Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29002
標題: 蘭菌在芭菲爾鞋蘭種苗生產之應用
The application of orchid mycorrhizal fungi for Paphiopedilum seedling production
作者: 陳珈樺
Chen, Chia-Hua
關鍵字: Slipper orchid
拖鞋蘭
Rhizoctonia Spp.
symbiotic germination
seedling growth
絲核菌
共生發芽
幼苗生長
出版社: 園藝學系所
引用: 參考文獻 王子政、謝式坢鈺. 1993. 絲核菌之細胞核螢光染色. 植物病理學會刊 2:98-102. 王美琇. 1999. 蘭共生菌與數種蘭科植物生長與發育之影響與應用. 國立台灣大學園藝學研究所碩士論文. 台北. 朱俊南. 2000. 蘭花菌根菌之分離與接種對文心蘭幼苗生長之影響. 屏東科技大學熱帶農業研究所碩士論文. 屏東. 朱欽昌. 1987. 內生菌根菌與蘭菌共生. 洋蘭月刊17:59-62. 李自強. 1999. 蘭共生菌對一葉蘭和(彩葉蘭×金線連)雜交種生長與發育之影響. 國立台灣大學園藝學研究所碩士論文. 台北. 李明治. 2001. 蘭菌(絲核菌)之生理、菌種生產及其對台灣金線連生長之影響. 國立台灣大學園藝學研究所碩士論文. 台北. 李哖、陳美惠. 1997. 拖鞋蘭之果莢成熟度和種子前處理對無菌發芽之影響. 園藝種苗科技研究成果發表會專集. 農林廳種苗場編印. p. 630-644. 李勇毅. 1995. 拖鞋蘭. p. 923-926. 刊於農委會臺灣農家要覽增修訂三版策劃委員會編著. 台灣農家要覽. 豐年社. 台北. 李勇毅. 1997. 拖鞋蘭分類與栽培管理. 台灣花卉園藝117:40-43. 李勇毅. 1998. 原生拖鞋蘭胚發育與無菌發芽之研究. 國立台灣大學園藝學研究所碩士論文. 台北. 李勇毅、李哖. 2001. 果實成熟度、培養基組成分與液體培養對芭菲爾鞋蘭屬之Paphiopedilum primulinum 種子發芽之影響. 中國園藝 47:147-156. 李國基. 2001. 台灣金線連與蘭菌之籃定及生產技術改進. 國立台灣大學園藝學研究所博士論文. 台北. 李國基、張喜寧. 2001. 以核糖體基因ITS作為蘭共生菌分類之研究. 科學農業49:181-185. 吳文希. 1988. 植物土媒病原學(立枯絲核菌之性質及防治). 國立編譯館. 台北. 林文華. 2003. 淺談拖鞋蘭分類及雜交育種方向. 台灣花卉園藝187:34-40. 林佑東. 2005. 蘭菌生產及對嘉德利亞蘭生育之影響. 國立中興大學園藝學研究所碩士論文. 台中. 林秋芬. 2002. 蘭菌對石斛蘭種子發芽與幼苗生長之影響. 國立中興大學園藝學研究所碩士論文. 台中. 周玲勤、張喜寧. 2003a. 蘭菌的分離、純化、鑑定與利用. 科學農業 51:74-77. 周玲勤、張喜寧. 2003b. 台灣金線連之無菌播種與共生發芽. 中國園藝 50:197- 202. 高水恩. 2006. 國際仙履蘭產業現況與我國仙履蘭外銷前景. 農業世界208:52-56. 張仁忠. 1999. 拖鞋蘭的栽培與管理. 高雄區農業專訊 27:18-19. 張仁銓. 2007. 人工培植拖鞋蘭證明文件申請簡介及出口管理現況. 農政與農情178:54-57. 張喜寧、周玲勤. 2004. 絲核菌屬蘭菌對數種蘭科植物種苗生產之影響. 植物種苗 6:33-42. 國立自然科學博物館. 2005. 仙履蘭(拖鞋蘭)產業生產技術點與發展分析. p. 29. 陳美惠. 1996. 果莢成熟度、種子前處理及培養基成分對拖鞋蘭無菌播種與幼苗生長之影響. 國立台灣大學園藝研究所碩士論文. 台北. 陳淑佩、翁振宇. 2004. 溫室內蘭花常見有害生物介紹及其防治建議(上). 台灣花卉園藝 205:25-95. 陳富永、林虛姿、蔣慕琰. 2004. 利用核糖體核酸內轉錄間隔區鑑別台灣地區炭疽菌菌株. 植物保護學會會刊46:15-26. 陳智信、莊再揚. 台灣土壤雙核菌菌絲融合群. 植物病理學會刊 6:153-162. 陳精祥. 1993. 靈芝太空包多切口栽培法.中華農學會報163:74-81. 陳駿季、林文華. 2003. 栽培介質及澆水頻率對拖鞋蘭植株生育之影響. 刊於蕭元川編. 台灣仙履蘭專輯III. 台灣仙履蘭協會. 台中. 麥奮. 1987. 拖鞋蘭之芭菲爾鞋蘭屬. 淑馨出版社. 台北. 莊錦華、李哖. 1985. 蘭苗於共生下之生長生理. 中國園藝 31:189-200. 黃宜瑩、高怡婷、徐源泰. 2005. 蘭科植物根部微生物之研究. 中國園藝 51: 347-356. 廖玉珠、陳駿季. 2007. 仙履蘭之無菌播種技術. 種苗科技專訊 57:2-7. 趙楯景、郭順星、高薇薇、杜淑燕. 1999. 三種內生真菌與大花蕙蘭共生礦質營養吸收的影響. 園藝學報 26:110-115. 劉黃碧圓. 1995. 芭菲爾鞋蘭無菌播種之研究. 國立中興大學園藝學研究所碩士論文. 台中. 蔡正雄譯. 1979. 蘭與蘭菌. 中華蘭藝 2:151-154. 蔡瑜卿. 2006. 我國拖鞋蘭培植場登記制度及拖鞋蘭種苗出口現況. 農業世界 280:58-62. 謝廷芳. 1998. 菌核類真菌之鑑定. p. 239-251. 刊於王也珍等著. 檢疫防疫植物病原真菌鑑定研討會專刊.中興大學植物病理學系.台中. 蕭元川. 2002. 拖鞋蘭種苗產業現況及問題. 植物種苗 4:51-54. 蕭元川. 1997. 芭菲爾鞋蘭的栽培要領. 中華民國台灣省拖鞋蘭協會週年特輯.台灣省拖鞋蘭協會編印. p. 5-10. 蕭元川.1994. 仙履蘭. p. 86-89. 刊於黃禎宏編. 蘭花淺介. 臺灣蘭花產銷發展協會.台南. 藍亦青. 2001. 蘭菌對蝴蝶蘭與拖鞋蘭生長與發育之影響. 國立台灣大學園藝學研究所碩士論文. 台北. Alexander, C., I. J. Alexander, and G. Hadley. 1984. Phosphate uptake by Goodyera repens in relation to mycorrhizal infection. New Phytol. 97: 401–411. Alexander, C. and G. Hadley. 1985. Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens Br. New Phytol. 101: 657–665. Andersen, T. F. 1990. A study of hyphal morphology in the form genus Rhizoctonia. Mycotaxon 37:25-46. Arditti, J. 1966. Orchis. Sci. Amer. 214:70-78. Arditti, J. 1967. Factors affecting the germination of orchid seeds. Bot. Rev. 33:1-97. Bayman, P., L. L. Lebrón, R. L. Tremblay, and D. J. Lodge. 1997. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol. 135:143-149. Beardmore, J. and G. F. Pegg. 1981. Technique for the establishment of mycorrhizal infection in orchid tissue grown in aseptic culture. New phytol. 87:527-535. Beyrle, H., F. Penningsfeld, and B. Hockf. 1991. The role of nitrogen concentration in determining the outcome of the interaction between Dactylorhiza incarnate (L.) soo and Rhizoctonia sp. New Phytol. 117: 665-672. Beyrle, H. F., S. E. Smith, R. L. Peterson, and C. M. M. Franco. 1995. Colonization of Orchis morio protocorms by a mycorrhizal fungus: effects of nitrogen nutrition and glyphosate in modifying the responses. Can. J. Bot. 73:1128-1140. Blakeman, J. P., M. A. Mokahel, and G. Hadley. 1976. Effect of mycorrhizal infection on respiration and activity of some oxidase enzymes of orchid protocorms. New Phytol. 77: 697-704. Boysen, M., M. Borja, C. del Moral, O. Salazer, and V. Rubio. 1996. Identification at strain level of Rhizoctonia solani AG4 isolates by direct sequence of asymmetric PCR products of the ITS regions. Curr. Genet. 29:174-181. Cameron, D. D., J. R. Leake, and D. J. Read. 2006 .Mutualistic mycorrhiza in orchids evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New phytol. 171:405- 416. Cameron, D. D., I. Johnson, J. R. Leake, and D. J. Read. 2007. Mycorrhizal acquisition inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann. Bot. 99:831-834. Carling, D. E., E. J. Pope, K. A. Brainard, and D. A. Carter.1999.Characterization of mycorrhizal isolates of Rhizoctonia solani from an orchid, including AG-12, a new anastomosis group. Phytopathology 89:942-946. Chou, L. C. and D. C. N. Chang. 2004. Asymbiotic and symbiotic seed germination of Anoectochilus formosanus and Haemaria discolor and their F1 hybrids. Bot. Bull. Acad. Sin. 45:143-147. Chang, D. C. N. and L. C. Chou. 2007. Growth responses, enzyme activities, and component changes as influenced by Rhizoctonia orchid mycorrhiza on Anoectochilus formosanus Hayata. Botanical Studies 48:445-451. Clements, M. A., H. Muir, and P. J. Cribb. 1986. A preliminary report on the symbiotic germination of European terrestrial orchid. Kew Bull. 41:437-445. Currah, R. S., L. Sigler, and S. Hambleton. 1987. New records and new taxa of fungi from the mycorrhizae of terrestrial orchid of Alberta. Can. J. Bot. 65:2473-2482. Currah, R. S., E. A. Smreciu, and S. Hambleton. 1990. Mycorrhizae and mycorrhizal fungi of boreal species of Platanthera and Coeloglossum (Orchidaceae). Can. J. Bot. 68:1171-1181. Dearnaley, J. D. W. 2007. Further advances in orchid mycorrhizal research. Mycorrhiza 17: 475-486. Dodman, R. L., K. R. Barker, and J. C. Walker. 1966. Auxin production by Rhizoctonia solani. Phytopathology 56:875. Dörr, I. and R. Kollmann. 1969. Fine structure of mycorrhiza in Neottia nidus-avis (L.) L. C. Rich. (Orchidaceae). Planta 89:372-375. Durbin, R. D. 1959. Some effects of light on the growth and morphology of Rhizoctonia solani. Phytopathology 49:59-60. Esnault, A. L., G. Masuhara, and P. A. McGee. 1994. Involvement of exodermal passage cells in mycorrhizal infection of some orchids. Mycol. Res. 98: 672-676. Fisch, M. H., B. H. Flick, and J. Arditti. 1973. Structure and antifungal activity of hircinol, loroglossol and orchinol. Phytochemistry 12:437–441. Furukawa, T., J. Koga, T. Adachi, K. Kishi, and K. Syono. 1996. Efficient conversion of l-tryptophan to indole-3-acetic Acid and/or tryptophol by some species of Rhizoctonia. Plant and cell Physiology 37:899-905. Hadley, G. 1970. Non-specificity of symbotic infection in orchid mycorrhiza. New phytol. 69: 1015-1023. Hadley, G. 1982. Orchid mycorrhiza In: arditti(ed) Orchid biology: reviews and perspective Ⅱ, Cornell University press, Ithaca. New York. 390pp. Hadley, G. and B. Williamson. 1972. Features of mycorrhizal infection in some Malayan orchids. New Phytol. 71:1111-1118. Hadley, G. and S. Purves. 1974. Movement of 14C from host to fungus in orchid mycorrhiza. New Phytol. 73: 475–482. Harvais, G. 1982. An improved culture medium for growing the orchid Cypripedium reginae axenically. Can. J. Bot. 60:2547-2555. Harvais, G. and G. Hadley. 1967. The relation between host and endophyte in orchid mycorrhizal. New Phytol.66:205-215. Harvais, G. and G. Hadley. 1967. The development of Orchis purpurella in asymbiotic and inoculated cultures. New phytol.66:217-230. Hietala, A. M., R. Sen, and A. Lilja. 1994. Anamorphic and teleomorphic characteristics of a unincleate Rhizoctonia sp. isolated from the roots of nursery grown conifer seedlings. Mycol. Res. 98:1044-1050. Huynh, T. T., C. B. McLean, F. Coates, and A. C. Lawrie. 2004. Effect of developmental stage and peloton morphology on success in isolation of mycorrhizal fungi in Caladenia Formosa (Orchidaceae). Aust. J. Bot. 52:231. Irwin, M. J., J. J. Bougoure, and J. D. W. Dearnaley. 2007. Pterostylis nutans (Orchidaceae) has a specific association with two Ceratobasidium root-associated fungi across its range in eastern Australia. Mycoscience 48:231-239. Johnson, T. R., S. L. Stewart, D. Dutra, M. E. Kane, and L. Richardson. 2007. Asymbiotic and symbiotic seed germination of Eulophia alta (Orchidaceae)- preliminary evidence for the symbiotic culture advantage. Plant Cell, Tiss. Organ. Cult. 90:313-323. Jørgensen, B. I. 1995. Hardy orchids: symbiotic in vitro propagation and cultivation. Acta Horticulturae 393:165-172. Kristiansen, K. A., D. L. Taylor, R. Kjøller, H. N. Rasmussen, and S. Rosendahl. 2001. Identification of mycorrhizal fungi from single pelotons of Dactylorhiza majalis (Orchidaceaae) using single-strand conformation polymorphism and mitochondrialribosomal large subunit DNA sequences. Mol. Ecol. 10:2089-2093. Kristiansen, K. A., F. N. Rasmussen, and H. N. Rasmussen. 2001. Seedlings of Neuwiedia (Orchidaceae subfamily apostasioideae) have typical orchidaceous mycotrophic protocorms. Amer. J. Bot. 88:959-956. Leake, J. R. 1994. The biology of myco-heterotrophic (‘saprophytic’) plant. New phytol. 127:171-126. Lee, Y. I., N. Lee, E. C. Yeung, and M. C. Chung. 2005. Embryo development of Cypripedium formosanum in relation to seed germination in vitro. J. Amer. Hort. Sci. 130:752-753. Loeffler, W., J. S. M. Tschen, N. Vanittanakom, M. Kugler, E. Knorpp, T.F. Hsieh, and T. G. Wu. 1986. Antifungal effects of Bacilysin and Fengymycin form Bacillus Subtilis F-29-3 a comparison with activities of other Bacillus antibiotcs. Phytopathology 115:204-213. Nagashima, T. 1982. Studies on embryogenesis and seed germination in Cymbidium goeringii and Paphiopedilum insigne var. sanderae. J. Janpan. Soc. Hort. Sci. 51:94-105. Ma, M., T. K. Tan, and S. M. Wong. 2003. Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. Mycol. Res. 107: 1041-1049. Masuhara, G. and K. Katsuya. 1994. In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames.var. amoena (M. Biebertsien) Hara (Orchidaceae). New Phytol. 127:711–718. Masuhara, G., K. Katsuya, and K. Yamaguchi. 1993. Potential for symbiosis of Rhizoctonia with seeds of Spiranthes sinensis var. amoena in vitro. Mycol. Res. 97:746-752. McCormick, M. K., D. F. Whigham, and J. O’Neill. 2004. Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol. 163:425–438. McCormick, M. K., D. F. Whigham, D. Slpan, K. O’malley, and B. Hodkinson. 2006. Orchid-fungus fidelity:a marriage meant to last? Ecology 87: 903-911. Miyoshi, K. and M. Mii. 1995. Phytohormone pre-treatment for the enhancement of seed germination and protocorm formation by the terrestrial orchid, Calanthe discolor (Orchidaceae), in asymbiotic culture. Sci. Hort. 63:263–269. Miyoshi, K. and M. Mii. 1998. Stimulatory effects of sodium and calcium hypochlorite, pre-chilling and cytokinins on the germination of Cypripedium macranthos seed in vitro. Physiol. Plant. 102:481-486. Moore, R. T. 1987. The genera of Rhizoctonia-like fungi:Ascorhizoctonia, Ceratorhiza gen. nov., Epulorhiza gen. nov., Monliopsis, and Rhizoctonia. Mycotaxon 29:91-99. Mordue, J. E. M., R. S. Currah, and P. D. Bridge. 1989. An integrated approach to Rhizoctonia taxonomy: cultural, biochemical and numerical techniques. Mycol. Res. 92:78-90. Otero, J. T., J. D. Ackerman, and P. Bayman. 2002. Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am. J. Bot. 9:1852-858. Pauw, M. A. D. and W. R. Remphrey. 1993. In vitro germination of three Cypripedium species in relation to time of seed collection, media, and cold treatment. Can. J. Bot. 71: 879-885. Pereira, O. L., C. L. Rollemberg, A. C. Borges, K. Matsuoka, and M. C. M. Kasuya. 2003. Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchid in Brazil. Mycoscience 44:153-155. Pereira, O. L., M. C. M. Kasuya, A. C. Borges, and E. F. de Arauio. 2005. Morphological and molecular characterization of mycorrhizal fungi isolated from neotropical orchids in Brazil. Can. J. Bot. 83:54-65. Perkins, A. J. and P. A. McGee. 1995. Distribution of the orchid mycorrhizal fungus, Rhizoctonia solani in relation to its host, Pterostylis acuminate, in the field. Aust. J. Bot. 43:565-575. Perkins, A. J., G. Masuhara, and P. A. McGee. 1995. Specificity of the associations between Microtis parviflora (Orchidaceae) and its Mycorrhizal fungi. Aust. J. Bot. 43:85-91. Peterson, R. L. and R. S. Currah. 1990. Sythesis of mtcorrhizae between protocorms of Goodyera repens (Orchidaceae) and Ceratoasidium sereal. Can. J. Bot. 68: 1117-1125. Peterson, R. L., P. Bonfante, A. Faccio, and Y. Uetake. 1996. The interface between fungal hyphae and orchid protocorm cells. Can. J. Bot. 74:1861-1870. Peterson, R. L., Y. Uetake, and C. Zelmer. 1998. Fungal symbioses with orchid protocorms. Symbiosis 25: 29-55. Pierik, R. L. M., P. A. Spremkles, B.Van der Harst, and Q. G. Van der Meys. 1988. Seed germination and further development of plantlets of Paphiopedilum ciliolare Pfitz. in vitro. Scientia Hort. 34:139-153. Rasmussen, H. N. 1992. Seed dormancy patterns in Epipacris palustris (Orchidaceae): Requirements for germination and establishment of mycorrhiza. Physiol. Plant. 86:161-167. Rasmussen, H. and F. N. Rasmussen. 1991. Climatic and seasonal regulation of seed plant establishment in Dactylorhiza majalis inferred from symbiotic experiments in vitro. Lindleyana 6:221-227. Rasmussen, H. N. and D. F. Whigham. 2002. Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy. New phytol.154:797-807. Richardson, K. A., R. S. Currah, and S. Hambleton. 1993. Basidiomycetous endophytes from the roots of neotropical epiphytic Orchidaceae. Lindleyana 8: 127–137. Robertson, N. F. 1968. The growth process in fungi. Annu. Rev. Phytopathol. 6:115-136. Sen, R., A. M. Hietala, and C. D. Zelmer. 1999. Common anastomosis and internal transcribed spacer RFLP groupings in binucleate Rhizoctonia isolates representing root endophytes of Pinus sylvestris, Ceratorhiza spp. from orchid mycorrhizas and a phytopathogenic anastomosis group. New phytol. 144:331-341. Senthilkumar, S., K. V. Krishnamurthy, S. J. Britto, and D. I. Arockiasamy. 2000. Visualization of orchid mycorrhizal fungal structures with fluorescence dye using epifluorescence microscopy. Current science 79:1527-1528. Shan, X. C., E. C. Y. Liew, M. A. Weatherhead, and I. J. Hodgkiss. 2002. Characterization and taxonomic placement of Rhizoctonia-like endophytes from orchid roots. Mycologia 94:230-239. Shefferson, R. P., M. Weiß, T. Kull, and D. L. Taylor. 2005. High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Mol. Ecol. 14:613–626. Shimura, H. and Y. Koda. 2005. Enhanced symbiotic seed germination of Cypripedium macranthos var. rebunense following inoculation after cold treatment. Physiol. Plant. 123:281–287. Shimura, H., M. Matsuura, N. Takada, and Y. Koda. 2007. An antifungal compound involved in symbiotic germination of Cypripedium macranthos var. rebunense (Orchidaceae). Phytochemistry 68:1442-1447. Smith, S. and D. J. Read. 1997. Mycorrhizal symbiosis. Academic Press, London. 349-375pp. Smith, S. E. 1966. Physiology and ecology of orchid mycorrhizal fungi with reference to seedling nutrition. New Phytol. 65: 488-499. Smith, S. E. 1967. Carbohydrate translocation in orchid mycorrhizas. New Phytol. 66: 371–378. Sneh, B., L. Burpee, and A. Ogoshi. 1991. Identification of Rhizoctonia species. American Phytopathological Society press St. Paul, Minnesota. USA. 133pp. Stewart, S. L. and M. E. Kane. 2007. Symbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implication for species-level conservation. In Vitro Cell. Dev. Biol.-Plant 43:178- 186. Stewart, S. L. and M. E. Kane. 2006. Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell, Tiss. Organ. Cult. 86:159-167. Stewart, S. L. and W. Z. Lawrence. 2002. Symbiotic germination of three semi-aquatic rein orchid (Habenaria repens, H. quinquiseta, H. macroceratitis) from Florida. Aquatic Botany 72:25-35. Stimart, D. P. and P. D. Ascher. 1981. In vitro germination of Paphiopedilum seed on a completely defined medium. Scientia Hort. 149:165-170. Taylor, D. L. and T. D. Bruns. 1999. Population, habitat and genetic correlates of mycorrhizal specialization in the "cheating" orchids Corallorhiza maculata and C. mertensiana. Mol. Eco. 8:1719-1732. Taylor, D. L., T. D. Bruns, T. M. Szaro, and S. A. Hodges. 2003. Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am. J. Bot. 90:1168-1179. Tu, C. C. and Y. C. Chang. 1978. Studies on the anastomosis groups of Rhizoctonia solani Kühn in Taiwan. J. Agr. Res. China 27:325-343. Wang, T. C. and S. P. Y. Hsieh. 1993. Rhizoctonia spp. caused turfgrass disease and their anastomosis groups in Taiwan. Plant pathol. Bull. 2:111-118. Warcup, J. H. 1981. The mycorrhizal relationships of Australian orchids. New Phytol. 87:371-381. Warcup, J. H. and P. H. B. Talbot. 1966. Perfect state of some Rhizoctonias. Transactions of the British mycological Society 49:427-435. Warcup, J. H. and P. H. B. Talbot. 1967. Perfect state of rhizoctonias associated with orchids. New phtyol.66:631-641. Warcup, J. H. and P. H. B. Talbot. 1971. Perfect states of Rhizoctonias associated with orchidsⅡ. New phtyol. 70:35-40. Ward, E. W. B., C. H. Unwin, and A. Stoessl. 1975. Postinfectional inhibitors from plants. XV. Antifungal activity of the phytoalexin orchinol and related phenanthrenes and stilbenes. Can. J. Bot. 53:964–971. Wells, K.1994. Jelly fungi, then and now. Mycologia 86:18-48. Whitney, H. S.1964. Sporulation of Thanatephorus cucumeris in the light and in the dark. Phytopathology 54:874-875. Wilkinson, K. G., K. W. Dixon, K. Sivasithamparam, and E. L. Ghisalberti. 1994. Effect of IAA on symbiotic germination of an Australian orchid and its production by orchid-associated bacteria. Plant Soil 159:291-295. Yoder, J. A., L. W. Zettler, and S. L. Stewart. 2000. Water requirement of terrestrial and epiphytic orchid seeds and seedling, and evidence for water uptake by means of mycotrophy. Plant Science 156:145-150. Zelmer, C. D. and R. S. Currah. 1995. Ceratorhiza pernacatena and Epulorhiza calendulina spp no. ; mycorrhizal fungi of terrestrial orchids. Can. J. Bot.73:1981 -1985. Zelmer, C. D., L. Cuthbertson, and R. S. Currah. 1996. Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms. Mycoscience 37:439-448. Zettler, L. W. and C. J. Hofer. 1998. Propagation of the little club-spur orchid (Platanthera clavellata) by symbiotic seed germination and its ecological implication. Environmental and Experimental Botany 39:189-195. Zettler, L. W., J. C. Burkhead, and J. A. Marshall. 1999. Use of mycorrhizal fungus from Epidendrum conopseum to germinate of Encyclia tampensis in vitro. Lindleyana 14:102-105.
摘要: 本研究自7種芭菲爾鞋蘭根部分離出8株菌種,分別為Pwar-1、Peme-1、Ppri-1、Phen-1、Phel-1、Pdel-1、Pdel-2及Pmic-1,所有菌種經Acridine orange螢光染劑染色後,Pwar-1為多核菌種,Peme-1、Ppri-1、Phen-1、Phel-1、Pdel-1、Pdel-2及Pmic-1為雙核菌種。Peme-1、Phen-1、Phel-1、Pdel-1、Pmic-1菌種於WA培養基內會形成念珠細胞,其餘Pwar-1、Ppri-1、Pdel-2則無形成念珠細胞。Pdel-1、Pdel-2、Pmic-1菌種於WA培養基的表面形成菌絲捲。以上這8株菌種的菌絲形態經初步鑑定皆為絲核菌屬的真菌。 於芭菲爾鞋蘭共生發芽方面,以這8株菌種(Pwar-1、Peme-1、Ppri-1、Phen-1、Phel-1、Pdel-1、Pdel-2及Pmic-1)、3種接種塊(直徑0.5、1.0、1.5 cm圓盤)、3種光週期(0/24 h、16/8 h、24/0 h L/D )、4種接種時間(播種前一週接種、播種同時接種、播種後1與2週後接種)及京都培養基內蔗糖濃度(5g l-1、10 g l-1、15 g l-1 、20 g l-1、25 g l-1、30 g l-1)測試對芭菲爾鞋蘭種子發芽率之影響。不論是原生種或是交配種,播種於OMA培養基並接種蘭菌的芭菲爾鞋蘭種子發芽率顯著高於播種於京都培養基的發芽率,而播種於京都培養基內部分種子發育較快,可是發芽不整齊,而播種於OMA培養基的種子之發芽率雖高,卻只發育至stage 2。接種塊的大小及接種的時間對芭菲爾鞋蘭種子發芽無顯著性影響,但接種時間愈晚發芽率愈低。Paph. delenatii播種於含10 g l-1蔗糖的京都培養基並接種Pdel-2菌種之處理有97%發芽率,其中有78%的種子發育至stage 4。 於芭菲爾鞋蘭出瓶苗接種蘭菌方面,先以8株菌種測試是否對綠豆及甘藍有致病性,再探討8株菌種(Pwar-1、Peme-1、Ppri-1、Phen-1、Phel-1、Pdel-1、Pdel-2及Pmic-1)與接種次數測試對芭菲爾鞋蘭出瓶苗生長的影響。Ppri-1菌種對綠豆有3.7%的罹病率,Ppri-1、Phen-1、Phel-1對甘藍有3.7%的致病率,Peme-1菌種對甘藍有7.4%罹病率,其他菌種對綠豆與甘藍無致病性。接種次數對Paph. delenatii fma. album的株高、株寬、葉寬、鮮重及乾重無顯著的影響,但出瓶後接種一次有較高的葉數及根數。接種8菌種中以Pwar-1、Ppri-1對Paph. delenatii fma. album的根數與鮮重均有促進的效果,Ppri-1對Paph. Maudiae Type的葉寬、根數、鮮重與乾重也有促進的效果,且葉色較濃綠,其餘的菌種對Paph. delenatii fma. album與Paph. Maudiae Type的生長則與不接種的植株無顯著性差異。 供試的8株菌種培養於黑暗環境的菌絲生長速度較培養於照光環境快速,顯示照光會抑制菌絲的生長。Pdel-2菌種最適培養條件為:25℃至30℃的環境與pH值為5.0的液體培養基。以四種液體培養基培養Pdel-2菌種,其中以V8果汁培養基的菌絲乾物量最高,其次為PDB、CM培養基,1/2 PDB的菌絲乾物量最低。震盪培養與靜置培養4週後菌絲乾物重呈明顯差異,震盪培養的菌絲乾物重高於靜置培養的菌絲乾物重。
In this study, 8 mycorrhizal Rhizoctonia-like fungi strains were isolated from roots of 7 different species Paphiopedilum, Pwar-1, Peme-1, Ppri-1, Phen-1, Phel-1, Pdel-1, Pdel-2 and Pmic-1. Pwar-1 isolate is multinucleate and the others isolates are binucleate by fluorescence light microscopy after stained with acridine orange. Monilioid cell formed in WA media by Peme-1, Phen-1, Phel-1, Pdel-1 and Pmic-1 isolates, other Pwar-1, Ppri-1 and Pdel-2 isolates have not been observed monilioid cell formed in WA media. Pdel-1, Pdel-2 and Pmic-1 isolates occurr hyphal coils on surface of WA media. Taxonomic studies revealed that these isolates belong to the genera Rhizoctonia. The effects of 8 mycorrhizal fungal (Pwar-1, Peme-1, Ppri-1,Phen-1, Phel-1, Pdel-1, Pdel-2 and Pmic-1), inoculum block size of Pdel-2 (diameter 0.5, 1.0, 1.5 cm disc), three photoperiod treatments(0/24 h, 16/8 h, 24/0 h L/D), timing of inoculation(Before sowing seeds a week inoculation, sowing seeds also inoculation, inoculation was carried out 1, 2 weeks after sowed seeds), sucrose concentration on Hyponex medium (5 g l-1, 10 g l-1, 15 g l-1 , 20 g l-1, 25 g l-1, 30 g l-1) on symbiotic germination of Paphiopedilum. No matter what kind of species, seeds germination percentage of Paphiopedilum cultured on the OMA medium with Rhizoctonia-like fungi is higher than sowed seeds to the Hyponex medium, and sows seeds to the Hyponex medium seed partial seeds growth quicker but germination not uniform. Although germination hight on OMA medium, protocorm actually only develop to stage2. The inoculum block size and timing of inoculation were not significantly different within symbiotic germination of Paphiopedilum, but inoculation time later germination percentage is lower. The Hyponex medium contains 10 g l-1 sucrose with Pdel-2 isolate have 97% germination percentage, including 78% seed growth to stage 4. In terms of Paphiopedilum inoculated with Rhizoctonia fungi, test first whether there is pathogenic strength to mung bean and cabbage with 8 mycorrhizal fungi, then the effects of 8 mycorrhizal fungi (Pwar-1, Peme-1, Ppri-1, Phen-1, Phel-1, Pdel-1, Pdel-2 and Pmic-1) and inoculate with the number of times on growth and development of Paphiopedilum. Results of the pathogenicity test showed that of Ppri-1 isolate has 3.7% disease rate to the mung bean seedling. Ppri-1, Phen-1 and Phel-1 isolates have 3.7% disease rate to the cabbage seedling and Peme-1 isolate has 7.4% disease rate. Other isolates were no pathogenicity for mung bean and cabbage. Inoculate with the number of times not significantly different with plant height, plant width, width of leaf, fresh weight and dry weight of Paph. delenatii fma. album, and plantlets of inoculate once ex vitro have better number of leaves and roots. Paph. delenatii fma. album inoculated with Pwar-1 and Ppri-1 isolates have result promoted number of roots and fresh weight. Paph. Maudiae Type inoculated with Ppri-1 isolate has higher width of leaf, number of roots, fresh weight, dry weight and the color of leaf is relatively thick and green. Between other isolates and no inoculum were not sighificantly different with growth of Paph. delenatii fma. album and Paph. Maudiae Type. The growth speed of these mycorrhizal fungi culture in darkness faster than culture in light condition, revealed the light inhibits the growth of the hypha. The optimal condition for growth of Pdel-2 was 25℃ to 30℃, pH 5.0 of liquid media. The Pdel-2 isolate with 4 kinds of liquid culture medium, dry weight of hypha of V8 juice liquid medium is the heaviest, secondly it is PDB, CM liquid medium, dry weight of Pdel-2 isolate hypha of 1/2 PDB is the lightest. Dry weight of Pdel-2 isolate with shaken and static cultures after 4 weeks show significantly different, dry weight of shaken cultures is higher than static cultures.
URI: http://hdl.handle.net/11455/29002
其他識別: U0005-2307200823155800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2407200811240900
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.