Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28951
標題: 蘭菌培養及運用對嘉德麗亞蘭種子及幼苗生育之促進
The culture and application of orchid mycorrhizal fungi to promote seed germination and the seedling growth in Cattleya.
作者: 莊育瑞
Chuang, Yu-Jui
關鍵字: orchid mycorrhiza
蘭菌
Symbiotic germination
Cattleya
seedling growth
production techniques
共生發芽
嘉德麗亞蘭
幼苗生長
生產技術
出版社: 園藝學系所
引用: 丁 暉、韓素芬、王光萍、黃敏仁、馮瑩。2002。卡特蘭與絲核菌共培養體系的建立及卡特蘭菌根顯微結構的研究。菌物系統。21(3):425-429。 王才義。2005a。嘉德麗雅蘭。農家要覽作物篇(二)。P.919-922。豐年社。台灣。臺北。 王才義。2005b。嘉德利亞蘭品種性狀檢定調查及品種檢定試驗規範之擬定。農委會年度計劃報告。18頁。 王才義、林佑東。2004。熱帶著生蘭栽培介質改進之研究(五)。農委會年度計劃報告。11頁。 王亦菲、楊竹平。1996。蝴蝶蘭和嘉德利亞蘭的離體快速繁殖。上海農業學報。12(4):59-62。 王美琇。1999。蘭共生菌與數種蘭科植物生長與發育之影響與應用。國立臺灣大學園藝學研究所碩士論文。81頁。 王瑞苓、胡虹、李樹雲。2004。黃花杓蘭與菌根真菌共生關係研究。雲南植物研究。26(4):445-450。 朱俊南。2000。蘭花菌根菌之分離與接種對文心蘭幼苗生長之影響。屏科大熱農所碩士論文。101頁。 朱國勝、劉作易、毛堂芬。2004。蘭科植物菌根真菌的研究進展。貴州農業科學。32(4):79-81。 朱欽昌。1987。蘭科植物的內生菌根菌與蘭菌共生。洋蘭月刊。17:59-62。 李自強。1999。蘭共生菌對一葉蘭與(彩葉蘭×金線連)雜交種生長與發育之影響。台灣大園藝學研究所碩士論文。110 頁。 李明治。2001a。蘭菌(絲核菌)之生理、菌種生產及其對台灣金線連生長之影響。國立臺灣大學園藝學研究所碩士論文。89頁。 李明、周斌、施繼惠、楊琳。2006a。蓮瓣蘭內生真菌對氮源利用的研究。楚雄師範學院學報。21(6):50-53。 李明、周斌、施繼惠、楊琳。2006b。蓮瓣蘭內生真菌利用碳源的生理學特性研究。大理學院學報。5(4):1-3。 李明、施繼惠。2006。碧玉蘭菌根真菌的調查。雲南師範大學學報。26(3):54-55。 李哖。1990。蘭之胚培養。中國園藝。36:223-244。 李國基。2001b。台灣金線連及蘭菌之鑑定與生產技術改進。國立臺灣大學園藝學研究所碩士論文。191 頁。 呂梅、伍建榕、馬煥成。2005。春蘭菌根的顯微結構觀察。25(2):8-11。 吳文希。1988。植物土媒病原學(立枯絲核菌之性質及防治)。260頁。國立編譯館。台灣。臺北。 吳靜萍、錢吉、鄭師章。2002。蘭花菌根菌分泌物成分的初步分析。應用生態學報。13(7):845-848。 吳靜萍、鄭師章。1994。密花石斛菌根菌分離鑑定及其代謝產物的測定。复旦學報(自然科學版)。33(5):548-552。 邢曉科、郭順星、陳曉梅、孟志霞。2005。人工栽培鐵皮石斛菌根的細胞學研究。菌物系統。24(4):558-563。 林佑東。2005。蘭菌生產及對嘉德利亞蘭生育之影響。國立中興大學園藝學研究所碩士論文。98頁。 林秋芬。2002。蘭菌對石斛蘭種子發芽與幼苗生長之影響。國立中興大學園藝學研究所碩士論文。78頁。 竺鴻道。1996。利用Mortierella 屬絲狀真菌生產二十五碳五烯酸之研究。台大農化系碩士論文。92 頁。 金陳斌、范凱峰、侯櫻、羅震傳。2005。卡特蘭盆栽基質篩選初試。上海交通大學學報。23(4):430-434。 周玲勤。1997。彩葉蘭的大量繁殖與蘭菌的應用。台大園藝學研究所碩士論文。124頁。 周玲勤。2004。台灣金線連、彩葉蘭和其F1雜交種之菌根生理與培育。國立台灣大學園藝學研究所博士論文。169頁 周玲勤、張喜寧。2003。蘭菌的分離、純化、鑑定與利用。科學農業。51(4):74-77 范黎、郭順星、徐錦堂。1999。天麻種子萌發過程中與其共生真菌石斛小菇間的相互作用。菌物系統。18(2):219-225。 胡弘道。1990。林木菌根。666頁。千華出版公司。臺北。 唐樹梅。2002。熱帶蘭。227頁。中國農業出版社。北京。 高微微、郭順星。2001。三種內生真菌對鐵皮石斛、金線連生長影響的研究。中國醫學科學院學報。23(6):556-558。 康繼文。2004。蘭菌與植物生長素對藥用石斛蘭生長發育之影響。台灣大學園藝學研究所碩士論文。69頁 張喜寧。2003。蘭菌的量產與運用。國科會專題研究計畫成果報告。7頁 張麗梅、陳鐘佃、陳菁瑛、王木善、陳桂信、賴鐘雄。2001。卡特蘭( Cattleya labiata)的離體快繁初探。福建果樹。116(2):14-16。 郭順星、王秋穎。2001。促進天麻種子萌發的石斛小菇優良菌株特性及作用。20 (3):408-412。 郭順星、錦 堂、1991。真菌在羅石斛和鐵皮石斛種子萌發中的作用。中國醫學科學院學報。13(1):46-47。 郭樹凡、張慧麗。2005。香菇液體菌種發酵條件的研究。中國實用菌。24(6):38-40。 陳志松。1999。培養料pH值對菌絲生長影響的研究。中國食用菌。19(2):36-37。 陳俊成。2005。蘭菌配合植物生長物質對拖鞋蘭生育之影響。國立台灣大學園藝研究所碩論文。77頁。 陳瑞蕊、施亞琴、林先貴、張宁、湯巫國。2004。蘭科菌根真菌對石斛蘭組培苗的接種效應。土壤。36(6):658-661。 黃江隼、楊媚、周、周而勛、戚佩坤。2001。絲核菌細胞核染色技術的研究。仲愷農業技術學院學報。14(4):13-17。 黃宜瑩、高怡婷、徐源泰。2005。蘭科植物根部微生物之研究。中國園藝。51(4):347-356。 黃睿智。2002。黏帚黴菌G-8防治立枯絲核菌引起之植物病害。國立中興大學植物病理學系博士論文。168頁。 黃磊、賀筱榮、鄭立明、蔡漌。2004。促進蘭花組培苗生長的墨蘭菌根真菌研究初報。熱帶作物學報。25(1):36-38。 董新堂。1980。新養蘭學(三)。P.65-68。五洲彩色製版有限公司。台灣。臺北。 潘超美、陳汝民、葉慶生。2002。野生建蘭菌根的顯微結構特徵。廣州中醫藥大學學報。19(1):60-62。 潘超美、賀 紅、林群英。2004。真菌誘導子對鐵皮石斛組培物生長的影響。中醫藥學刊。22(1):54-55。 蔣家淡、林延生、詹正宜、鮑曉紅、劉亨平。2001。菌根生物技術應用現狀與研究進展。江西農業大學學報。23(2):216~219。 蔡平里譯。1991。圖解蘭花繁殖最新技術。176頁。淑馨出版社。台灣。臺北。 蔡金池。2005。蘭菌生物性肥料在蘭科作物上之應用與量產。農委會年度計劃報告。6頁。 蔡靜怡。1997。蘭菌(Rhizoctonia spp.)及溫度對台灣金線連生長之影響。國立台灣大學園藝學研究所碩士論文。80頁。 蔡麗君。2003。蘭菌與植物生長素對拖鞋蘭生長發育之影響。國立台灣大學園藝學研究所碩士論文。79頁。 藍亦青。2001。蘭菌對蝴蝶蘭與拖鞋蘭生長與發育之影響。國立台灣大學園藝學研究所碩士論文。93頁。 蘇明志。1996。台灣白及共生現象之初步研究。國立台灣大學森林學研究所碩士論文。77頁。 Alexender, C. and G. Hadley. 1984. The effect of mycorrhizal infection of Goodyera repens and its control by fungicide. New Phytol. 97:391-400. Arditti, J. 1967. Factors affecting the germination of orchid seeds. Bot. Rev. 33:1-97. Arditti, J. 1966. Orchids. Sci. Amer. 214:70-78. Bandoni, R. J. 1979. Safranin O as a rapid nuclear stain for fungi. Mycologia 71:873- 874. Batty, A. L., M. C. Brundrett, K. W. Dixon, and K. Sivasithamparam. 2006a. New methods to improve symbiotic propagation of temperate terrestrial orchid seedlings from axenic culture to soil. Aust. J. Bot. 54: 367–374. Batty, A.L., M. C. Brundrett, K. W. Dixon, and K. Sivasithamparam. 2006b. In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites. Aust. J. Bot. 54:375–381. Bayman, P., L. L. Lebron, R. L. Tremblay, and D. J. Lodge. 1997. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol. 135:143-149 Bernard, N. 1899. Sur la germination du Neottia nidus-avis. Compt. Rend. Acad. Sci. Paris.128:1253-1255(Cited from Curtis,1939). Beyrle, H., F. Penningsfeld, and B. Hock. 1991. The role of nitrogen concentration in determining the outcome to the interaction between Dactylorhiza incarnate L. Soo and Rhizoctonia sp. New Phytol. 117:665-672. Beyrle, H. F. and S. E. Smith.1993.Excessive carbon prevents greening of leaves in mycorrhizal seedling of the terrestrial orchid Orchis morio. Lindleyana8:97-99. Breddy, N. C. 1991. Orchid mycorrhiza and symbiotic raising techniques. Amer. Orchid Soc. Bull. 60:556-569. Burgeff, H. 1959. Mycorrhiza of orchid. In:Withner,C.L.(eds.)The orchids-a scientific survey. The Ronald Press Co. New York. p.361-395. Burgeff, H. 1959. Mycorrhiza of orchid. p.361-395. In: C. L. Withner. (ed.), The orchids a scientific survey. The Ronald Press. New York. Burpee, L. L., P. L. Sanders, H. Cole, and S. H. Kim. 1978. A staining technique for nuclei of Rhizoctonia solani and related fungi. Mycologia 70:1281-1283. Cameron, D. D., J. R. Leake, and D. J. Read. 2006. Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol. 171:405-416. Cameron, D. D., I. Johnson, J. R. Leake, and D. J. Read. 2007. Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99:831–834. Carlson, M. C.1940.Formation of the seed of Cypripedium parviflorum. Bot.Gaz. 102:295-301. Chen, J. J., M. C. Lin, and Y. H. Ho. 2000. Size of in vitro plantlets affects subsequent tuber production of acclimated calla lily. HortScience. 35:290-292. Cubeta, M. A., E. Echandi, and M. L. Gumpertz. 1991. Survival of binucleate Rhizoctonia species, biological control agents, in soil and plant debris under field conditions. Biological Control. 1:218-226. Curtis, M. D., J. Gore, and R. P. Oliver. 1994. The phytogeny of the tomto leaf mould fungs Cladosporium fulvum sym. Fulvia fulva by analysis of rDNA sequences. Curr. Genet. 25:318-322. Dowine, D. G. 1940. On the germination and growth of Goodyea repens. Trans. Bot. Soc. Edin. 33:36-51. Durbin, R. D. 1959. Some effects of light on the growth and morphology of Rhizoctonia solani. Phytopathology 49:59-60. Galland, I. 1905. Etudes sur les mycorrhizes. Rev. Gen. Bot. 17:5-48 Gratz, L. O. 1925. Wire stem of cabbage. Cornell. Agr. Expt. Sta. Mem. Harley, G. 1970. Non-specificity of symbiotic infection in orchid mycorrhiza. New Phytol. 69:1015-1023. Hadley, G. 1982. Germination of British Orchids. Orchid Rev. 90:84-86. Hadley, G. and B. Williamson. 1971. Analysis of the post-infection growth stimulus in orchid mycorrhiza. New Phytol. 70:445-455. Hadley, G. and B. Williamson. 1972. Features of mycorrhizal infection in some Malayan orchids. New Phytol. 71:1111-1118. Hadley, G. 1982. Orehid mycorrhiza in Arditti (eds.)Orchid biology : reviews and perspective CorneIl University press, Ithaca. New York. 390pp. Hadley, G. 1984. Uptake of glucose by asymbiotic and mycorrhizal orchid protocorms. New Phytol. 96:263-273. Hadley, G. and G. F. Pegg. 1989. Host-fungus relationships in orchid mycorrhizal systems. p.57-71. In: H. W. Pritchard (ed.)、Morden Methods in Orchid Conservation. Cambridge University Press、New York. Harley, Fra. J. L. and S. E. Smith. 1983. Mycorrhizal Symbiosis. p.268-298. Academic Press. London. Harley, L. J. and E. L. Harley. 1987. A check-list of mycorrhiza in the british flora. New Phytol. 105:1-102. Harrison, C. R. and J. Arditti. 1978 Physiologcal changes during the germination of Cattleya aurantiaca (Orchidaceae). Bot. Gaz. 139:180-189. Harvais, G. and G. Hadley. 1967. The development of Orchis purpurelia in asymbiotic and inoculated cultures. New Phytol. 66:217-230. Hijner, J. A. and J. Arditti. 1973. Orchid mycorrhiza: Vitamin production and requirements by the symbiosis. Amer. J. Bot. 60(8):829~835. Jorgensen, B. I. 1995. Hardy orchids : symbiotic in vitro propagation and cultivation. Acta Hort. 393:165-172. Johnson, S. R. 1994. Symbiotic seed germination in relation to potential naturalization ability of Bletilla striata (Orchidaceae). Lindleyana 9: 99-101. Johnson, T. R., S. L. Stewart, D. Dutra, and M. E. Kane. 2007. Asymbiotic and symbiotic seed germination of Eulophia alta(Orchidaceae)—preliminary evidence for the symbiotic culture advantage. 90:313–323. Kohn, L. M. 1992. Developing new characyers for fungal systematic: An experimental approach for determining the rank of resolution. Mycologia 84:139-153. Kundson, L. 1925. Physiological study of the symbiotic germination of orchid seeds. Bot.Gaz. 77:345-379. Le Clerg, E. L., L. H. Person, and S. B. Meadows.1942. Furthers studies on the temperature relations of sclerotial isolates of Rhizoctonia solani from potatoes. Phytopathology 32:731-732. Lee,Y. I. 2003. Growth periodicity, changes of endogenous abscisic acid during embryogenesis, and in vitro propagation of Cypripedium formosanum Hay. National Taiwan University, Taipei, Taiwan, PhDDiss. Lee,Y. I., N. Lee, E. C. Yeung, and M. C. Chung. 2005. Embryo development of Cypripedium formosanum in relation to seed germination in vitro. J. Amer. Soc. Hort. Sci. 130:747-753. Link, H. 1840. Icones selectae anatomico-botanicae. Π:10.(Cited from Curtis,1939). Madhusudan, T., K. S. Amin, and D. Gopalaraju. 1977. Influence of carbon and nitrogen souirceon growth and sclerotia formation of the rice sheath blight pathogen. Mysore. J. Agr. Sci. 11:544-547. Manning, J. C. and J. V. Staden. 1987. The development and mobilization of seed reserves in some African orchid. Aust. J. Bot. 35:343-353. Masuhara, G. and K. Katsuya. 1989. Effects of mycorrhizal fungi on seed germination and early growth of three Japanese terrestrial orchids. Sci. Hort. 37:331-337. McKendrick, S. L., J. R. Leake, and D.J. Read. 2000. Symbiotic germination and development of myco-heterotrophic plants in nature : Transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New phytol. 145:539-548. Miyashita. Y., Y. Kitaya, C. Kubota, and T. Kozai. 1996. Photoautotrophic growth of potato plantlets as affected by explant leaf area, fresh weight and stem length. Sci. Hortic. 65:199-202. Morel, G. M. 1960. Vegetative propagation of orchids by meristem culture. Am. Orchid Soc. Bull. 29:383–389. Morel, G. M. 1960. Producing virus free cymbidiums. Am. Orchid Soc. Bull. 29:495 -497. Muir, H. 1987. Symbiotic micropropagation of orchid seed. Orchid Rew. 91:44-48. Ogoshi, A. 1987. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Ann. Rev. Phytopathol. 25:125-143. Oniki, M., K. Kobayashi, T. Araki, and A. Ogoshi. 1986. A new disease of turf-grass caused by binucleate Rhizoctonia AG-Q. Ann. Phytopathol. Soc. Japan 52:850-853. Otero, J. T., J. D. 2002. Ackerman and Paul Bayman. Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchid. Amer. J. Bot. 89:1852- 1858. Parmeter, J. R., Jr., and H. S. Whitney. 1970. Taxonomy and nomenclature of the imperfect state. P.7-19. in: J. R. Parmeter Jr., ed. Biology and Pathology of Rhizoctonia solani. University of California Press, Berkeley. Paul, E. A. and F. E. Clark. 1989. Mycorrhizal relationships. Soi. Microbio. Biochem. 198-221. Academic Press, Inc. Peterson, R. L. and R. S. Currah. 1990. Synthesis of mycorrhizae between protocorms of Goodyera repens (Orchidaceae) and Ceratobasidium cereale. Can. J. Bot. 68:1117 -1125. Peterson, R. L., P. Bonfante, A. Faccio, and Y. Uetake. 1996. The interface between fungal hyphae and orchid protocorm cells. Can. J. Bot. 74:1861-1870. Pereira, O. L., M. C. M. Kasuya, C. D. L. Rollemberg, and A. C. Borges. 2005. In vitro symbiotic seed germination of Oncidium flexuousm (Orchidaceae) by Rhizoctonia -like mycorrhizal fungi. R. Bras. Ci. Solo. 29:199-206. Poole, H. A. and T. J. Sheehan. 1977. Effect of media and supplimentary micro element fertilization of growth and chemical composition of Cattleya. Amer. Orchid Soc. Bull. 46: 155-160. Pridgeon, A. M.1987.The velamen and exodermis of orchid roots. P.139-192. In:J. Arditti (ed.)Orchid biology reviews and perspectives Ⅳ.Cornell University Press, New York. Rasmussen, H. N. 1992. Seed dormancy patterns in Epipactis palustris (Orchidaceae): Requirements for germination and establishment of mycorrhiza. Physiol. Plant. 86:161-167. Rasmussen, H. N. and F. N. Rasmussen (1991) Climactic and seasonal regulation of seed plant establishment in Dactylorhiza majalis inferred from symbiotic experiments in vitro. Lindleyana 6:221–227 Rasmussen, H. T. 2002. Recent developments in the study of orchid mycorrhiza. plant and soil. 244:149-163 Rasmussen, H., T. F. Andersen, and B. Johansen. 1990. Temperature sensitivity of in vitro germination and seedling development of Dactylorhiza majalis(Orchidaceae) with and without a mycorrhizal fungus. Plant, cell and Enviro. 13:171-177. Rasmussen, H. N. and D. F. Whigham. 1993. Seed ecology of dust seeds in situ : a, new study technique and its application in terrestrial orchids. Amer.J.Bot.80:1374-1378. Ravel, C., C. Courty, A. Coudret , and G. Charmet. 1997. Beneficial effects of Neotyphodium lolii on the growth and water status in perennial ryegrass cultivated under nitrogen deficiency or drounht stress. Agronomie.17:173-181. Reissek, S. 1847. Endophyten der Pflanzenzelle. Naturw. Abh. (Ed. W. Haidinger) 1:31. Reinecke, T. and H. Kind. 1994. Inducible enzymes of the 9,10-dihydro- phenanthrene pathway: sterile orchid plants responding to fungal infection. Mol. Plant-Microb. Interact. 7:449-454. Shimura, H. and Y. Koda. 2005. Enhanced symbiotic seed germination of Cypripedium macranthos var. rebunense following inoculation after cold treatment. Physiol. Plant.123:281-287. Sharma, J., L. W. Zettler, J. W. V. Sambeek , M. R. Ellersieck, and C. J. Starbuck. 2003. Symbiotic seed germination and mycorrhizae of Federally threatened Platanthera praeclara (Orchidaceae). Am. Midl. Nat. 149:104–120. Smith, S. E . 1966. Physiology and echology of orchid mycorrhizal fungi with reference to essdling nutrition. New Phytol. 45:488-499. Smith, S. E. 1967. Carbonhydrate translocation in orchid mycorrhizal. New Phytol. 66: 371-378. Sneh, B., L. Burpee, and A. Ogoshi. 1991. Indentification of Rhizoctonia species. 133pp. The American Phytopathological Society press. Minnesota, U.S.A. Steven, J. R. 2003. An Orchid Handbook. Michiana Orchid Society. http://community.michiana.org/orchid/handbook.htm Stewart, S. L. and L. W. Zettler. 2002. Symbiotic germination of three semi-aquatic rein orchids (Habenaria repens, H. quinqueseta, H. macroceratitis) from Florida. Aqut. Bot. 72: 25–35. Stewart, S. L. and M. E. Kane. 2006. Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tiss. Organ Cult. 86(2):159-167. Stewart, S. L. and M. E. Kane. 2007. Symbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implications for species-level conservation. 43:178-186. Tan, T. K., W. S. Loon, E. Khor, and C. S. Loh. 1998. Infection of Spathoglottis plicata(Orchidaceae) seeds by mycorrhizal fungus. Plant Cell Rep. 18:14-19. Takahashi, K., Ogiwara I, and N. Hakoda (2000) Seed germination of Habenaria (pecteilis) radiata (Orchidaceae: Orchideae) in vitro. Lindleyana 15:59–63. Takahashi, K., H. Ishikawa, T. Ogino, T. Hatana, and I. Ogiwara. 2007.Growth Assay of Daughter Tubers from the Tubers of Habenaria radiata (Thunb.) K. Spreng. Seedlings Gel Covered and Inoculated with Orchid Mycorrhizal Fungi in Habitat. (Hort. Res. (Japan)) 6(1):33–36. Takahiro, Y., M. Yamato, A. Suzuki, and K., Iwase. 2008. Ceratobasidiaceae mycorrhizal fungi isolated from nonphotosynthetic orchid Chamaegastrodia sikokiana. Mycorrhiza.18:97–101. Uedan, H. and H. Torikata. 1972. Effect of light and culture medium on adventitious root formation by Cymidiums in aseptic culture. Amer. Orchid. Soc. Bull. 41:322-327. Uetake, Y., K. Kobayashi, and A. Ogoshi, 1992. Ultrastructural changes during the symbiotic development of Spiranthes sinensis (Orchidaceae) protocorms associated with binucleate Rhizoctonia anastomosis.group C. Mycol. Res. 96:199 -209. Van Waes, J. M. and P. C. Debergh. 1986. Adaptation of the tetrazolium method for testing the seed viability, and scanning electron microscopy study of some Western European orchids. Physiol. Plant. 66: 435-442. Vasudeva, Y. S. 1936. Studies on the root diseases of cotton in the Punjab. Some studies in the physiology of the casual fungi. Ind. J. Agr. Sci. 6:904-916. Vellupillai, M., S. Swarup, and C. J. Goh.1997. Histological and protein changes during early stages of seed germination in the orchid, Dendrobium crumenatum. J. Hortic. Sci. 72(6):941-948. Vujanovic, V., M. St-arnaud, D. Barabe, and G. Thibeault. 2000. Viability testing of orchid seed and promotion of colouration and germination. Ann. Bot. 86:79-86. Warcup, J. H. 1973. Symbiotic germination of some Australian orchid terrestrial orchid. New Phytol. 72: 387-392. Wahrlich, W. 1886. Beitrag zur kenntniss der Orchideenwurzelpilze. Bot. Zeit. 44:481-488. Whitney, H. S. 1964.Sporulation of Thanatephorus cucumeris in the light and in the dark. Phytopathology 60:771-778. Xun, J. and S. Ichihashi. 2001. Studies on Phalaenopsis growth and nutrient absorption in different potting material. Proceeding of APOC7. p.216-217. Nagoya, Japan. Yoder, J. A., L. W. Zettler, and S. L. Stewart. 2000. Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant. Sci. 156:145-150. Young, C. C., T. C. Juanag, and H. Y. Guo 1986. Vescular-arbuscular mycorrhizal inoculation on soybean yield and mineral phosphorus utilization in subtropical -tropical soils. Plan and Soil 95:245-254. Zelmer, C. D. and R. S. Currah.1994. Evidence for a fungal liaison between Corallorhiza trifida (Orchidaceae) and Pinus contorta (Pinaceae). Can. J. Bot. 73:862-866. Zelmer, C. D. and R. S. Currah, 1997. Symbiotic germination of Spiranthes lacera (Orchidaceae) with a naturally occurring endophyte. Lindleyana 12: 142-148. Zetter, L. W. and C. J. Hofer. 1998. Propagation of the little club-spur orchid (Platanthera clavellata) by symbiotic seed germination and its ecological implications. Environ. Exp. Bot. 39:189-195. Zettler, L. W. and T. M. J. Mcinnis. 1993. Symbiotic seed germination and development of Spiranthes cdrnua and Goodyera pubescens (Orchidaceae: Spiranthoideae). Lindleyana 8(3):155-162. Zettler, L. W., S. L. Stewart, M. L. Bowles, and K. A. Jacobs. 2001. Mycorrhizal fungi and cold-assisted symbiotic germination of the federally threatened eastern prairie fringed orchid, Platanthera leucophaea (Nuttall) Lindley. Am. Midl. Nat. 145: 168–175. Zettler, L. W. and T. M. McInnis. 1994. Light enhancement of symbiotic seed germination and development of an endangered terrestrial orchid (Platanthera integrilabia). Plant Sci. 102:133–138. Zettler, L. W. and C. J. Hofer. 1997. Sensitivity of Spiranthes odorata seed to light during in vitro symbiotic seed germination. Lindleyana 12: 26-29. Zettler, L. W. and T. M. Mcinnis. 1999. Light enhancement of symbiotic seed germination and development of an endangered terrestrial orchid (Platanthera integrilabia). Plant Sci. 102:133-138.
摘要: 種子共生培養研究上顯示,接種不同蘭菌對於嘉德麗亞蘭種子發育上,有不同程度的促進效果。而在播種後第0天和第4天配合蘭菌接種有助於提高種子發芽率。光週期處理上供試的TF菌株以24小時照光培養,可以獲得較高的發芽率,而PT菌株則以24小時連續暗培養,可促進種子後續的發育。蘭菌懸浮液,對於種子發芽有促進效果。 嘉德麗亞蘭[(Brassavola nodosa × Cattleya aurantiaca)× Sophronitis cernua]出瓶苗上研究顯示,出瓶苗配合蘭菌對於植株鮮重、植株乾重、植株高度、葉長、葉寬、根長、根寬、根數、假球莖數目及莖寬皆有促進效果。不同栽培介質配合蘭菌接種顯示,以水苔作為出瓶介質配合接種蘭菌TF處理,對於植株鮮重、植株乾重、植株高度、葉長、葉寬、根長、根寬、根數、假球莖數目及莖寬皆有促進效果。出瓶根數配合接種蘭菌TF處理時,以出瓶帶有3條根以上的幼苗為最佳,而最差則是以出瓶苗不帶根,且其存活率僅有90%。而以每間隔2或4週施用菌液配合肥料施用處理,對於出瓶苗鮮重、乾重、株高、葉長、葉寬、葉數、根長、根寬、假球莖數目、莖寬上,則是有顯著的促進效果的。 碳源利用上,供試的TSa及TL菌株以葡萄糖,而PT及TF以蔗糖作為碳源進行增殖培養時,可獲得較高的菌絲產量。氮源利用上則對於酵母萃取物的利用能力較佳,而對於硫酸銨、硝酸銨的利用能力最差。 培養方式對於供試絲核菌菌絲產量的影響,主要取決於蘭菌的生長特性。而絲核菌生長會受到光抑制,進行菌絲量產時,配合暗培養的處理可縮短量產時間,在相同時間內獲得最大量的菌絲產量。 不同培養基對於絲核菌增殖培養上的影響,顯示PT菌株以CM培養基培養時,較有利於其菌絲之增殖。而蘭菌TL、TF、TSa菌株則以GYM培養基培養時,可獲得最高的菌絲量。 供試的絲核菌株生長曲線的變化相似,隨著培養時間的增加一般在培養第12及第18天時,菌絲產量達到高鋒,隨後菌絲生長趨於和緩,隨著培養時間增加,培養至第30天時菌絲產量有明顯減少的情況產生。
Studies on orchid seed symbiotic culture indicated that inoculate Cattleya orchid seeds with different orchid mycorrhizal fungi (OMF) resulted in different level of seed development promotion. Inoculate orchid seeds with OMF at the 0 day and the 4th day after germination both increased the seed germination. In photoperiodic treatment of OMF inoculated orchid seeds, 24 hours light period with TF fungi treated could gain higher level germination rate; where 24 hours dark period with PT fungi treated could also promote the orchid seed development. OMF suspension liquid will either enhance orchid seed germination. Studies on Cattleya [(Brassavola nodosa Cattleya aurantiaca) Sophronitis cernua] off bottle seedling with OMF inoculated indicated that increased plant characters on plant fresh weight, plant dry weight, plant height, leaf length, leaf width, and the length, width and number of both root and pseudobulb. In different culture media effect on OMF inoculated orchid seeding, using sphaghnum moss with TF strain treated in planting off bottle seedlings resulted in increased plant fresh weight, plant dry weight, plant height, leaf length, leaf width, and the length, width and number of both root and pseudobulb. TF strain treated on off bottle orchid seedlings with best result performed in 3 roots and above per seedling and the least in seedling without roots where the survival rate was 90%. When fertilize the orchid seedlings with OMF added once two and four weeks will also significantly enhanced plant fresh weight, plant dry weight, plant height, leaf length, leaf width, and the length, width and number of both root and pseudobulb. In carbon utilization, TSa and TL strains used glucose; PT and TF strain use sucrose as its carbon source while replication in order to produce high amount of mycelium. In nitrogen utilization, the best was in yeast extract usage and the least were in (NH4)2SO4 and NH4NO3. In culture method effects on mycelium production mainly depend on OMF growth feature. Growth of Rhizoctonia spp. will inhibit by light, therefore, dark culture could decreased the mycelium production period and could obtain larger mycelium amount in the same time as in light culture. In different culture media effect on Rhizoctonia spp. mass production experiment, the results showed that TL, TF, and TSa cultivate with GYM media and PT strain cultivate with CM media could obtained best result. The growth curved of Rhizoctonia spp. is similar, mycelium amount increased as culture period lengthen. After reaching the peak at the 12th days and the 18th day, the mycelium growth slow down and decreased at the 30th day significantly.
URI: http://hdl.handle.net/11455/28951
其他識別: U0005-1407200821375800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408200802575100
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.