Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29046
標題: 彩色甜椒耐熱性之研究
Study on Heat Tolerance of Colored Sweet Pepper
作者: 王昭月
Wang, Jau-Yueh
關鍵字: Colored sweet pepper
彩色甜椒
Heat tolerance
耐熱
出版社: 園藝學系所
引用: 王得元、王鳴、鄭學勤。2005。用RAPD分析辣椒細胞質雄性不育基因。核農學報19(2) : 99-102。 卓俊銘。1990。百香果自交不親和性及其柱頭與花柱蛋白質合成之研究。國立臺灣大學園藝學系碩士論文。 胡永紅、蔣昌華、秦俊。2006。植物耐熱常規生理指標的研究進展。安徽農業科學34(1) : 192-195。 姚銘輝、陳守泓、漆匡時。2007。利用葉綠素螢光估算作物葉片之光合作用。台灣農業研究56 (3) : 224-236。 姚銘輝、盧虎生、朱鈞。 2002。 葉綠素螢光與作物生理反應。 科學農業 50: 31-41. 曾夢蛟、李本湘。1988。高溫逆境與作物品種改良。蔬菜品種改良研討會:185- 194。 陳培琴、郁松林、詹妍妮、康喜亮。2006。植物在高溫脅迫下的生理研究發展。中國農學通報22(5): 223-227。 陳貽竹、李曉萍、夏麗、郭俊彥。1995。葉綠素螢光技術在植物環境脅迫研究中的應用。熱帶業熱帶植物學報3(4): 79-86。 Akkaya, M. S., A. A. Bhagwat, and P. B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131-1139. Ali, A. M. and W. C. Kelly. 1993. Effect of pre-anthesis temperature on the size and shape of sweet pepper (Capsicum annuum L.). Sci. Hort. 54: 97-105. Aloni, B., L. Karni, Z. Zaidman, Y. Riov, M. Huberman, and R. Goren. 1994. The susceptibility of pepper (Capsicum annuum) to heat induced flower abscission: Possible involvement of ethylene. J. Hort. Sci . 69(5): 923-928. Aloni, B., L. Karni, Z. Zaidman, and A. A. Schaffer. 1996. Changes of carbohydrates in pepper (Capsicum annuum L.) flowers in relation to their abscission under different shading regimes. Ann. Bot. 78: 163-168. Aloni, B., L. Karni, Z. Zaidman, and A. A. Schaffer. 1997. The relationship between sucrose supply, sucrose-cleaving enzymes and flower abortion in pepper. Ann. Bot. 79: 601-605. Arnedo-Andres, M. S., R. Gil-Ortega, M. Luis-Arteaga, and J. I. Hormaza. 2002. Development of RAPD and SCAR markers linked to the Pvr4 Locus for resistance to PVY in pepper (Capsicum annuum L.) Theor. Appl. Genet. 105 : 1067-1074. Andrews, J. 1995. Peppers-The Domesticated Capsicum. University of Texas Press., p.36-58. Baily, L. H. 1930. The Standard Cyclopedia of Horticulture. New York: Macmillan. Ballester, J. and M. C. de Vicente. 1998. Determination of F1 hybrid seed purity in pepper using PCR-based markers. Euphytica 103: 223-226. Baoxi, Z., H. Sanwen, Y. Guimei, and G. Jiazhen. 2000. Two RAPD markers linked to a major fertility restorer gene in pepper. Euphytica 113: 155-161. Bosland, P. W. 1990. Capsicum pepper varieties and classification. New Mexico State University. Las Cruces. U.S. A. 12pp. Bosland, P. W. and E. J. Votava. 2000. Taxonomy, pod type and genetic resources. p. 14-39. in: Peppers: vegetable and spice capsicums. CABI press. Wallingford, UK. Brewbaker, J. L. and B. H. Kwack. 1963. The essential role of calcium iron in pollen germination and pollen tube growth. Amer. J. Bot. 50(9):859-865. Charterers, Y. M., A. Robertson, M. J. Wilkinson, and G. Ramsay. 1996. PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5’-anchored simple sequence repeat (SSR) primers. Theor. Appl. Genet. 92:442-447. Condit, R. and S. P. Hubbell. 1991. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome 34: 66-71. Costa, E. S., R. Bressan-Smith, J. G. Oliveira, and E. Campostrini. 2003. Chlorophyll a fluorescence analysis in response to excitation irradiance in bean plants (Phaseolus vulgaris L. and Vigna unguiculata L. Walp) submitted to high temperature stress. Photosynthetica 41(1): 77-82. D’Ambrosio, N., C. Arena, and A. V. De Santo. 2006. Temperature response of photosynthesis,excitation energy dissipation and alternative electron sinks to carbon assimilation in Beta vulgaris L. Env. Exp. Bot. 55 : 248-257. Dekov, I., T. Tsonev, and I. Yordanov. 2000. Effects of water stress and high- temperature stress on the structure and activity of photosynthetic apparatus of Zea mays and Helianthus annuus. Photosynthetica 38(3): 361-366. DeWitt, D. P. W. Bosland. 1993. The Pepper Garden. Ten Speed Press Berkeley, california. Erickson, A. N. and A. H. Markhart. 2001. Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. J. Amer. Soc. Hort. Sci. 126(6): 697-702. Erickson, A. N. and A. H. Markhart. 2002. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell and Environment 25: 123-130. Eshbaugh, W. H. 1983. Genetic resources of capsicum. Rome: international board for plant genetic resources. Frary, A., Y. Xu, J. Lin, S. Mitchell, E. Tedeschi, and S. Tanksley. 2005. Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor. Appl. Genet. 111: 291-312. Georgieva, K. and H. K. Lichtenthaler. 2006. Photosynthetic response of different pea cultivars to low and high temperature treatments. Photosynthetica 44 (4) : 569-578. Gombos, Z., H. Wada, E. Hideg, and N. Murata. 1994. The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. Plant Physiol. 104: 563–567. Guilford, P., S. Prakash, J. M. Zhu, E. Rikkerrink, S. Gardiner, H. Bassett, and R. Foster. 1997. Microsatellite in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor. Appl. Genet. 94:249-254. Havaux, M. 1993. Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci. 94:19–33. Havaux, M. 1993. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ. 16:461–467. Havaux, M., 1998. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 3:147–151. Havaux, M. and Gruszecki, W. I. 1993. Heat- and light-induced chlorophyll a fluorescence changes in potato leaves containing high or low levels of the carotenoid zeaxanthin: indications of a regulary effect of zeaxanthin on thylakoid membrane fluidity. Photochem. Photobiol. 58: 607–614. Havaux, M. and F. Tardy. 1996. Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. Planta 198: 324–333. Hernandez-Verdugo, S., R. Luna-Reyes, and K. Oyama. 2001. Genetic structure and differentiation of wild domesticated populations Capsicum annuum (Solanaceae) from Mexico. Plant Syst. Evol. 226: 129-142. Hunziker, A. T. 1979. South America Solanaceae: a synoptic survey. In: Hawkes, J. G., Lester, R. N. and Skelding, A. D. (eds) the biology and taxonomy of the solanaceae. Academic Press, London, p. 49-85. Ilbi, H. 2003. RAPD markers assisted varietal identification and genetic purity test in pepper, Capsicum annuum. Sci. Hort. 97:211-218 Inai, S., K. Ishikawa, O. Nunomura, and H. Ikehashi. 1993. Genetic analysis of stunted growth by nuclear-cytoplasmic interspecific hybrids of Capsicum by using RAPD markers. Theor. Appl. Genet. 87: 416-422. Jain, N., S. Jain, N. Saini, and R. K. Jain. 2006. SSR analysis of chromosome 8 regions associated with aroma and cooked kernel elongation in Basmati rice. Euphytica 152:259-273. Joshi, A. and S. L. Kothari. 2007. High copper levels in the medium improves shoot bud differentiation and elongation from the cultured cotyledons of Capsicum annuum L. Plant Cell Tissue Organ Cult. 88:127 -133. Juneau, P., B. R. Green, and P. J. Harrison. 2005. Simulation of Pulse – Amplitude - Modulated (PAM) fluorescence: Limitations of some PAM-parameters in studying environmental stress effects. Photosynthetica 43 (1): 75-83. Kantety, R.V., X. Zeng, J. L. Bennetzen, and B. E. Zehr. 1995. Assessment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. Molecular Breeding 1: 365-373. Karni, L. and B. Aloni. 2002. Fructokinase and Hexokinase from pollen grains of bell pepper (Capsicum annuum L.): Possible role in pollen germination under condition of high temperature and CO2 enrichment. Ann. Bot. 90: 607-612. Karim, A., H. Fukamachi, and T. Hidaka. 2003. Photosynthetic performance of Vigna radiate L. leaves developed at different temperature and irradiance levels. Plant Science 164 : 451-458. Kaufmane, E. and K. Rumpunen. 2002. Pollination, pollen tube growth and fertilization in Chaenomeles japonica (Japanese quince). Sci. Hort. 94: 257-271. Kresovich, S., J. G. K. Williams, J. R. McFerson, E. J. Routman, and B. A. Schaal. 1992. Characterization of genetic identities and relationships of Brassica oleracea L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85:190-196. Kumar, L. D., M. Kathirvel, G. V. Rao, and J. Nagaraju. 2001. DNA profiling of disputed chilli samples (Capsicum annuum) using ISSR-PCR and FISSR-PCR marker assays. Forensic Science International 116: 63-68. Kumar, S., V. Singh, M. Singh, S. Rai, S. Kumar, S. K. Rai, and M. Rai. 2007. Genetics and distribution of fertility restoration associated RAPD markers in inbreds of pepper (Capsicum annuum L.) Sci. Hort. 111: 197-202. Law, R. D. and S. J. Crafts-Brandner. 1999. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1 , 5-Bisphosphate Carboxylase/Oxygenase. Plant Physiology 120 : 173-181. Lee, J. M., S. H. Nahm, Y. M. Kim, and B. D. Kim. 2004. Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor. Appl. Genet. 108: 619-627. Lee, J., J. B. Yoon, and H. G. Park. 2008. A CAPS marker associated with the partial restoration of cytoplasmic male sterility in chili pepper (Capsicum annuum L.) Mol. Breeding. 21: 95-104. Lee, Y. H., H. S. Kim, J. Y. Kim, M. Jung, Y. S. Park, J. S. Lee, S. H. Choi, N. H. Her, J. H. Lee, N. I. Hyung, C. H. Lee, S. G. Yang, and C. H. Harn. 2004. A new selection method for pepper transformation: callus-mediated shoot formation. Plant Cell Rep. 23:50-58. Leroy, X. J., K. Leon, J. M. Hily, and P. Chaumeil. 2001. Detection of in vitro culture-induced instability through inter-simple sequence repeat analysis. Theor. Appl. Genet. 102:885-891. Mailer, R. J., R. Scarth, and B. Fristensky. 1994. Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphisms amplified from arbitrary primers. Theor. Appl. Genet. 87: 697-704. Martins, M., D. Sarmento, and M. M. Oliveira. 2004. Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep. 23:492-496. McCouch, S. R., L. Teytelman, Y. Xu, K. B. Lobos, K. Clare, M. Walton, B. Fu, R. Maghirang, Z. Li, Y. Xing, Q. Zhang, I. Kono, M. Yano, R. Fjellstrom, G. DeClerck, D. Schneider, S. Cartinhour, D. Ware, and L. Stein. 2002. Development and Mapping of 2240 new SSR markers for rice (Oryza sativa L.) DNA Research 9: 199-207. Menkir, A., J. G. Kling, B. Badu-Apraku, and I. Ingelbrecht. 2005. Molecular marker-based genetic diversity assessment of Striga-resistant maize inbred lines. Theor. Appl. Genet. 110:1145-1153. Mercado, J. A., R. Fernandaes-Munoz, and M. A. Quesada. 1994. In vitro germination of pepper pollen in liquid medium. Sci. Hort. 57:273-281. Mesejo, C., A. Martinez-Fuentes, C. Reig, and M. Agusti. 2007. The effective pollination period in ‘Clemenules’ mandarin, ‘Owari’ Satsuma mandarin and ‘Valencia’ sweet orange. Plant Science 173: 223-230. Minamiyama, Y., M. Tsuro, and M. Hirai. 2006. An SSR-based linkage map of Capsicum annuum. Mol. Breeding 18:157-169. Nei, M. and W. H. Li. 1979. Methematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Soc. U.S.A. 76:5269-5273. Oyama, K., S. Hernandez-Verdugo, C. Sanchez, A. Gonzalez-Rodriguez, P. Sanchez-Pena, J. A. Garzon-Tiznado, and A. Casas. 2006. Genetic structure of wild and domesticated populations of Capsicum annuum (Solanaceae) from northwestern Mexico analyzed by RAPDs. Genetic Resources and Crop Evolution. 1-10. Pagamas, P. and E. Nawata. 2008. Sensitive stages of fruit and seed development of chili pepper (Capsicum annuum L. var. Shishito) exposed to high-temperature stress. Sci. Hort. 117: 21-25. Pickersgill, Barbara. 1969. “The Domestication of Chili Peppers.” In The Domestication and Exploitation of Plants and Animals, ed. P. J. Ucko and G. W. Dimbleby, 443. London: Duckworth. Polowick, P. L. and V. K. Sawhney. 1985. Temperature effects on male fertility and flower and fruit development in Capsicum annuum L. Sci. Hort. 25: 117-127. Portis, E., I. Nagy, Z. Sasvari, A. Stagel, L. Barchi, and S. Lanteri. 2007. The design of Capsicum spp. SSR assays via analysis of in silico DNA sequence, and their potential utility for genetic mapping. Plant Science 172:640-648. Prince, J. P., K. L. Vincent, A. Carmichael, R. B. James, and M. K. Molly. 1995. A survey of DNA polymorphism with the genus Capsicum and the fingerprinting of pepper cultivars. Genome 38:224-231. Ratnaparkhe M. B., D. K. Santra, A. Tullu, and F. J. Muehlbauer. 1998. Inheritance of inter-simple-sequence-repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theor. Appl. Genet. 96:348-353. Reddy, K. R. and V. G Kakani. 2007. Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Sci. Hort. 112: 130-135. Rodriguez, J. M., T. Berke, L. Engle, and J. Nienhuis. 1999. Variation among and within Capsicum species revealed by RAPD markers. Theor. Appl. Genet. 99: 147-156. Rylski, I. and M. Spiglman. 1982. Effects of different Diurnal temperature combinations on fruit set of sweet pepper. Scientia Horticulturae 17: 101-106. Saini, N., N. Jain, S. Jain, and R K. Jain. 2004. Assessment of genetic diversity within and among Basmati and non-Basmati rice varieties using AFLP, ISSR and SSR markers. Euphytica 140:133-146. Sanwen, H., Z. Baoxi, D. Milbourne, L. Cardle, Y. Guimei, and G. Jiazhen. 2000. Development of pepper SSR markers from sequence databases. Euphytica 117: 163-167. Scovel G., H. Ben-Meir, M. Ocadis, H. Itzhaki, and A. Vainsein. 1998. RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor. Appl. Genet. 96:117-122. Shaked, R., K. Rosenfeld, and E. Pressman. 2004. The effect of low night temperature on carbohydrates metabolism in developing pollen grains of pepper in relation to their number and functioning. Sci. Hort. 102: 29-36. Sharifani, M. N., J. F. Jackson, M. Geible, M. Fischer, and C. Fischer 2000. Chracterization of pear species and cultivars using RAPD primers. Acta Hortic. 538(2):499-504. Sinsawat, V., J. Leipner, P. Stamp, and Y. Fracheboud. 2004. Effect of heat stress on the photosynthetic apparatus in maize ( Zea mays L.) grown at control or high temperature. Env. Exp. Bot. 52 : 123-129. Smith, P. G. and Heiser, C. B. 1957. Taxonomy of Capsicum sinense Jacq. And the geographic distribution of the cultivated Capsicum species. Bulletin of Torrey Botanical Club 84:413-420. Stainforth, D., T. Aina, C. Christensen, M. Collins, N. Faull, D. frame, J. Kettleborough, S. Knight, A. Martin, J. M. Murphy, C. Piani, D. Sexton, L. A. Smith, S. Spicer, A. Thrope, and M. Allen. 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433: 403-406. Sun, G., M. Bond, H. Nass, R. Martin, and Z. Dong. 2003. RAPD polymorphisms in spring wheat cultivars and lines with different level of Fusarium resistance. Theor. Appl. Genet. 106:1059-1067. Sun, G., X. Zeng, X. Liu, and P. Zhao. 2007. Effects of moderate high–temperature stress on photosynthesis in three saplings of the constructive tree species of subtropical forest. Acta Ecologica Sinica 27(4) : 1283-1291. Tam, S. M., C. Mhiri, A. Vogelaar, M. Kerkveld, S. R. Pearce, and M. A. Grandbastien. 2005. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor. Appl. Genet. 110:819–831. Tautz, D. and M. Renz. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12:4127-4138. Urbau, L., L. Barthelemy, P. Bearez, and P. Pyrrha. 2001. Effect of elevated CO2 on photosynthesis and chlorophyll fluorescence of rose plants at high temperature and high photosynthetic photon flux density. Photosynthetica 39(2): 275-281. Usman, I. S., A. S. Mamat, H. S. Zain Syed Mohd, H. S. Aishah, and A. R. Anuar. 1999. The non impairment of pollination and fertilization in the abscission of chilli (Capsicum annuum L. Var. Kulai) flowers under high temperature and humid conditions. Scientia Horticulturae 79: 1-11. Wang, X. F., Y. Y. Tan, J. H. Chen, and Y. T. Lu. 2006. Pollen tube reallocation in two preanthesis cleistogamous species, Ranalisma rostratum and Sagittaria guyanensis ssp. Iappula (Alismataceae). Aquatic Botany 85: 233-240. Wang, Z., J. L. Weber, G. Zhong, and S. D. Tanksley. 1994. Survey of plant short tandom DNA repeats. Theor. Appl. Genet. 88:1-6. Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218 : 1- 14. Wang, L. J. and S. H. Li. 2006 Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regulation 48 : 137- 144. Welsh, J. and M. McClelland. 1991. Genomic fingerprinting using arbitrarily primer PCR and a matrix of pairwise combinations of primers. Nucleic Acid Res. 19: 5275-5279. Wen, X., N. Qiu, Q. Lu, and C. Lu. 2005. Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta 220 : 486-497. Weng, J. H. and M. F. Lai. 2005. Estimating heat tolerance among plant speciesby two chlorophyll fluorescence parameters. Photosynthetica 43 (3): 439-444. Wilkie, S. E., P. G. Isaac, and R. J. Slater. 1993. Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theor. Appl. Genet. 86: 497-504. Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res. 18:6531-6535. Wu C. J., Z. Q. Cheng, X. Q. Hung, S. H. Yin, K. M. Cao, and C. R. Sun. 2004. Genetic diversity among and within populations of Oryza granulate from Yunun of China revealed by RAPD and ISSR markers:implications for conservation of the endangered species. Plant Sci. 167:35-42. Yamada, M., T. Hidaka, and H. Fukamachi. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci. Hortic. 67:39-48 Yang, X. and C. Quiros. 1993. Identification and classification of celery cultivars with RAPD markers. Theor. Appl. Genet. 86:205-212. Yang, X., X. Wen, H. Gong, Q. Lu, Z. Yang, Y. Tang, Z. Liang, and C. Lu. 2007. Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225: 719-733. Yi, G., J. M. Lee, S. Lee, D. Choi, and Byung-Dong Kim. 2006. Explotiation of pepper EST-SSRs and an SSR-based linkage map. Theor. Appl. Genet. 114:113-130. Zietkiewicz, E., A. Rafalski, and D. Labuda. 1994. Genome fingerprinting simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics 20:176-183. Zou, X. X., Y. Q. Ma, R. Y. Liu, Z. Q. Zhang, W. C. Cheng, X. Z. Dai, X. F. Li, and Q. C. Zhou. 2007. Combining ability analyses of net photosynthesis rate in pepper (Capsicum annuum L.). Agricultural Sciences in China. 6(2):159-166.
摘要: 彩色甜椒為高價之新興蔬菜作物,唯普遍不具耐熱性,故不利於台灣周年經濟栽培。本研究之目的,擬藉由彩色甜椒耐熱品系之選拔與耐熱性之評估,以提供耐熱性彩色甜椒育種之利用。初步,本研究以自國內外收集的57個彩色甜椒品系為供試材料,經93年夏作及秋作初步篩選24個生長勢強、高結果率、果色與果型特殊者及種子採種量高之品系。再經94年夏作及秋作進行第二次篩選,依其園藝性狀篩選出果實具有經濟利用價值,並可能具有耐熱潛力之8個彩色甜椒品系,包括4個“短筒鐘型”品系(bell pepper)與4個“非短筒鐘型”品系 (non-bell pepper)。4個“短筒鐘型”品系為‘KC104’、‘C00947’、‘C01336’與‘RB102’,平均夏作之果實重量為54公克至68公克,平均單株結果數為4至7個果實;其中夏作果重與單株產量表現最高的品系為‘KC104’,夏、秋果減重率最少的品系為‘C00947’(19.7%),為較穩定之品系。篩選出的4個 “非短筒鐘型”品系為‘C02410’、‘C00611A’、‘C02080’與‘C03338B’,均為“匈牙利”甜椒(paprika),其夏季果實重量為30公克至38公克,單株結果數為9至14個果實;其中‘C02410’之夏、秋果實減重率為17.39%,是較穩定之品系。 以分子標誌系統化的進行作物遺傳歧異性分析,有助於作物育種效率之提升。本試驗中利用 random amplified polymorphic DNA (RAPD)、inter simple sequence repeat (ISSR) 與simple sequence repeat (SSR) 三種分子標誌進行36個番椒 (Capsicum annuum ) 品系之遺傳歧異性分析。試驗結果顯示,自26個RAPD引子反應獲得302個核酸片段產物,其中233個核酸片段具多型性 (polymorphism 77.2%);自10個ISSR 引子反應獲得160個核酸片段,其中142個核酸片段具多型性(polymorphism 88.8%);自12對具多型性之SSR引子組的反應產物為 61個alleles,平均 polymorphic index content (PIC) 為 0.569。合併 RAPD與ISSR 分子標誌進行UPGMA群集分析,結果顯示不同群集可對應出不同番椒果形差異;而合併 RAPD、ISSR 與SSR等三種分子標誌之UPGMA分析結果顯示,不同群集仍對應不同果形外,針對夏季產量較高之品系亦可區別。以上三種分子標誌再以二維主成份分析 (2D principle component analysis, 2D-PCA) 分析結果與 UPGMA 分析符合,且夏季產量較高之品系,亦可獲得標定。綜合試驗結果顯示,合併多種分子標誌之分析可提供較高之多型性,有利於相近品種間之遺傳分析,可作為品種選育之參考。 為評估彩色甜椒在高溫逆境下之光合作用表現,以12個彩色甜椒品系包含:田間篩選推測可能具耐熱潛力的6個“短筒鐘型”彩色甜椒品系、3個“匈牙利”甜椒品系;加上夏作結果較差的2個“短筒鐘型”彩色甜椒品系與1個商業品種,藉葉綠素螢光分析進行光合效率與耐熱性之評估。試驗結果顯示,於溫室適溫(27/22℃)下,利用葉綠素螢光分析的最小螢光值(Fo)參數與PSⅡ光化學反應最大螢光值(Fv/Fm)參數,可評估出光合作用活性表現較高之品系為‘C02080’與‘RB102’。而在花芽分化前期至始花期(42~62DAS)經高溫逆境(33/22℃),利用葉綠素螢光分析的最小螢光值(Fo)參數、PSⅡ光化學反應最大螢光值(Fv/Fm)參數以及最大螢光值(Fm)三參數,綜合評估出高溫下合作用活性表現較高之品系為‘C02080’與‘C00611A’;而 33/27℃高溫逆境下,利用葉綠素螢光分析的最大螢光值(Fm)參數,評估出高溫下合作用活性表現較高之品系為‘C01184’。綜合適溫(27/22℃)與高溫逆境(33/22℃)下的葉綠素螢光評估結果,以‘C02080’光合效率表現最好,且可以呼應其高溫下之結果表現。 高溫環境下,常導致彩色甜椒的落花與落果現象之發生。為評估高溫對彩色甜椒授粉之影響,試驗中以12個彩色甜椒品系(包含田間篩選可能具耐熱潛力的6個 “短筒鐘型”品系與3個 “匈牙利”紅椒品系)為材料,探討高溫(33℃) 對花粉發芽活力之影響,以及生殖生長期高溫 (33/27℃),對花粉授粉能力與雌蕊受精能力之影響,以瞭解高溫對彩色甜椒之生殖生理及結實的關係。試驗結果顯示,高溫(33℃)下彩色甜椒的花粉發芽率明顯下降,除‘Chocolate Miniature Bell’、‘C02080’、‘C05464A’與‘麗妃星’,其餘花粉發芽率皆低於5%。以螢光顯微鏡觀察高溫對花粉管in vivo生長之影響發現,高溫(33℃/27℃)下分化的花粉授粉力明顯降低,但高溫分化的雌蕊柱頭及花柱之受精能力較不受影響。進一步比較不同品系的彩色甜椒在高溫下之結果情形與果實內種子發育之數量發現,其結果與高溫下之花粉發芽率之情形,以及高溫授粉後之花粉管生長的螢光顯微鏡觀察結果一致。綜合評估高溫下花粉發芽活力與授粉結果,以‘Chocolate Miniature Bell’、‘C02080’與‘C00947’等3品系,應屬耐熱性較佳之品系,其中又以‘C02080’為耐熱性表現最好。 綜合上述研究結果顯示,以“匈牙利”彩色甜椒品系之耐熱性表現,較優於“短筒鐘型”彩色甜椒,試驗中針對高溫下的光合作用效率、授粉與結果表現,均以“匈牙利” ‘C02080’之耐熱性表現最好;但“短筒鐘型”彩色甜椒果形則較受市場喜好,故栽培品種(系)較多,且具較高之多樣性,研究中以RAPD (random amplified polymorphism DNA)、ISSR (inter-simple sequence repeat)與SSR (simple sequence repeat)分子標誌分析結果發現, “短筒鐘型”品系間的遺傳歧異性較高,果重差異較大(14~153公克),比較高溫下的花粉活力或光合作用效率表現,則以中型果‘C00947’(64公克)表現較佳,僅次於‘C02080’品系。研究結果顯示‘C02080’與‘C00947’為較具潛力之彩色甜椒品系。In vitro高溫下之花粉發芽表現,或適溫下花芽分化至始花期間之光合效率,可用以輔助彩色甜椒耐熱性之評估。
Since colored sweet pepper has high economic value, it without the habit of heat-tolerance can not be year-round cultured in Taiwan. The purposes of this study were to select and evaluate the heat-tolerance of color sweet pepper, providing for the heat-tolerance breeding program. First, a total of 57 colored sweet pepper genotypes collected from homeland and abroad had been used as materials in this study. Among them, 24 genotypes were selected based on vigor growing, high fruiting rate, better fruit color and fruit type, and high seed amount by field evaluating in summer and autumn trials 2004. Eight genotypes had then been selected on account of better economic values, good horticultural properties and high heat-tolerance potentiality by field evaluating in summer and autumn trials 2005. They included four genotypes of bell pepper and four genotypes of non-bell pepper. Data obtained from summer trials showed that the averaged fruit weight of selected four bell pepper genotypes (‘KC104', ‘C00947', ‘C01336' and ‘RB102') was from 54 to 68 g, and the averaged fruit number per plant was from 4 to 7 fruits. Among them, ‘KC104' had the highest fruit yield in summer trial, particularly. ‘C00947' with the medium-sized fruit and having a least fruit weight difference of 19.7% performed as more stable genotype than others in the summer and autumn trials. Data obtained from summer trials also showed that the fruit number per plant of selected four non-bell pepper, i.e. paprika pepper, (‘C02410', ‘C00611A', ‘C02080' and ‘C03338B') was from 9 to 14 fruits per plant and the fruit weight was from 30 to 38 g. The fruit weight difference (%) between summer and autumn trials was from 17.39% to 62.00%. ‘C02410' with a weight difference of 17.39% performed more stable in the summer and autumn trials. Assessment of the genetic diversity by molecular markers is useful for their systematic and high efficiency for crop breeding program. There were 36 genotypes of Capsicum, including 34 genotypes of sweet pepper and 2 genotypes of chili pepper which were conducted by random amplified polymorphic DNA (RAPD), inter simple sequence repeat (ISSR) and simple sequence repeat (SSR) to estimate pair wise genetic similarity. The result showed 302 RAPD fragments were generated from 12 primers, and 233 with polymorphism (77.2%). For ISSR analysis, 160 fragments were obtained from 10 primers, and 142 with polymorphism (88.8%). For SSR assay, 61 alleles were generated and the polymorphic index content (PIC) 0.569. Furthermore, a combination of RAPD and ISSR markers assessed the cluster analysis of UPGMA, showed the relationships among groups following the fruit shapes. While combined all of the RAPD, ISSR and SSR markers also reveled the groups generally cluster together with similar fruit sharps even the high yield genotypes in summer would be distinguished too. Combining these three marker systems and assessed principle component analysis (PCA) that resulted as well as the UPGMA analysis, besides the higher yield genotypes in summer could be distinguished clearly. These results suggest that a combination of different kinds of markers can generate sufficient polymorphism to assess genetic variation even within closely related species. For evaluating the photosynthesis efficiency of color sweet pepper under heat stress, using 12 genotypes of colored sweet pepper selected in the field, including 6 genotypes of bell-pepper and 3 of paprika pepper that might have heat-tolerance potentiality; two additional genotypes of bell-pepper performed a little worse in summer test and one commercial variety, were examined to evaluate the efficiency of photosynthesis and heat–tolerance of colored sweet pepper utilizing the chlorophyll fluorescence assessment. Under environment temperature of 27/22℃, the experimental results showed ‘C02080 'and ‘RB102' had higher performance of photosynthesis efficiency among 12 genotypes of colored sweet pepper which evaluated by chlorophyll fluorescence parameters of Fo (minimal of fluorescence) and Fv/Fm (Maximal quantum efficiency of PSⅡ photochemistry). For treatment of high-temperature circumstance (D/N: 33/22℃) from flower differentiation stage to anthesis (42~62 DAS), fluorescence parameters of Fm (maximal of fluorescence), Fo and Fv/Fm could be used as good parameters to evaluate the photosynthesis efficiency among the tested genotypes, and the results showed ‘C02080' and ‘C00611A' with the better performance. While under treatment of 33/22℃ and evaluated by Fm parameter, the best performance was ‘C01184'. The parameters of chlorophyll fluorescence assessment under temperature of 27/22℃ and 33/22℃ may respond to the behavior of the colored sweet pepper when growing under high-temperature circumstance. Screened genotype of ‘C02080' with vigor growing and having heat-tolerance potentiality in the field also appeared with the best photosynthesis efficiency by the chlorophyll fluorescence analysis. High temperature would cause flowers and fruits drop in sweet pepper. In order to assess the heat tolerance behavior of different genotypes of the colored sweet peppers, 12 genotypes, including 6 bell-pepper genotypes and 3 of paprika pepper that have been screened in the field and might have heat-tolerance potentiality, had been investigated under high temperature (33 degrees Centigrade) with an aim to evaluate the influence of pollen vigor in vitro and under another high temperatures (33/27oC) within the reproduction growth period to evaluate the performances of pollination ability of pollen and fertilization ability of pistil. Furthermore, the result of the experiments indicated that high temperature (33oC) obviously reduced the pollen germination rates of tested colored sweet peppers. Except for ‘Chocolate Miniature Bell', ‘C02080', ‘C05464A', and ‘Beauty Star', the pollen germination percentages of other tested genotypes were all lower than 5%. In addition, the influence of the high temperatures (33/27 ℃) on the growth of pollen tubes was observed by the fluorescent microscope. High temperatures obviously reduced the pollination ability and pollen tube growth, but the fertilizing ability of pistil was not influenced. The tendency of the fruiting habits and the fruit quantity of tested genotypes under high temperatures were the same as the performances of pollen germination rates and the growing behavior of pollen tubes under the same condition. The assessment results of pollen vigor and pollinating under high temperatures revealed ‘Chocolate Miniature Bell', ‘C02080', and‘C00947' should belong to the genotype with better heat-tolerance; however, ‘C02080 'was the best among them. After generalized assessment of study results described above, the heat tolerance performance of paprika type of colored sweet pepper was better than the bell colored sweet pepper. Experimental results showed that ‘C02080' (paprika type) performed best in the photosynthesis efficiency, pollinating behaving, and pollination results under the high temperature circumstances; however, the bell colored sweet pepper with good at fruit shape and having large diversified cultivars was relatively popular by the market. Through assessment data of RAPD (random amplified polymorphism DNA), ISSR (inter-simple sequence repeat), and SSR (simple sequence repeat) approved that genetic diversity of the bell colored sweet pepper was indeed high. For example, the fruit weigh differed relatively large between 14g to153 g. Finally, compared with the pollen vigor or photosynthesis efficiency under high temperature circumstances, ‘C00947' with the medium-sized fruit (64 g) performed better than others genotype, but second to ‘C02080'. All of results revealed that ‘C02080' and ‘C00947' both were the most superior colored sweet pepper genotype with heat tolerance abilities. These also revealed that the performances of pollen germination under high temperature in vitro, and photosynthesis efficiency from earlier flowers differentiation stage to beginning of anthesis could be used as useful tools for assessment of heat tolerance evaluation for colored sweet pepper.
URI: http://hdl.handle.net/11455/29046
其他識別: U0005-3007200818093100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0202201013264800
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.