. J. Chin. Med. Assoc. 69:259-263. Wong, P.Y.Y. and D.D. Kitts. 2006. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem. 97:505-515. Xu, J.G., X.M. Zhao, X.W. Han, and T.G. Du. 2007. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pest. Biochem. Physiol. 87:220-228. Yahiro, M. 1979. Effect of seed pre treatment on the promotion of germination in papaya (Carica papaya L). Memoris of the Faculty of Agriculture, Kagoshima University 15:49-54. Yangui, T., A. Rhouma, M.A. Triki, K. Gargouri, and J. Bouzid. 2008. Control of damping-off caused by by Rhizoctonia solani and Fusarium solani using olive mill waste water and some of its indigenous bacterial strains. Crop Prot. 27: 189-197. Yin, Y.N., Y.F. Chen, S.M. Li, and J.H. Guo. 2005. RAPD analysis of plant pathogenic coryneform bacteria. Microb. Tech. 45:837-841. Yueming, J. and L. Yuebiao. 2001. Effects of chitosan coating on postharvest life and quality of longan fruit. J. Food Chem. 73:139-143. Zamir, P.K. and R. Yip. 2003. Biological control of damping off and root rot caused by Pythium aphanidermatum on greenhouse cucumbers. J. Plant Pathol. 25:411-417. Zhang, D. and P.C. Quantick. 1997. Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi sinensis Sonn.) fruit. Postharvest Biol. Technol. 12:195-202. Zhang, D. and P.C. Quantick. 1998. Antifungal effects of chitosan coating on fresh strawberries and raspberries during storage. J. Hort. Sci. Biotechnol. 73:763-767. Zhu, X., Q. Wang, J. Cao, and W. Jiang. 2008. Effect of chitosan coating on postharvest quality of mango (Mangifera indica L. cv. Tainong) fruits. J. Food Proc. Pres. 32:770-784.
摘要: 煙燻水是一種含有許多刺激植物萌芽、幼苗生長與抑制病原菌生長等物質的水溶液。本研究擬探討煙燻水對種子萌芽、幼苗生長及對真菌類病原菌的抑菌作用以及增進台農2號番木瓜採後品質之影響。分析煙燻水中的成分包含了酸類、植物所需的礦物營養、如重要的氮源銨態氮(NH4+),同時含有高量的抗真菌物質,如酚類化合物。以氣相層析儀(GC-MS)分析煙燻水的成分,可區分出30種成分,主要是醇、內酯、醛、酸、酮類、生物鹼以及酚類。在這些成份中,2(5H)-Furanone可能刺激了番木瓜種子萌芽主要成分,酚類化合物則具有抑制了真菌的生長之效果,而1H-Imidazole, 1-methyl-4-nitroso-5-phenyl則具有殺死真菌類病原菌的能力。 在發芽試驗中,低濃度的煙燻水(0.1%或0.2%,v/v)不僅有較高的發芽率,且能縮短發芽時間。推測其原因為0.1%或0.2%的煙燻水處理種子可以增加種皮滲透性,使種皮破裂、胚根伸長並加速萌發。在番木瓜種苗生長試驗中,煙燻水可提高多項生長特性,如葉綠素含量與壯苗指數。 煙燻水在PDA培養基系統下及盆植番木瓜幼苗試驗上均可以抵抗土壤真菌所引發的猝倒病,以掃描式電子顯微鏡(SEM)觀察,煙燻水對於Pythium sp. 生長形態的影響,結果顯示煙燻水抑制了Pythium sp. 之菌絲體及孢子的生長。此外,3%煙燻水會使Pythium sp. 的細胞結構受到破壞、畸形、細胞質滲漏、甚至自我分解,且菌絲生長量減少。在盆栽試驗中,煙燻水可以降低番木瓜植株猝倒病的罹病率。 果腐是番木瓜果實採後品質損失的主要原因,其中,果腐病原包含炭疽病與疫病,分別為Colletotrichum gloeosporioides與Phytophthora sp.所致病。利用煙燻水或是甲殼素,於PDA培養基系統與接種於番木瓜果實上進行試驗。若將煙燻水或甲殼素添加入培養基中,結果顯示煙燻水或甲殼素抑制了C. gloeosporioides或Phytophthora sp.的生長。而在番木瓜果實接種C. gloeosporioides或Phytophthora sp. 後,分別處理10%與20%的煙燻水、0.5%的甲殼素、0.5%的甲殼素與10%的煙燻水之混合液,並以蒸餾水作為對照組 結果顯示,10%的煙燻水、0.5%的甲殼素以及0.5%的甲殼素與10%的煙燻水之混合液的處理降低了番木瓜果實炭疽病與疫病果腐病發病率及罹病程度。其中又以0.5%的甲殼素被膜之抑菌效果最好。 果實採後品質方面,處理煙燻水、甲殼素和甲殼素與煙燻水之混合液的番木瓜,可在室溫25℃下貯藏9天。其中以處理煙燻水的番木瓜果實其呼吸率和乙烯釋放率會上升,導致番木瓜果實比其他處理組提早後熟。 以上結果顯示,煙燻水可以改善種子萌芽、幼苗生長並控制某些植物病害的發生或蔓延,此外,煙燻水可以減少化學肥料和殺菌劑的使用量,具有發展成為有機栽培和無農藥管理模式之潛力。
Smoke-water is a chemical extract used to stimulate the germination of seed, seedling growth and inhibit disease spreading of many plant species under cultivation. The present study was initiated to understanding the effect of smoke-water on germination, growth, defense to pathogenic fungi and increased postharvest quality of papaya (Carica papaya) cv. ‘Tainung No. 2'. Smoke-water was characterized analysis. This solution was acidic, substantial amounts of plant nutrients, high level of NH4+ which was important nitrogen sources for plant growth and has a high content of antifungal activity especially phenolic compounds. The compounds of smoke-water were investigated by gas chromatography-mass spectrometry (GC-MS), and 30 compounds were identified, which were mainly alcohols, lactones, aldehydes, acid, ketones, alkaloid and hydroxybenzenes. Among the identified compounds, have 3 types of compounds which considerable in this study, theirs were 2(5H)-Furanone that may stimulate the germination of papaya seeds, phenolic compounds that may inhibited the growth of several fungi and 1H-Imidazole,1-methyl-4-nitroso-5-phenyl- that ability to inhibit and antifungal pathogens. In the germination experiments, low concentrations of smoke-water (0.1% or 0.2%, v/v) not only promoted the maximum rate of germination but also shortened the germination time. Analysis of longitudinal sections of seeds treated with smoke-water concentrations of 0.1% or 0.2% v/v suggested that smoke-water could overcome water impermeability barriers, since it stimulated the seed coat to rupture and allowed the radical to elongate and emerge faster. In the growth experiments, smoke-water promoted multiple growth attributes, such as chlorophyll content and seedling vigor index, at all concentrations in papaya seedling production. Smoke-water was tested in vitro and in vivo for efficacy against damping-off caused by a soil borne fungi and investigate the effect of smoke-water on the morphology of Pythium sp. in scanning electron microscopy observation (SEM). Smoke-water inhibited the mycelia growth and oospore production of Pythium sp. Furthermore, after 3% smoke-water spray application, the morphology of Pythium sp. revealed loss of structural integrity, abnormal degradation, deformation, autolysis, cytoplasmic leakage and further hyphal slimming. In pot experiments, the percentage of papaya plants showing symptoms of damping-off was reduced by all concentration of smoke-water treatments. Fruit rots diseases are the major cause for the postharvest loss of papaya fruit. The control of anthracnose and Phytophthora fruit rots disease, caused by Colletotrichum gloeosporiodes and Phytophthora sp., respectively, by using smoke-water or chitosan tested in the vitro and in vivo. In vitro studies, using water agar amended with smoke-water or chitosan. The results showed that smoke-water or chitosan inhibited fungal growth of C. gloeosporioides or Phytophthora sp. In vivo studies, papaya fruits were inoculated with C. gloeosporioides or Phytophthora sp. and treated with 10% smoke-water, 20% smoke-water, 0.5% chitosan, a combination of 0.5% chitosan and 10% smoke-water, or distilled water (control), The results suggested that the use of 10% smoke-water, 0.5% chitosan or a combination of 0.5% chitosan and 10% smoke-water reduce the lesion diameter and disease incidence of anthracnose and Phytophthora fruit rots disease on papaya fruits. However, 0.5% chitosan coating was more effective among treatments. Postharvest quality, papaya fruits were treated with smoke-water, chitosan, and a combination of chitosan and smoke then were stored at the ambient temperature of 25 ◦C for 9 days. Papaya fruits coated with smoke-water increased the rates of respiration and ethylene production, and caused the papaya to ripen faster than the other treatments. This suggests that smoke-water show promising results for improving seed germination, seedling growth and controlling some plant disease. In addition, smoke-water can possibly economize the use of commercial chemical fertilizers, fungicide, making it a feasible technology for organic farming and non-chemical pesticide management model.
URI: http://hdl.handle.net/11455/28761
其他識別: U0005-3101201219335600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3101201219335600
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.