Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29006
標題: 菊花色素基因轉殖株之色素與分子檢定 和聖誕紅色素基因轉殖之研究
Pigments and Molecular Analysis of Transgenic Chrysanthemum Carrying Pigment Genes and Genetic Transformation of Pigment Genes to Poinsettia
作者: 李翠鳳
Li, Tsui-Feng
關鍵字: 菊花
Dendranthema grandiflorum
轉基因
聖誕紅
色素基因
基因轉殖
transgenic
Euphorbia pulcherrima
pigment gene
genetic transformation
出版社: 園藝學系所
引用: 王強生。2002。利用基因工程技術圓一個古老的夢-創造新花色。科學發展。351:4-11. 朱建鏞。趙玉真。2002。聖誕紅經由懸浮培養之體胚形成。中國園藝。48:247-256. 邱銘凰。1998。黑色大豆種皮Flavanone 3-hydroxylase(F3H)基因之選殖。國立中興大學農業生物科技學研究所碩士論文。96 pp. 邱輝龍、范明仁。1998。花青素與花色之表現。中國園藝。44:102-115. 吳宜娟。2000。黑色大豆種皮藍色基因Flavanone 3’,5’-hydroxylase (F3’,5’H)之選殖及其與多效性T基因座之關係。國立中興大學農業生物科技學研究所碩士論文。96 pp. 林政行。1984。植物與昆蟲的共同演化。台灣省立博物館。191 pp. 陳彥銘。2006。菊花花蕾培殖體利用農桿菌轉殖花色基因。國立中興大學園藝學研究所碩士論文。63 pp. 徐文輝、高海卿、陳華進。2000。菊花某些性狀遺傳規律的初步探討。浙江林學院學報。17:37-41. 黃敏展。1996。亞熱帶花卉學總論。中興大學園藝系。p.126-193 黃靖雯。2002。黑色大豆種皮ANS基因之選殖。國立中興大學農藝學研究所碩士論文。128 pp. 傅仰人。2005。聖誕紅之γ射線誘變育種。國立中興大學園藝學研究所博士論文。163 pp. 馮莉真。2003。聖誕紅單節培養及經由體胚之誘變育種。國立中興大學園藝學研究所碩士論文。96 pp. 楊梨玲。1998。聖誕紅實生育種之研究。國立中興大學園藝學研究所碩士論文。100 pp. 趙玉真。2000。聖誕紅之莖頂培養及體胚形成。國立中興大學園藝學研究所碩士論文。104 pp. 魏芳明。2001。菊花珈瑪射線誘變育種之研究。國立中興大學園藝學研究所碩士論文。89 pp. Aida, R., S. Kishimoto, Y. Tanaka, and M. Shibata. 2000a. Modification of flower color in torenia (Torenia hybrida) by genetic transformation. Plant Sci. 153:33-42. Aida, R., K. Yoshida, T. Kondo. S. Kishimoto, and M. Shibata. 2000b. Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol 4-reduetase gene. Plant Sci. 160:49-56. Akama, K., H. Shiraishi, S. Ohta, K. Nakamura, K. Okada, and Y. Shimura. 2004. Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep. 12:7-11. Anzelloti, D. and R. K. Ibrahim. 2000. Novel flavonol 2-oxuglutarate dependent dioxygenase: affinity purification, and kinetic properties. Arch. Biochem. Biophys. 382:161-172. Asen, S. 1958. Anthocyanins in bracts of Euphorbia Pulcherrima as revealed by paper chromatographic and spectrophotometric methods. Plant Physiol. 33:14-17. Bariola, P. A., G. C. MacIntosh, and P. J. Green. 1999. Regulation of S-like ribonuclease levels in Arabidopsis antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation. Plant Physiol. 119:331-342. Barrett, C. C., E. M. Nicol, and L. G. Ronald. 1996. A risk assessment study of plant genetic transformation using Agrobacterium and implications for analysis of transgenic plants. Plant Cell Tiss. Org. Cult. 47:135-144. Bartley, G. E. and P. A. Scolnik 1995. Plant carotenoid: Pigments for photoprotection, visual attraction, and human health. Plant Cell 7:1027-1038. Baulcombe, D. C. 1996. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol. Biol. 32:79-88. Biolley, J. P. and M. Jay. 1993. Anthocyanins in modern roses: chemical and colorimetric features in relation to the colour range. J. Exp. Bot. 44:1725-1734. Bird, C. R., J. A. Ray, J. D. Fletcher, J. M. Boniwell, A. S. Bird, C. Teulieres, I. Blain, P. M. Bramley, and W. Schuch. 1991. Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. Biotechnology 9:635-639. Bloor, S. J. 1998. A macrocyclic anthocyanin from red/mauve carnation flowers. Phytochemistry 49:225-228. Boase, M. R., J. M. Bradley, and N. K. Borst. 1998. Genetic transformation mediated by Agrobacterium tumefaciens of Florists’ chrysanthemum cultivar ‘Peach Margaret’. In vitro cell. Dev. Biol. 34:46-51. Bokern, M., V. Wray, and D. Strack. 1991. Accumulation of phenolic acid conjugates and betacyanins, and changes in the activities of enzymes involved in feruloylglucose metabolism in cell-suspension cultures of Chenopodium rubrum L. Planta 184:261-270. Bradley, J. M., K. M. Davies, S. C. Deroles, S. J. Bloor, and D. H. Lewis. 1998. The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia hybrida. Plant J. 13:381-392. Broertjes, C., P. Koeneand, and J. W. H. van Veen. 1980. A Mutant of an irradiation of progressive radiation induced mutants in a mutation breeding programme with Chrysanthemum morifolium Ram. Euphytica 29:525-530. Chandler, S. and Y. Tanaka. 2007. Genetic modification in floriculture. Crit. Rev. Plant Sci. 26:169-197. Chang, S., J. Puryear, and J. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11:113-116. Charity, J. A., L. Holland, and L. J. Grace. 2005. Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Rep. 23:606-616. Cheng, Z. M., J. A. Schnurr, and J. A. Kapaun. 1998. Timentin as an alternative antibiotic for suppression of Agrobacterium tumefaciens in genetic transformation. Plant Cell Rep. 17:646-649. Clarke, J. L., C. Spetz, S. Haugslien, S. Xing, M. W. Dees, R. Moe, and D. R. Blystad. 2008. Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to poinsettia mosaic virus. Plant Cell Rep. 27:1027-1038. Clegg, M. T. and M. L. Durbin. 2000. Flower color variation-a model for the experimental study of evolution. Proc. Natl. Acad. Sci. USA 97:7016-7023. Damiani, F., F. Paolocci, G. Consonni, F. Crea, C. Tonelli, and S. Arcioni. 1998. A maize anthocyanin transactivator induces pigmentation in hairy roots of dicotyledonous species. Plant Cell Rep. 17:339-344. Davies, K. M., S. J. Bloor, G. B. Spiller, and S. C. Deroles. 1998. Production of yellow color in flowers: redirection of flavonoid biosynthesis in petunia. Plant J. 13:259-266. Depicker, A. and M. V. Montagu. 1997. Post-transcriptional gene silencing in plants. Curr. Opin. Cell Biol. 9:373-382. Deroles, S., J. M. Bradley, K. M. Davis, K. Schwinn, and D. Manson. 1995. Generation of novel patterns in Lisianthus flowers using an antisense chalcone synthase gene. Acta Hort. 420:26-28. Dolgov, S. V., T. Y. Mitiouchkina, and K. G. Skryabin. 1997. Agrobacterial transformation of chrysanthemum. Acta Hort. 447:329-333. Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11-15. Durbin, M. L., B. McCaig, and M. T. Clegg. 2000. Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Mol. Biol. 42:79-92. Elomaa, P., J. Honkanen, R. Puska, P. Seppanen, Y. Helariutta, M. Mehto, M. Kotilainen, L. Nevalainen, and T. H. Teeri. 1993. Agrobacterium mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Biotechnology 11:508-511. Estopa, M., V. Marfa, E. Mele, and J. Messeguer. 2001. Study of different antibiotic combinations for use in the elimination of Agrobacterium with kanamycin selection in carnation. Plant Cell Tiss. Org. Cult. 65:211-220. Eugster, C. H. and E. M. Fischer. 1990. The chemistry of rose pigments. Angewandte Chemie 30:654-672. Fagard, M. and H. Vaucheret. 2000. Transgene silencing in plants: How many mechanism? Annu. Rev. Plant Physiol. 51:167-194. Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-811. Forkmann, G. 1991. Flavonoids as flower pigment: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed. 106:1-26. Fray, R. G. and D. Grierson. 1993. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol. Biol. 22:589-602. Fray, R. G., A. Wallace, P. D. Fraser, D. Valero, P. Hedden, P. M. Bramley, and D. Grierson. 1995. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J. 8:693-701. Fukui, Y., K. Nomoto, T. Iwashita, K. Masuda, Y. Tanaka, and T. Kusumi. 2006. Two novel blue pigments with ellagitannin moiety, rosacyanins A1 and A2, isolated from the petals of Rosa hybrida. Tetrahedron 62:9661-9670. Fukui, Y., Y. Tanaka, T. Kusumi, T. Iwashita, and K. Nomoto. 2003. A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3’,5’-hydroxylase gene. Phytochemistry 63:15-23. Fukusaki, E., K. Kawasaki, and K. Suzuki. 2004. Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J. Biotechnol. 111:229-240. Ganapathi, T. R., N. S. Higgs, P. J. B. Kurti, C. J. Arntzen, G. D. May, and J. M. Van Eck. 2001. Agrobacterium-mediated transformation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Rep. 20:157-162. Geier, T., A. Beck, and W. Preil. 1992. High uniformity of plants regenerated from cytogenetically variable embryogenic suspension cultures of poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch). Plant Cell Rep. 11:150-154. Gierl, A, and H. Saedler. 1992. Plant-transposable elements and gene tagging. Plant Mol. Biol. 19:39-49. Giuliano, G., G. E. Bartley, and P. A. Scolnik. 1993. Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5:379-387. Goldsbrough, A. P., Y. Tong, and J. I. Yoder. 1996. Lc as a non-destructive visual reporter and transposition excision marker gene for tomato. Plant J. 9:927-933. Gonnet, J. F. 2003. Origin of the color of cv. Rhapsody in Blue rose and some other so-called “Blue” roses. J. Agric. Food Chem. 51:4990-4994. Gonnet, J. F. and B. Fennet. 2000. ‘Cyclamen Red’ colors based on a macrocyclic anthocyanin in carnation flowers. J. Agric. Food Chem. 48:22-26. González, A. E., C. Schöpke, N. J. Taylor, R. N. Beachy, and C. M. Fauquet. 1998. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic suspension cultures. Plant Cell Rep. 17:827-831. Greenaway, W., T. Scaysbrook, ,F. R. Whatley. 1990. The composition and plant origins of propolis: a report of work at oxford. Bee World. 71: 107-118. Grotewold, E. 2006. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57:761-780. Gudin, S. 2000. Rose: genetics and breeding. Plant Breeding Res. 17:159-190. Gutterson, N. C., E. Firoozabady, C. Lemieux, J. Nicholas, A. Morgan, K. P. Robinson, A. Otten, and M. Akerboom. 1993. Production of genetically engineered color modified chrysanthemum plants carrying a homologous chalcone synthase gene and their field performance. Acta Hort. 336:57-62. Gutterson, N. C., C. Napoli, C. Lemieux, A. Morgan, E. Firoozabady, E. Karol, and P. Robinson. 1994. Modification of flower color in florist’s chrysanthemum: production of a white-flowering variety through molecular genetics. Biotechnology 12:268-271. Halbwirth, H., G. Forkmann, and K. Stich. 2004. The A-ring specific hydroxylation of flavonols in position 6 in Tagetes sp. is catalyzed by a cytochrome P450 dependent monoxygenase. Plant Sci. 167:129-135. Hammerschlag, F. A., R. H. Zimmerman, U. L. Yadava, S. Hunsucker, and P. Gercheva. 1997. Effect of antibiotics and exposure to an acidified medium on the elimination of Agrobacterium tumefaciens from appale explants and on shoot regeneration. J. Amer. Soc. Hort. Sci. 122:758-763. Harashima, S., H. Takano, K. Ono, and S. Takio. 2004. Chalcone synthase-like gene in the liverwort, Marchantia paleacea var. diptera. Plant Cell Rep. 23:167-173. Harborne, J. B. and C. A. Williams. 2000. Advances in flavonoid research since 1992. Phytochemistry 55:481-504. Helariutta, Y., P. Elomaa, M. Kotilainen. P. Seppänen, and T. H. Teeri. 1993. Cloning of cDNA coding for dihydroflavonol 4-redudtase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida var. Regina(Compositae). Plant Mol. Biol. 22:183-193. Hirschbergm, J. 2001. Carotenoid biosynthesis in flowering plants. Curr. Opin. Plant Biol. 4:210-218. Horsch, R. T., J. E. Fry, N. L. Hoffmann, D. Eichholtz, S. G. Rogers, and R. T. Fraley. 1985. A simple and general method for transferring genes into plants. Science. 227:1229-1231. Huang, X., X. L. Huang, W. Xiao, J. T. Zhao, X. M. Dai, Y. F. Chen, and X. J. Li. 2007. Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminata cv. Mas (AA) via a liquid co-cultivation system. Plant Cell Rep. 26:1755-1762. Huang, J. X., L. J. Qu, J. Yang, H. Yin, and H. Y. Gu. 2004. A preliminary study on the origin of chalcone synthase (CHS) gene: Molecular cloning of CHS-like gene from liverwort (Lunularia cruciata) and evolution of CHS genes in angiosperms. Acta Bot. Sin. 46:10-19. Humara, J. M. and R. J. Ordás. 1999. The toxicity of antibiotics and herbicides on in vitro adventitious shoot formation on Pinus pinea L. cotyledons. In Vitro Cell. Dev. Biol. 35:339-343. Hutchinson, J. F., V. Kaul, G. Maheswaran, J. Moran, M. W. Graham, and D. Richards. 1992. Genetic improvement of floricultural crops using biotechnology. Aust. J. Bot. 40:765-787. Inagaki,Y., Y. Hisatomi, and S. Iida. 1996. Somatic mutations caused by excision of the transposable element, Tpn1, from the DFR gene for pigmentation in sub-epidermal layer of periclinally chimeric flowers of Japanese morning glory and their germinal transmission to their progeny. Theor. Appl. Genet. 92:499-504. Jeong, J. H., D. Chakrabarty, S. J. Kim, and K. Y. Paek. 2002. Transformation of chrysanthemum (Dendranthema grandiflorum Kitamura cv. Cheonsu) by constitutive expression of rice OsMADS1 gene. J. Kor. Soc. Hortic. Sci. 43:382-386. Jorgensen, R. A. 1995. Cosupperession, flower color patterns, and metastable gene expression states. Science 268:686-691. Jorgensen, R. A., P. D. Cluster, J. English, Q. Que, and C. A. Napoli. 1996. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol. Biol. 957-973. Kaswase, K., and Y. Tsukamoto. 1976. Studies on flower color in Chrysanthemum morifolium Ramat III. Quantitative effects of major pigments on flower color variation, and measurement of color qualities of petals with a color difference meter. Japan. Soc. Hort. Sci. 45:65-75. Katsumoto, Y., M. F. Mizutani, Y. Fukui , F. Brugliera , T. A. Holton, M. Karan , N. Nakamura, K. Y. Sakakibara, J. Togami, A. Pigeaire, G. Q. Tao, N. Nehra, C. Y. Lu, B. K. Dyson, T. Ashikari, T. Kusumi, J. G. Mason, and Y. Tanaka. 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol. 48:1589-1600. Khanna, H., D Becker, J. Kleidon1, and J. Dale1. 2004. Centrifugation Assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady Finger AAB). Mol. Breed. 14:239-252. Kim, S., R. Jones, K. S. Yoo, and L. M. Pike. 2005. The L locus, one of complementary genes required for anthocyanin production in onions (Allium cepa), encodes anthocyanidin synthase. Theor. Appl. Genet. 111:120-127. Kishimoto, S., T. Maoka, M. Nakayama, and A. Ohmiya. 2004. Carotenoid composition in petals of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Phytochemistry 65:2781-2787. Kishimoto, S., K. Sumitomo, M. Yagi, M. Nakayama, and A. Ohmiya. 2007. Three routes to orange petal color via carotenoid components in 9 compositae species. J. Japan. Soc. Hort. Sci. 76:250-257. Kishimoto, S. and A. Ohmiya. 2006. Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium Ramat.). Physiol. Plant 128:436-447. Kloti, A., X. He, I. Potrykus, T. Hohn, and J. Futterer. 2002. Tissue-specific silencing of a transgene in rice. Proc. Natl. Acad. Sci. USA 99:10881-10886. Koes, R. E., F. Quattrocchio, and J. N. M. Mol. 1994. The flavonoid biosynthetic pathway in plant: function and evaluation. BioEssays 16:123-132. Kumagai, M. H., Y. Keller, F. Bouvier, D. Clary, and B. Camara. 1998. Functional integration of non‐native carotenoids into chloroplasts by viral‐derived expression of capsanthin-capsorubin synthase in Nicotiana benthamiana. Plant J. 14:305-315. Kuniaki, W. 1977. Successful ovary culture and production of F1 hybrids and androgenic haploids in Japanese Chrysanthemum species. J. Hered. 68:317-320. Kusaba, M. 2004. RNA interference in crop plants. Curr. Opin. Biotechnol. 15:139-143. Lin, J. J., N. Assadgarcia, and J. Kuo. 1995. Plant hormone effect of antibiotics on transformation efficient of plant tissue by Agrobactium tumefaciens cells. Plant Sci. 109:171-177. Lindsay, W. P., F. M. McAlister, Q. Zhu, X. Z. He, L. W. Droge, S. Hedrick, P. Doerner, C. Lamb, and R. A. Dixon. 2002. KAP-2, a protein that binds to the H-box in a bean chalcone synthase promoter, is a novel plant transcription factor with sequence identity to the large subunit of human Ku autoantigen. Plant Mol. Biol. 49:503-514. Ling, H. Q., D. Kirseleit, and M. W. Ganal. 1998. Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill). Plant Cell Rep. 17:843-847. Liu, D., M. Galli, and N. M. Crawford. 2001. Engineering variegated floral patterns in tobacco plants using the Arabidopsis transposable elements Tag1. Plant Cell Physiol. 42:419-423. Lloyd, A. M., V. Walbot, and R. W. Davis. 1992. Arabidopsis and Nicotiana and anthocyanin production activated by maize regulators R and C1. Science 258:1773-1775. Lotan, T. and J. Hirschberg. 1995. Cloning and expression in Escherichia coli of the gene encoding β-C-4 oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett. 364:125-128. Lu, C., G. Nugent, T. W. Richardson, S. F Chandler, R. Young, and M. Dalling. 1991. Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.) Biotechnology 9:864-868. Maike, S., N. M. Joseph, and J. M. Kocter. 1997. The silence of genes in transgenic plants. Ann. Bot. 79:3-12. Martin, C. and T. Gerats. 1993. Control of pigment biosynthesis genes during petal development. Plant Cell 5:1253-1264. Marrs, K. A. M. R. Alfenito, A. M. Lloyd, and V. Walbot. 1995. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397-400. Marx, J. 2000. Interfering with gene expression. Science 288:1370-1372. Mathias, R.J. and L. A. Boyd. 1986. Cefotaxime stimulates callus growth, embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum). Plant Sci. 46:217-223. Mazur, B., E. Krebbers, and S. Tingey. 1999. Gene discovery and product development for grain quality traits. Science 285:372-375. McClintock B. 1951. Chromosome organization and genetic expression. Cold Spring Harber Symp. Quant. Biol. 16:13-47. Meyer, P. and I. Heidmann. 1994. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet. 243:390-399. Meyer, P., I. Heidmann, G. Forkmann, and H. Saedler. 1987. A new petunia flower color generated by transformation of a mutant with a maize gene. Nature 330:677-678. Mikanagi, Y., N. Saito, M. Yokoi, and F. Tatsuzawa. 2000. Anthocyanins in fowers genus Rosa, sections Cinnamomeae (=Rosa), Chinenses, Gallicanae and some modern garden roses. Biochem. Syst. Ecol. 28:887-902. Mitiouchkina, T. Y., E. P. Ivanova, S. A. Taran, and S. V. Dolgov. 2000. Chalcone synthase gene from Antirrhinum majus in antisense orientation successfully suppressed the petals pigmentation of chrysanthemum. Acta Hort. 508:215-218. Mol, J. N. M., T. A. Holton, and R. E. Koes. 1995. Floriculture: genetic engineering of commercial traits. Trends Biotechnol. 3:350-351. Mori, S., H. Kobayashi, Y. Hoshi, M. Kondo, and M. Nakano. 2004. Heterologous expression of the flavonoid 3’,5’-hydroxylase gene of Vinca major alters flower color in transgenic Petunia hybrida. Plant Cell Rep. 22:415-421. Nakano, M. and M. Mii. 1993. Antibiotics stimulate somatic embryogenesis without plant growth regulators in several Dianthus cultivars. Plant Physiol. 141:721-725. Nakatsuka, T., M. Nishihara, K. Mishiba, and S. Yamamura. 2005. Two different mutations are involved in the formation of white-flowered gentian plants. Plant Sci. 169:949-58. Nakamura, N., M. F. Mizutani, K. Miyazaki, K. Suzuki, and Y. Tanaka. 2006. RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotech. 23:13-17. Nakayama, T, K. Y. Sakakibara, T. Sato, S. Kikuchi, Y. Fukui, M. F. Mizutani, T. Ueda, M. Nakao, Y. Tanaka, T. Kusumi, and T. Nishino. 2000. Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290:1163-1166. Napoli, C., C. Lemieux, and R. Jorgensen. 1990. Introduction of chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279-289. Nauerby, B., K. Billing, and R. Wyndaele. 1997. Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentration suitable for ehmination of Agrobacterium tumefaciens. Plant Sci. 123:169-177. Nesi, N., I. Debeaujon, C. Jond, G. Pelletier, M. Caboche, and L. Lepiniec. 2000. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863-1878. Nielsen, K., S. C. Deroles, K. R. Markham, M. J. Bradley, E. Podivinsky, and D. Manson. 2002. Antisense flavonol synthase alters co-pigmentation and flower color in lisianthus. Mol. Breed. 9:217-229. Nishihara, M., T. Nakatsuka, K. Mishiba, A. Kikuchi, and S. Yamamura. 2003. Flower color modification by suppression of chalcone synthase gene in gentian. Plant Cell Physiol. 44:159. Ohmiya, A., S. Kishimoto, R. Aida, S. Yoshioka, and K. Sumitomo. 2006. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 142:1193-1201. Okinaka, Y., Y. Shimada, R. N. Shimada, M. Ohbayashi, S. Kiyokawa, and Y. Kikuchi. 2003. Selective accumulation of delphinidin derivatives in tobacco using a putative flavonoid 3’,5’-hydroxylase cDNA from Campanula medium. Biosci. Biotechnol. Biochem. 67:161-165. Okkels, E. T. and M. G. Pedersen. 1988. The toxicity to plant tissue and to Agrobacterium tumefaciens of some antibiotics. Acta Hort. 225:199-207. Ono, E., M. M. Fukuchi, N. Nakamura, Y. Fukui, S. K. Yonekura, M. Yamaguchi, T. Nakayama, T. Tanaka, T. Kusumi, and Y. Tanaka. 2006. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. USA 103:11075-11080. Opabode, J. T. 2006. Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol. Mol. Bio. Rev. 1:12-20. Petty, L. M., N. P. Harberd, I. A. Carre, B. Thomas, and S. D. Jackson. 2003. Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Sci. 164:175-182. Pollock, H. M., J. Holt, and C. Murray. 1983. Comparison of susceptibilities of anaerobic bacteria to cefemenoxime, ceftriaxone, and other antimicrobial compounds. Antimicrob. Agents Chemother. 23:780-783. Quattrocchio, F., J. F. Wing, H. Leppen, J. Mol, and R. E. Koes. 1993. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497-1512. Que, Q., H. Y. Wang, J. J. English, and R. A. Jorgensen. 1997. The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9:1357-1368. Reddy, A. M., V. S. Reddy, B. E. Scheffler, U. Wienand, and A. R. Reddy. 2007. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential. Metab. Eng. 9:95-111. Rosati, C., A. Cadic, M. Duron, M. Ingouff, and P. Simoneau. 1999. Molecular characterization of the anthocyanidin synthase gene in Forsythia intermedia reveals organ-specific expression during flower development. Plant Sci. 149:73-79. Rosati, C. and P. Simoneau. 2006. Metabolic engineering of flower color in ornamental plants: a novel route to a more colorful world. J. Crop Improvement. 18:301-324. Rosati, C., P. Simoneau, D. Treutter, P. Poupard, Y. Cadot, A. Cadic, and M. Duron. 2003. Engineering of flower color in forsythia by expression of two independently transformed dihydroflavonol 4-reductase and anthocyanidin synthase genes of flavonoid pathway. Mol. Breed. 12:197-208. Saito, K., M. Kobayashi, Z. Gong, Y. Tanaka, and M. Yamazaki. 1999. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J. 17:181-189. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York. Sarma, K. S., N. E. Evans, and C. Selby. 1995. Effect of carbenicillin and cefotaxime on somatic embryogenesis of sitka spruce (Picea sitchensis (Bong.) Carr.). J. Exp. Bot. 45:1779-1781. Schijlen, E. G., C. H. Ric de Vos, A. J. van Tunen, and A. G. Bovy. 2004. Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65:2631-2648. Schwartz, S. H., B .C. Tan, D. A. Gage, J. A. D. Zeevaart, and D. R. McCarty. 1997. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872-1874. Seitz C., N. Oswald, D. Borstling, G. Forkmann, and S. Martens. 2003. Being acyanic: an unavoidable fate for many white flowers. Acta Horti. 612:83-88. Shimada, Y., M. Ohbayashi, R. N. Shimada, Y. Okinaka, S. Kiyokawa, and Y. Kikuchi. 2001. Genetic engineering of the anthocyanin biosynthetic pathway with flavonoid 3’,5’-hydroxylase:specific switching of the pathway in petunia. Plant Cell Rep. 20:452-456. Shimada, Y., R. N. Shimada, M. Ohbayashi, Y. Okinaka, S. Kiyokawa, and Y. Kikuchi. 1999. Expression of chimeric P450 genes encoding flavonoid 3’,5’-hydroxylase in transgenic tobacco and petunia plants. FEBS Lett. 461:241-245. Simkin, A. J., S. H. Schwartz, M. Auldridge, M. G. Taylor, and H. J. Klee. 2004a. The tomato carotenoid cleavage dioxygenase genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Plant J. 40:882-892. Simkin, A. J., B. A. Underwood, M. Auldridge, H. M. Loucas, K. Shibuya, E. Schmelz, D. G. Clark, and H. J. Klee. 2004b. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of betaionone, a fragrance volatile of petunia flowers. Plant Physiol. 136:3504-3514. Soug, F., P. C. Thevenot, H. Yean, G. Delbard, Y. Maziere, J. P. Barbe, and M. Boulay. 1996. Genetic transformation of roses, 2 examples: one on morphogenesis, the other on anthocyanin biosynthetic pathway. Acta Hort. 424:381-388. Springob, K., J. I. Nakajima, M. Yamazaki, and K. Saito. 2003. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep. 20:288-303. Stafford, H. A. 1994. Anthocyanins and betalains: Evolution of the mutually exclusive pathways. Plant Sci. 101:91-98. Stewart, R. N. 1965. Inheritance of bract color in poinsettia. J. Hered. 51:175-177. Stewart, R. N. and T. Arisumi. 1966. Genetic and histogenic determination of pink bract color in poinsettia. J. Hered. 57:216-220. Stewart, R. N., S. Asen, D. R. Massie, and K. H. Norris. 1979. The identification of poinsettia cultivars by HPLC analysis of their anthocyanins content. Biochem. Syst. Ecol. 7:281-287. Stewart, R. N., S. Asen, D. R. Massie, and K. H. Norris. 1980. The identification of poinsettia cultivars by HPLC analysis of their flavonol content. Biochem. Syst. Ecol. 8:119-125. Su, V. and B. D. Hsu. 2003. Clonig and expression of a putative cytochrome P450 gene that influences the colour phalaenopsis flowers. Biotechnol. Lett. 25:1933-1939. Suzuki, S., M. Nishihara, T. Nakatsuka, N. Misawa, I. Ogiwara, and S. Yamamura. 2007. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep. 26:951-959. Suzuki, K. I., H. M. Xue, Y. Tanaka, Y. Fukui, M. F. Mizutani, Y. Murakami, Y. Katsumoto, S. Tsuda, and T. Kusumi. 2000. Flower color modifications of Torenia hybrida by cosuppression of anthocyanin biosynthesis genes. Mol. Breed. 6:239-246. Takatsu, Y., Y. Nishizawa, T. Hibi, and K. Akutsu. 1999. Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci. Horti. 82:113-123. Tanaka, Y. 2006. Flower color and cytochromes P450. Phytochem. Rev. 5:283-291. Tanaka, Y., Y. Katsumoto, F. Brugliera, and J. Mason. 2005. Genetic engineering in floriculture. Plant Cell Tiss. Org. Cult. 80:1-24. Tanaka, Y. and A. Ohmiya. 2008. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr. Opin. Biotechnol. 19:1-8. Tanaka, Y., S. Tsuda, and T. Kusumi. 1998. Metabolic engineering to modify flower color. Plant Cell Physiol. 39:1119-1126. Teixeira da silvar, J. A. 2003. Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. Biotechnol. Adv. 21:715-766. Trick, H. N. and J. J. Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep. 17:482-488. Turnbull, J., J. Nakajima, R. W. D. Welford, M. Yamazaki, K. Saito, and C. J. Schofield. 2004. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis. J. Biol. Chem. 279:1206-1216. Ueyama, Y., K. Suzuki, M. F. Mizutani,Y. Fukui, K. Miyazaki, H. Ohkawara, T. Kusumi, and Y. Tanaka. 2002. Molecular and biochemical characterization of torenia flavonoid 3’-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci. 163:253-263. Urban, L., J. M. Sherman, and J. W. Moyer. 1994. Hight-frequency shoots regeneration and Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora). Plant Sci. 98:69-79. Vainstein, A., E. Lewinsohn, E. Pichersky, and D. Weiss. 2001. Floral fragrance: New inroads into an old commodity. Plant Physiol. 127:1383-1389. Van Blokland, R., N. van der Geest, J. N. M. Mol, and J. M. Kooter. 1994. Transgene mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Plant J. 6:861-877. Van der Krol, A. R., P. E. Lenting, J. Veenstra, I. M. van der Meer, R. E. Koes, A. G. M. Gerats, J. N. M. Mol, and A. R. Stuitje. 1988a. An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 1988. 333:866- 869. Van der Krol, A. R., J. N. M. Mol, and A. R. Stuitje. 1988b. Modulation of eukaryotic gene expression by complementary RNA or DNA sequences. Biotechniques 6:958-976. Van der Krol, A. R., L. A. Mur, M. Beld, J. N. M. Mol, and A. R. Stuitje. 1990. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291-299. Van der Krol, A. R., L. A. Mur, P. de Lange, A. G. M. Gerats, J. N. M. Mol, and A. R. Stuitje. 1990. Antisense chalcone synthases genes in petunia: visualization of variable transgene expression. Mol. Gen. Genet. 220:204-210. Van Houwelingen, A., E. Souer, K. Spelt, D. Kloos, J. Mol, and R. Koes. 1998. Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida. Plant J. 13:39-50. Vik, N. I. 2003. Genetic transformation of poinsettia (Euphorbia pulcherrima). Doctor Scientiarum Thesis. Agricultural University of Norway. Vik, N. I., K. Boger, T. Melby, and A. K. H. Eide. 2006. Poinsettia transformations-novel colours in the future. 4th International Workshop on Anthocyanins. Crop & Food Research, New Zealand. p.65 Vik, N. I., A. K. H. Eide, H. Gjerde, and K. Bakke. 2001. Stable transformation of poinsettia via electrophoresis. Acta Hort. 560:101-103. Voss, D. H. 1992. Relating colorimeter measurement of plant colour to the Royal Horticultural Society Colour Chart. HortScience 27:1256-1260. Wang, C. K., P. Y. Chang, H. M. Wang, and K. Y. To. 2006. Cosuppression of tobacco chalcone synthase using petunia chalcone synthase construct results in white flowers. Bot. Stud. 47:71-82. Weiss, D. and A. H. Halevy. 1989. Stamens and gibberellin in the regulation of corolla pigmentation and growth in Petunia hybrida. Planta 179:8
摘要: 本論文利用陳彥銘(2006)以菊花花蕾藉由農桿菌轉殖大豆種皮花青素合成基因(ANS)之菊花 ‘Linker’ 和‘Margenta Linker’ 的疑似轉殖株為材料。以PCR方法檢定菊花 ‘Linker’ 或 ‘Margenta Linker’ 二品種之疑似轉殖株,各獲得16株與9株含有大豆ANS基因之轉殖株。將轉殖株種植至隔離溫室,作為基因表現和色素分析之樣品。經南方雜交分析結果,‘Linker’ 轉殖株含有1~2個或至少5個大豆ANS基因的嵌入;而 ‘Margenta Linker’ 轉殖株亦含有至少5個ANS基因的嵌入,證實黑色種皮大豆ANS基因已嵌入菊花基因組中。從RT-PCR分析結果,白花的‘Linker’ 轉殖株花瓣因有大豆ANS基因表現,而呈現粉色;‘Linker’ 和粉色花的‘Margenta Linker’ 轉殖株花瓣有大豆ANS基因過量表現,則呈現黃色。HPLC分析結果顯示,‘Linker’轉殖株的花瓣含有cyanidin則呈現淡粉色,而含有新產物β-carotene者則呈現黃色;而‘Margenta Linker’ 轉殖株的花瓣含有新產物β-carotene亦呈現黃色。此結果證明,大豆ANS基因的嵌入和表現,使白色‘Linker’和粉色 ‘Margenta Linker’ 的花色改變成淡粉或黃色的花朵。 另以聖誕紅 ‘Nobel Star’ 和 ‘Peter Star-White’ 為材料,以農桿菌EHA105進行大豆種皮基因F3H、F3’,5’H和ANS的基因轉殖。以5 mg/l hygromycin作為篩選培養基之抗生素,以timentin抑制農桿菌對莖段培殖體的毒害最低,癒傷組織形成的比率較高並可繼續增殖,芽體篩選再生率最高為20.7%,再生篩選時間約24週。而利用胚性懸浮細胞為材料進行農桿菌基因轉殖,芽體篩選再生率平均為35.3%,再生過程大約16週,顯著較莖段培養之轉殖系統之效率高出甚多。‘Nobel Star’ 轉殖株以PCR檢測後,轉殖F3H和ANS基因各獲得5和7株轉殖株,其轉殖效率分別為1.3%和2.3%。‘Peter Star-White’,轉殖F3H 和F3’,5’H基因各獲得19和23株轉殖株,轉殖效率分別為6.3%和7.7%。以HPLC分析苞片之色素含量,‘Nobel Star’ 轉殖株F3H-4之苞片顏色與對照株無異,但花青素含量比對照株提高約2.5倍,另轉殖株ANS-7苞片顏色變為粉紅色,其花青素含量僅為對照株之35%。‘Peter Star-White’ 轉殖株F3H-16苞片顏色呈現乳黃色,轉殖株F35H-30苞片顏色呈現黃色,其β-carotene含量分別提高約3.8倍和11倍。本論文之研究,已成功建立聖誕紅基因轉殖系統並獲得花色改變之轉殖株。
In this study putative transgenic chrysanthemum plants of ‘Linker' and ‘Margenta Linker' transformed with soybean anthocyanidin synthase (ANS) gene by Y. M. Chen (2006) using flower buds and Agrobacterium tumefaciens mediated transformation were applied as materials. According to genomic-PCR screening 16 and 9 transgenic plants of ‘Linker' and ‘Margenta Linker' were confirmed to harbor with soybean ANS gene, respectively. Plants with floral color changed were vegetatively propagated and cultivated in GM greenhouse to provide the samples for gene expression and pigment analysis. Southern analysis suggested that the transgenic plants of ‘Linker' showed 1~2 copies or more than 5 copies and of the ‘Margenta Linker' also contained at least 5 copies of soybean ANS gene. The petals of transgenic ‘Linker' plants showed light pink color however, the transgenic ‘Linker' and ‘Margenta Linker' plants with over-expressed soybean ANS gene showed yellow petals. HPLC analysis suggested that the light pink petals of ‘Linker' contained cyanidin but the yellow petals of transgenic ‘Linker' and ‘Margenta Linker' were β-carotene, a new pigment to chrysanthemum. The results demonstrated that soybean ANS gene was successfully transferred, expressed and changed the flower color in chrysanthemum. To establish a system for flower color engineering in poinsettia, explants of two varieties, ‘Nobel Star' and ‘Peter Star-White', were co-cultivated with Agrobacterium carrying soybean pigment biosynthetic genes, flavonoid 3-hydroxylase (F3H), flavonoid 3',5'-hydroxylase (F3',5'H), and anthocyanidin synthase (ANS). Screening of transgenic plant was conducted by using 5 mg/l hygromycin containing medium. Timentin was applied to inhibit Agrobacterium tumefaciens because of its lowest toxicity to callus formation and proliferation. In the stem-explant system, about 20.7% shoots were regenerated on selection medium within 24 weeks. Using embryonic cells from suspensions for transformation 35.3% shoots were regenerated within 16 weeks and showed high transformation efficiency. Putative transgenic poinsettia of ‘Nobel Star' were verified by PCR, 5 and 7 plants transformed with soybean F3H and ANS gene and accompanied with 1.3% and 2.3% transformation efficiency, respectively. In ‘Peter Star-White' variety 5 and 7 transgenic plants with soybean F3H and F3',5'H gene, and 6.3% and 7.7% transformation efficiency were also observed, respectively. The HPLC analysis of bracts pigments showed that in ‘Nobel Star', the transgenic line F3H-4 looked similar with wild-type but accumulated 2.5 folds anthocyanidins; line ANS-7 contained only 35% anthocyanidins and turned to pink color. In ‘Peter Star-White' the bracts of transgenic line F3H-16 and F35H-30 changed to cream yellow and yellow with 3.8 and 11 folds of β-carotene increased, respectively. In this study an efficient transformation system for flower color engineering has been established and transgenic plants with altered colors were obtained in poinsettia.
URI: http://hdl.handle.net/11455/29006
其他識別: U0005-2407200811240900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408200800495300
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.