請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/28903
標題: 撲滅松及磷酸二氫鉀對‘粉紅種’蓮霧開花之影響
Effect of Fenitrothion and Potassium Dihydrogen phosphate on the Flowering of ''Pink'' wax-apple.
作者: 范俊傑
Fan, Jiun-Jie
關鍵字: KH2PO4
粉紅種'蓮霧
Ethylene
Potassium dihydrogen phosphate
Fenitrothion
Flower advancing
磷酸二氫鉀
乙烯
撲滅松
催花
出版社: 園藝學系所
引用: 于品華、王蒂。2003。KH2PO4追肥對無土栽培剪頭後馬鈴薯植株微型薯產量的影響。 甘肅農業大學學報 38:432-435。 王德男、翁瑞亨。1996。台灣蓮霧產業經營之變革及展望。台灣熱帶地區果園經營管理研討會專刊。P. 101-107。 王德男、劉碧鵑。1997。蓮霧葉果比與果實品質之關係。提升果樹產業競爭力研討會專集I.。 P.147-152 王德男。1990。蓮霧。台灣農家要覽(農作篇2)。豐年社。P. 89-100。 王德男。1991。台灣蓮霧栽培之過去與前瞻。台灣果樹枝生產及研究發展研討會專刊。P. 339-355 王箴。 1992。化工辭典。化學工業出版社。P:970 吳淑靜、柯文慶、賴滋漢。1997。食品添加物。富林出版社。P. 274-286。 柯勇。 2004。植物生理學。藝軒圖書出版社。P. 122-123;581-599。 范秀珍、肖華山、劉德盛、蔡文燕。2003。三十烷醇和磷酸二氫鉀混用對水稻的生理效應。 福建師範大學學報 19:80-84。 張光星、宋江華、宋紅霞、崔瑞峰。2006。噴施KH2PO4對胡蘿蔔採種的影響。 中國蔬菜 7:11-13 張雪平、王雪娟、袁萍。2003。KH2PO4對盆栽月季生長和開花的影響。 安徽技術師範學院學報 17:138-140。 許仁宏。1998。蓮霧花芽分化與開花。蓮霧產銷經營管理專輯。P. 157-167。 許玉妹、曾夢蛟、林金和。1998。限制根群對蓮霧生長發育之影響。中國園藝 44 : 439-447. 陳自珍、沈介仁。2000。食品添加。大華傳真出版社。 P. 365-366 陳清西、李松剛。 2004。 氯酸鉀誘導龍眼成花與內源激素的變化。園藝學報 31:451-455. 陳富英。1997。從蓮霧葉片養分含量判斷蓮霧催花時期。高雄區農業專訊。http://www.kdais.gov.tw/exten/ext-19/mag19-18.txt。 陳富英。2000。遮蔭及營養管理對蓮霧催花效果之影響。高雄區農業專訊。http://www.kdais.gov.tw/exten/ext-31/ext31-7.txt。 陳雁華。1995。蓮霧葉片生理及氯化鉀處理之影響。國立中興大學園藝學研究所碩士論文。P. 73-75。 傅炳山。1998。蓮霧果樹枝稍管理論。蓮霧產銷經營管理專輯。P. 145-149。 湯菊香、馮艷芳。2001。KH2PO4和青霉素對小麥老化種子發芽及幼苗生長之影響。 種子116(4):19-21。 黃羌維、陳由強。 1996。 生長調節劑及營養元素對龍眼開花結果效應。 福建師範大學學報(自然科學版) 12:80-85。 黃博雅。1998。蓮霧採收後寒害及處理技術之研究。國立中興大學園藝學研究所碩士論文。P. 37-40。 廖玉琬,徐善德。1999。植物生理學。啟英文化事業有限公司。P. 88-89。 廖萬正。1991。利用’二次催芽法’在本省低海拔地區生產高需冷性東方梨。台中區農業改良場研究彙報 32: 33-39。 撲滅松 (Fenitrothion) 農藥有效成分檢驗方法。http://www.tactri.gov.tw/htdocs/intro/pcd/MTFILES/fenitrothion.pdf 。 蔡瑜卿。1992。催花處理蓮霧樹體無機養分與碳水化合物之季節變化。國立中興大學園藝學研究所碩士論文。P. 28-39。 賴榮茂、楊耀祥。1999。 遮光對蓮霧成樹催花效果之影響。高雄區農業改良場研究彙報 11:1-13. 賴榮茂。2002。謹慎用藥確保蓮霧產業永續發展。 高雄區農業專訊。http://www.kdais.gov.tw/exten/ext-40/ext40-05.pdf 謝秀娟、林麗琴、吳菁菁。1996。蓮霧魅力本色(一)。農業世界 149: 9-12。 謝慶昌,阮雅蘭,石茂盈,薛淑滿。2005。柿果脫澀機制及採後保鮮技術改進。園產品採後處理技術之研究與應用研討會專刊。P59-64。 Banno, K., G. C. Martin, and R. M. Carlson. 1993. The role of phosphorus as an abscission-inducing agent for Olives and fruit. J. Amer. Sco. Hort. Sci. 118: 599-604. Blazquez, M. A. 2005. The right time and place for marking flowers. Science 309: 1024-1025. Bondad, N. D. and E. Linsangan. 1979. Flowering in Mango induced with potassium nitrate. HortScience 14: 527-528. Burnik-Tiefengraber, T., K. G. Weis, B. D. Webster, G. C. Martin, and H. Yamada, 1994. Phosphorus effects on olive leaf abscission. J. Amer. Soc. Hort. Sci. 119: 765-769. Burns, J. K. 2002. Using molecular biology tool to identify abscission materials for citrus. HortScience 37: 459-464. Burns, J. K., F. M. Roka, K.-T. Li, L. Pozo, and R. S. Buker. 2006. Late-season ‘Valencia’ orange mechanical harvesting with an abscission agent and low-frequency harvesting. HortScience 41:660-663. Burns, J. K., R. S. Buker, and F. M. Roka. 2005. Mechanical harvesting capacity in sweet orange is increased with an abscission agent. Hort. Technology 15: 758-765 Charoensri, P., K. Jutamanee, J. Tawatpun, P. Tongumpai, and K. Krisanapook. 2005. Effects of potassium chlorate and girdling onflower of “Phet Sakhon” longan. Acta Hort. 665: 259-267. Chartzoulakis, K. S. 1990. Effects of saline irrigation water on germination, growth and yield of greenhouse cucumber. Acta Hort. 287: 327-334. Cheveerry, J. L., M. O. Sy, J. Pouliqueen, and P. Marcellin. 1988. Regulation by CO2 of 1-aminocyclopropane-1-carboxylic acid conversion to ethylene in climacteric fruits. Pysiol. Plant. 72: 535-540. Corbineau, F., R. M. Rudnicki, D. M. Goszczynska, and D. Come. 1995. The effect of light quality on ethylene production in leaves of oat seedlings (avena sativa L.). Environmental and Experimental Botany 35: 227-233. Deltour R. 1967. Action du saccharose sur la croissance et la mise a fleurs de plantes issues d''apex de Sinapis alba L. cultives in vitro. C. R. Acad. Sci. Paris. 264: 2765-2767. Dukovski, D., R. Bernatzky, and S. Han. 2006. Flowering induction of Guzmania by ethylene. Scientia Hort. 110: 104-108. Erez, A. 1987. Chemical control of apple production inVenezuela. Acta Hort. 199: 19-25. Fishler, M., E. E. Goldschmidt, and S. P. Monselise. 1983. Leaf area and fruit size in girdled grapefruit branches. J. Amer. Sco. Hort. Sci., 108:218-221. Friend, D. J. C., M. Bodson, and G. Bernier. 1984. Promotion of flowering in Brassica campestris L. cv Ceres by sucrose. Plant physiol. 75: 1085-1089. Furr, J. R. and W. W. Armstrong. 1956. Flower induction in grapefruit in the Coachella Valley, California. Proc. Am. Soc. Hort. Sci. 67:176-182. Furutani, S. C., E. Johnston, and M. Nagao. 1989. Anthesis and abscission of blue jade vine flower treated with ethephon and AOA. HortScience 24: 1042. Gariglio N., D. E. Gonza´lez Rossia, M. Mendow, C. Reig, and M. Agusti. 2006. Effect of artificial chilling on the depth of endodormancy and vegetative and flower udbreak of peach and nectarine cultivars using excised shoots. Scientia Hort. 108: 371-377. Goldschmidt, E. E., N. Aschkenazi, Y. Herzano, A. A. Schaffer, and S. P. Monselise. 1985. A role for carbohydreate levels in the control of flowering in citrus. Scientia Hort. 26: 159-166. Goren R., C. Nishijima, and G. C. Martin. 1988. Effects of external ethylene on the production of endogenous ethylene in olive leaf tissue. J. Amer. Soc. Hort. Sci. 113: 778-783. Goren, R., M. Huberman, and G. C. Martin. 1988. Phosphorus-induced leaf abscission in detached shoots of olive and citrus. J. Amer. Soc. Hort. Sci. 123:545-549. Grob, V., P. Moline, E. Pfeifer, A. R. Novelo, and R. Rutishauser. 2006. Developmental morphology of branching flowers in Nymphaea prolifera. J. Plant Res. 119: 561-570. Hong, J. H., A. K. Cowan, and S. K. Lee. 2004. Glucose inhibits ACC oxidase activity and ethylene biosynthesis in ripening tomato fruit. Plant Growth Regulation. 43: 81-87. Hsu, Y., M. J. Tseng, and C. H. Lin. 1999. The fluctuation of carbohydrates and nitrogen compounds in flooded wax-apple trees. Bot. Bull. Acad. Sin. 40:193-198. Jasoni1, R. L., J. T. Cothren., P. W. Morgan, and D. E. Sohan. 2002. Circadian ethylene production in cotton. Plant Growth Regulation 36: 127-133. Koshita, Y. and T. Takahara. 2003. Effect of water stress on flower-bud formation and plant hormone content of satsuma mandarin (Citrus unshiu Marc.). Scientia Hort. 99: 301–307. Kurepin, L. V., L. J. Walton, and D. M. Reid. 2007. Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. Plant Growth Regulation 51: 53-61. Lang G. A. and G. C. Martin. 1989. Olive organ abscission : fruit and leaf response to applied ethylene. J. Amer. Soc. Hort. Sci. 114: 134-138. Lavee, S. and G. C. Martin. 1981a. In vitro studies on ethephon-induced abscission in olive. Ⅰ. The effect of application period and concentration on uptake, ethylene evolution, and leaf abscission. J. Amer. Soc. Hort. Sci. 106: 14-18. Lavee, S. and G. C. Martin. 1981b. In vitro studies on ethephon-induced abscission in olive. Ⅱ. The relation between ethylene evolution and abscission of various organs. J. Amer. Soc. Hort. Sci. 106: 19-26. Lavee, S. and G. C. Martin. 1985. Ethylene-releasing compounds and the laboratory modeling of olive fruit abscission vs. ethylene release. J. Amer. Soc. Hort. Sci. 110: 207-211. Laxalt, A. M. and T. Munnik. 2002. Phospholipid signaling in plant defence. Plant Biology 5: 1-7. Lelievre, J. M., L. Tichit, P. Dao, L. Fillion, and Y. W. Nam. 1997. Effects of chilling on the expression of ethylene biosynthetic genes in Passe-Crassane pear (Pyrus communis L.) fruits. Plant Mol. Bio. 33: 847-855. Martin,G. C., S. Lavee, and G. S. Sibbett. 1981. Chemical loosening agents to assist mechanical harvest of olive. J. Amer. Soc. Hort. Sci. 106: 325-330. Nakata, S. and Suehisa, R. 1969. Growth and development of Litchi chinensis as affected by soil moisture stress. Amer. J. of Botany 56: 1121-1126. Naphrom, D., C. Potjanapimon, W. Pattanapo, N. Boonplod, and T. Thanyapar. 2001. Changes in cytokinin and gibberllin-like substances instem apex of lychee cv. Hong huay prior to flowering. Acta Hort. 558:199-203. Nartvaranan,t P., S. Subhadrabandhu, and P. Tongumpai. 2000. Practical aspect in producing off-season mango in Thailand. Acta Hort. 509: 661-668. Nee, C. C. and L. H. Fuchigami. 1990. The effect of rootstock on the chillnng requirement of ‘Nijuseiki’ pear (Pyrus pyrifolia Nakai). Acta Hort. 279: 247-252 Orober, M., J. Siegrist, and H. Buchenauer. 2002. Mechanisms of phosphate-induced disease resistance in cucumber. Europ. J. of Plant Pathology. 108: 345-353. Peña1L., M. Martín-Trillo, J. Juárez1, J. A. Pina1, L. Navarro1, and J. M. Martínez-Zapater. 2001. Constitutive expression of Arabidopsis LEAFYor APETALA1 genes in citrus reduces their generation time. Nature Biotechnology 19: 263-267. Petri, J. L. 1987. Breaking dormancy of apple tree with chemicals. Acta Hort. 199: 109-118. Pozo, L., R. Yuan, I. Kostenyuk, F. Alferez, G. Yan Zhong, and J. K. Burns. 2004. Differential effects of 1-methylcyclopropene on citrus leaf and mature fruit abscission. J. Amer. Soc. Hort. Sci. 129: 473-478. Prasad, M., G. K. Burge, T. M. Spiers, and G. Fietje. 1993. Chloride-induced leaf breakdowon in kiwifruit. J. of Plant Nutrition. 16: 999-1012. Reuveni, M. and R. Reuveni. 1995. Efficacy of foliar sprays of phosphates in controlling powdery mildews in field-grown nectarine, mango tree and grapevines. Crop Protection 14: 311-314. Roberto, N. E. and T. L. Davenport. 1998. Gibberellin and temperature effects on dormancy release and shoot morphogenesis of mango (Mangifera indica L.). Scientia Hort. 77: 11-21. Saltveit, M. E. 2005. Influence of heat shocks on the kinetics of chilling-induced ion leakage from tomato pericarp discs. Postharvest Biol. Technol. 36:87-92. Sarmiento, R., V. Valpuestra, L. Catalina, and F. Gonzoles-Garcia. 1976. Variation of the contents of starch and soluble carbohydrate of leaves and buds of plants of Olea europaea var. Manzanillo in relation to their vegetative or reproductive process. Aneles de Edafologia y Agrobiologia 35: 683-695. Shulman, Y., G. Nir, L. Fanberstein, and S. Lavee. 1983. The effect of cyanamide on the release from dormancy of grapevine buds. Scientia Hort. 19: 97-104. Singh, V., C. K. Pallaghy, and D. Singh. 2006. Phosphorus nutrition and tolerance of cotton to water stress. II. Water relations, free and bound water and leaf expansion rate. Field Crops Research 96: 199-206. Sisler, E. C. and M. Serek. 1999. Compounds controlling the ethylene receptor. Bot, Bull. Acad. Sin. 40: 1-7. Smith, M. W., C. T. Rohla, and N. O. Maness. 2007. Correlations of crop load and return bloom with root and shoot concentration of potassium, nitrogen, and nonstructural carbohydrates in pecan. J. Amer. Soc. Hort. Sci. 132: 44-51. Southwick, S. M. and T. L. Davenport. 1987. Modification of the water stress-induced floral response in ‘Tahiti’ lime. J. Amer. Soc. Hort. Sci. 112: 231-236. Sritontip, C., Y. Khaosumain, S. Changjaraja, and R. Poruksa. 2005. Effect of potassium chlorate, potassium nitrate, sodium hypochlorite and thiourea on off-season flowering and photosynthesis of ‘Do’ longan. Acta Hort. 665: 291-296. Steed, C. L., L. K. Taylor, and M. A. Harrison. 2004. Red light regulation of ethylene biosynthesis and gravitropism in etiolated pea stems. Plant Growth Regulation 43: 117-125. Stutte, G. W. and G. C. Martin. 1986. Effect of light intensity and carbohydrate reserves on flowering in olive. J. Amer. Soc. Hort. Sci. 11: 27-31. Tan, F. C. and S. M. Swain. 2006. Genetics of flower initiation and development in annual and perennial plants. Physiol. Plant. 128: 8-17. Ulger, S., S. Sonmez, M. Karkacier, N. Ertoy, O. Akdesir, and M. Aksu. 2004. Determination of endogenous hormones, sugars and mineral nutrition levels during the induction, initiation and differentiation stage and their effects on flower formation in olive. Plant Growth Regulation 42: 89-95. Walker, R. R., E. Torokfalvy, A. M. Grieve, and L. D. Prior. 1983. Water relations and ion concentration of leaves on salt-stressed citrus plant. Aust. J. Plant Physiol. 10: 265-277. Weinberger, J. H. 1969. The stimulation of dormant peach buds by a cytokinin. HortScience 4: 125-126. Whiley, A. W. 1993. Environmental effects on phenology and physiology of mango-a review. Acta Hort. 341:168-176. Williams, W. T. and B. A. Tax Tzoc. 1990. preliminary observations on the effect of hydrogen cyanamide on breaking dormanacy and harvest of apple in Guatemala. Acta Hort. 279: 399-408. Yamada, H. and G. C. Martin. 1994. Physiology of olive leaf abscission induced by phosphorus. J. Amer. Soc. Hort. Sci. 119: 956-963. Yang, S. F. and J. G. Dong. 1993. Recent proress in research of ethylene biosynthesis. Bot. Bull. Acad. Sin. 34: 89-101. Yuan R. and J. K. Burns. 2004. Temperature factor affecting the abscission response of mature fruit and leaves to CMN-prazole and ethephon in ’Hamlin’ oranges. J. Amer. Soc. Hort. Sci. 129: 287-293. Yuan R., U. Hartmond, A. Grant, and W. J. Kender. 2001. Physiological factors affecting response of mature ‘Valencia’ orange fruit to CMN-pyrazol.I. effect of young fruit, shoot, and root growth. J. Amer. Soc. Hort. Sci. 126: 414-419. Zhong, G. Y., M. Huberman, X. Q. Feng, E. C. Sisler, D. Hlland, and R. Goren. 2001. Effect of 1-methylcyclopropene on ethylene-induced abscission in citrus. Physiol. Plant. 113: 134-141.
摘要: 蓮霧目前催花所使用的撲滅松,屬於有機磷殺蟲劑,對施用者及生態皆有安全疑慮,需尋找出替代藥劑。因撲滅松與落葉有關,而國外研究發現,磷酸二氫鉀可作採收脫落劑,故本試驗之目的,在探討以磷酸二氫鉀取代撲滅松的可能性,及磷酸二氫鉀催花的可能機制。 誘導蓮霧落葉試驗,是以瓶插來了解藥劑溶液的吸收及其影響。經處理之後, KH2PO4處理者之葉片有脫落及產生水浸狀現象,Ethrel會造成葉緣焦枯產生,而Fenitrothion引起枝條乾枯;處理後,之分析葉片磷及鉀含量,在磷酸二氫鉀處理者有較高的磷含量。磷酸二氫鉀濃度與乙烯及落葉能力有關,乙烯釋放率隨著濃度增加而上升,在第三天出現乙烯高峰,至第七天,100 mM KH2PO4濃度以上有落葉現象,葉片磷及鉀的含量也隨KH2PO4濃度增加。 另外,測定葉圓片的乙烯釋放率及呼吸率,結果與瓶插試驗相似。在添加Mannitol緩衝液處理,同樣具有誘發乙烯能力,在高濃度下呼吸率會增加。在前人研究中,已知磷酸鹽、鈉及鉀複合物均有誘發乙烯能力,在磷酸二氫鉀及磷酸二氫鈉處理,皆具有誘發乙烯的能力,而氯化鉀沒有誘發能力,顯示磷酸二氫鉀的效果最佳;因此,磷酸根應為重要誘發乙烯合成的因子。此外,乙烯誘發受到光強度影響,在高光強度下能顯著誘發乙烯,而乙烯釋放率隨著光度降低減少。 在加乙烯抑制劑探討葉圓片乙烯釋放的試驗中,結果顯示:添加AVG及CHI後,顯著抑制乙烯合成,而在AVG處理呼吸率有增加現象;另外,在抑制劑處理前,燻蒸1-MCP,磷酸二氫鉀仍然有誘發乙烯能力,而添加AVG及CHI後,同樣能顯著抑制乙烯誘發,亦即顯示磷酸二氫鉀誘發乙烯,合成的途徑和一般乙烯合成途徑應相似。 在田間以Fenitrothion及KH2PO4進行催花處理,碳水化合物的含量差異顯著。在催花後葉綠素及螢光含量逐漸增加,磷酸二氫鉀處理者,較快誘導花芽出現,但蓮霧花芽的誘導受到氣候因素限制;蓮霧採收之後果實品質(顏色、糖度、硬度及裂果率),不受到兩種藥劑影響。由結果顯示,KH2PO4應可取代Fenitrothion,應用在蓮霧催花的處理。
The objective of this study was to find a chemical compound to substitute fenitrothion as the flower advancing agent of wax apple trees. Fenitrothion, classified as an organophosphate pesticide, has been used to advance blooming for some time. Due to its negative side effects on farmers' health and ecological concern, searching for a new agent as a replacement has become necessary. Various reports indicated that KH2PO4 has been effective in the post-harvest defoliation, and played a role in flower initiation. Thus experiment has been designed to test the possibility of replacing fenitrothion with KH2PO4 in the advancing flower of wax-apple. By dipping a wax-apple branch in KH2PO4 solution in stem-feeding system, leaves showed signs of abscission and water soaking. The tendency was similar to those treated with ethrel or fenitrothion. Samples treated with KH2PO4, ethrel and fenitrothion were analyzed for their potassium and phosphate contents. KH2PO4 treated had the highest phosphate concentration. Ethylene production was also proportional to the concentration of KH2PO4. Ethylene peaked on the third day after the treatment of 100 mM KH2PO4 and abscission started on the seventh day. Leaf disc experiments were conducted to determine the ethylene production and CO2 release. Wax-apple leaf-dises treated with KH2PO4 or NaH2PO4 showed that the rate of ethylene release was proportional to the concentration of either compound, though KH2PO4 treated was superior. There was no response in KCl treated disc. This result demonstrated that phosphate was the major factor for inducing ethylene production. Mannitol solution was used as a buffer and no effect on the KH2PO4-induced ethylene production. The leaf discs of releasing rate of ethylene is influenced by light intensity. Effect the ethylene production apparently under high light intensity, as the intensity reduces the releasing rate of ethylene to reduce. Adding inhibitors AVG, CHI, 1-MCP separately to KH2PO4-treated leaf discs, ethylene production was significantly reduced by AVG and CHI, and not affected by 1-MCP. But inhibition took effect when AVG or CHI was added to the1-MCP treated sample. This seemed to explain that the biosynthesis of ethylene induced by KH2PO4 was similar to the general pathway of ethylene synthesis in the plant. In field experiments both fenitrothion and KH2PO4 caused a change in carbohydrate concentration and a faster flowering was induced by KH2PO4. After evocation activated by fenitrothion or KH2PO4, chlorophyll and chlorophyll flurometric parameter (Fv/Fm) increased gradually. Wax-apple evocation often limited by climatic conditions but the post-harvest fruit qualities were not affected by either chemical treatment. According to the results of this study, it shows that KH2PO4 can be a wax-apple flower advancing agent instead of fenitrothion in the field application.
URI: http://hdl.handle.net/11455/28903
其他識別: U0005-2507200710414000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808200713290600
顯示於類別:園藝學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。