Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28908
標題: 利用全民健康保險資料分析職業與疾病之關係-以2005年農保人口為例
An Analysis on Relationship between Occupation and Diseases Using Taiwan’s National Health Insurance Research Database: Evidence of Farmer’s Health Insurance Program in 2005
作者: 徐筱雯
Hsu, Hsiao-Wen
關鍵字: 全民健康保險研究資料庫
National Health Insurance Research Database
農民保險
疾病
Farmer’s Health Insurance
Diseases
出版社: 應用經濟學系所
引用: 一、中文部分 (一)圖書 吳明隆、涂金堂,2012,SPSS 與統計應用分析,五南圖書出版股份有限公司。 吳明隆,2007,SPSS操作與應用:問卷統計分析實務,五南圖書出版股份有限 公司。 (二)期刊論文 王冠懿、鄭守夏,2006,民眾就醫層級與醫療利用分析:SARS疫情前後的觀察, 台灣公共衛生雜誌,第25卷第1期,75-82頁。 宋文娟、洪錦墩、陳文意,2008,台灣老年人口醫療利用與多重慢性疾病之分析 研究,台灣老人保健學刊,第4卷第2期,75-87頁。 吳聲和,2008,影響臺灣地區高血壓、高血糖、高血脂盛行率可能為險因子之研 究,國立台北大學統計學系碩士學位論文,國立台北大學。 林民浩、楊安琪、溫在弘,2011,利用地區差異與人口學特徵評估全民健保資料 庫人口居住地變項之推估原則,台灣衛誌,第30卷第四期,347-359頁。 涂淑芬,2010,血液透析患者代謝症候群盛行率與影響透析品質之相關因子探 討,美和技術學院健康照顧研究所碩士學位論文,美和技術學院。 徐碧村,2011,社區第二型糖尿病流行病學初探~以社區長期追蹤世代分析,國 立台灣大學公共衛生學院碩士學位論文,國立台灣大學。 梁妍慧,2011,代謝症候群、心血管疾病與就業,淡江大學產業經濟學系碩士學 位論文,淡江大學。 梁繼權、許詩典、陳晶瑩、陳慶餘,2002,都市與鄉村社區老人健康狀態,台灣 醫學,第6卷第4期,523-534頁。 黃羽瑄,2009,醫療可近性對台灣地區中風病人死亡率的影響,國立中央大學產 業經濟研究所碩士學位論文,國立中央大學。 簡以嘉,2004,台灣全民健保精神疾病盛行率、醫療利用及費用分析研究,國立 陽明大學公共衛生研究所博士學位論文,國立陽明大學。 廖建彰、李采娟、林瑞雄、宋鴻樟,2006,2000年台灣腦中風發生率與盛行率 的城鄉差距,台灣衛誌,第25卷第3期,223-230頁。 鐘其祥、賴錦皇、邱柏舜、白璐、簡戊鑑,2010,台灣2006-07年不同經濟狀況 民眾事故傷害住院分析,台灣家醫誌,第20卷第4期,153-167頁。 二、西文部分 BrackBill, R.M., L. L., Cameron and V. Behrens, 1993,“Prevalence of chronic diseases and impairments among US farmers, 1986-1990,”American Journal of Epidemiology, 139(11), 1055-1065. Hagberg,M.,D.H.Wegman,1986.“Prevalence rates and odds ratios of shoulder-neck diseases in different occupational groups”British Journal of Industrial Medicine, 44(1986), 602-610 Hu, Han-Hwa, Wen-Yung Sheng, Fu-Li Chu, Chung- Fu Lan and Benjamin N. Chiang, 1992,“Incidence of Stroke in Taiwan”, Stroke,23(1992), 1237-1241. Liao,Pei-An, Hung-Hao Chang, Fang-An Yag, 2012, “Does the Universal Health Insurance Program Affect urban-Rural Differences in Health Service Utilization Among the Elderly? Evidence From a Longitudinal Study in Taiwan,”The Journal of Rural Health 28(2012), 84-91. Lee,W. J., J. S. Colt, E. F. Heineman, R. McComb, D. D. Weisenburger, W. Lijinsky and M. H. Ward, 2005, “Agricultural pesticide use and risk of glioma in Nebraska, United States”Occup Environ Med, 62(2005), 786-792. Massimo, M., Milena, S., Silvia, M., Graziella, F., Gemma G. and Franco B., 1987,“A Case-control Study of Brain Gliomas and Occupational Exposure to Chemical Carc inogens: the Risk to Farmers,”America Journal of Epidemiology, 128(4), 778-785. Radon, K., Monso E., Weber C., Danuser B., Iversen, M., Opravil U., Donham K, Hartung J., Pedersen S., Garz S., Blainey D., Rabe U., Nowak D., 2002, “Prevalence and Risk Factors for Airway Diseases in Farmers-Summary of Results of the European Farmers’ Project,”Annals of Agricultural and Environmental Medicine, 9(2002), 207-213. Spiewak,R., 2001,“Pesticides as a Cause of Occupational Skin Diseases in Farmers” Annals of Agricultural and Environmental Medicine, 8(2001), 1-5. Vohlonen, I., Tupi K., Terho E.O., Husman K., 1987,“Prevalence and incidence of chronic bronchitis and farmer''s lung with respect to the geographical location of the farm and to the work of farmers,”European Journal of Respiratory Diseases. Supplement, 152(1987), 37-46.
摘要: 工作與疾病之間一直存在密切關係。從事農務者的工作特性,需要勞力搬重物與規律長時間的動作久站,這些行為均可能會造成部分生理上的負擔而導致後續疾病症狀的產生。本研究以職業類別為出發點,探討從事農業者與非從事農業者在疾病之間的差異,並瞭解居住在從事農業比例較高與較低地區的民眾,在就診疾病類別上是否存有差異。 本研究採行全民健康保險資料庫大範圍的研究,以2005年全民健康保險研究資料庫之承保抽樣歸人檔之百萬名樣本檔作為觀察對象,透過門診資料與ID個人資料做串聯,刪除重複就診之門診人數,共925,415人,再考量就職年齡後刪除19歲以下人口,最後以682,310人作為研究樣本數。依年齡、性別、從事農業與否、從農比例不同地區與門診項目估計疾病的盛行率。 門診項目是根據國際疾病分類法第9版來定義,利用從事農業者與非從事農業者門診項目之比例差距,針對門診項目包含高血壓、昏迷、脊椎狹窄、勞損關節、白內障、糖尿病、急性結膜炎、急性胃炎、頭痛、細菌關節對各變數進行敘述性統計及二元邏輯斯迴歸模型進行分析。 統計結果從性別角度切入,在門診項目為高血壓、糖尿病是男性機率較高;依職業型態切入,有部分的門診項目是從事農業者就診機率高,如脊椎狹窄、關節等疾病。依年齡因素很明顯的發現,篩選出的每一個門診項目,都顯示當年齡提高機率也隨之上升,利用不同年齡層的機率與差距可進一步觀察到,當年齡超過40歲後有高血壓、勞損關節方面問題的機率快速增加,超過45歲糖尿病的機率快速增加,超過50歲後則白內障的機率快速增加,超過60歲在脊椎狹窄方面問題的機率會快速增加,最後,在從農比例地區看出,當比例上升時,門診項目就診的機率也提高,顯示居住於從農人口比例較高地區的居民因前述疾病而求診的機率也高於比例較低的地區。
There is close connection between occupation and sickness. Farming needs hard-working and routine operations during the processes. These required works may cause burden to the physical body and the sicknesses hereafter. This study considers the relationship between occupation and diseases with the farmer and non-farmer categories. Also this research is to realize that whether or not people who live in an area with different proportions of farming population may exist significant distinction of named diseases. Taiwan’s National Health Insurance Research Database (NHIRD) with 1,000,000 beneficiaries enrolled in 2005 is used to analyze. Data for outpatient prescriptions data and registry were both been considered. A total 682,310 cases is used to estimate after deleting the duplicate visits of outpatient prescriptions and those aged below 19. And estimated prevalence of the disease is calculated based on age, gender, farming occupation, regions and visits of clinics. Types of disease are identified according to International Classification of Disease 9th edition (ICD9) for outpatients. This study selects high blood pressure, coma, spinal stenosis, strained joints, cataracts, diabetes, acute conjunctivitis, acute gastritis, headaches, joint bacteria to identify outpatient project based on the gap between those the proportion of outpatient project engaged in agriculture and non-agriculture. Statistical results by adopting the binary logistic regression analysis show that male patients have a higher prevalence than female such as high blood pressure and diabetes; farming labors have a higher prevalence than non-farming ones such as spinal stenosis, joints and other diseases. Also the age factor is significantly observed that every clinic elected project have shown increased probability when the age of patient rise. The results by observing the gap between the probability of different ages also show that when a patient at the 40 years old may have rapid increase of probability in hypertension and strain jointm, 45 for diabetes, 50 for cataract, and over 60 for narrow aspects of the spine. The analytical results on different farming regions also support that those high farming regions observe more patients with named diseases above.
URI: http://hdl.handle.net/11455/28908
其他識別: U0005-1408201300063000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408201300063000
Appears in Collections:應用經濟學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.