Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29088
標題: 小白菜穴盤苗移植栽培中穴格容積與苗齡對種苗品質和植株生長影響與栽培模式之建立
Influence of cell size and seedling age on seedling quality and plant growth and crops model establish of Pak-Choi ( Brassica campestris L. ssp. chinensis )
作者: 郭濰如
Kuo, Wei-Ru
關鍵字: Pak-Choi
小白菜
cell size
seedling age
穴格容積
苗齡
出版社: 園藝學系所
引用: 丁景新、馬國瑞、黃素青、葉孟兆. 1995. 表油菜素內酯對黃瓜的生理效應. 浙江農業大學學報. 21: 615-621. 王才義. 1994. 栽培介質. 亞熱帶地區花卉設施栽培技術. 農試所主編. 王小華、黃玉梅、黃少鵬. 1996. 甘藍穴盤苗與土播苗生育之比較. 台灣之種苗 25: 5-8. 王乃江、趙忠、李鵬. 2000. 天然蕓苔素內酯對大扁杏光合作用和抗旱性的影響. 水上保持研究 7:89-91. 王玉琴、羅文華、赵毓橘. 1988. 表油菜素內酯對芹菜生長的影響. 植物生理學通訊. 1: 29-31. 王玉琴、羅文華、徐如娟、赵毓橘. 1994. 表油菜素內酯對西瓜生長和產量性狀的影響. 植物生理學通訊. 6: 423-425. 方建平、洪軍孟、趙左士. 1994. 油菜素內酯對棉花增產效應的研究. 中國棉花. 21: 13-14. 方怡丹. 1995. 根溫處理對水耕萵苣生理之影響. 中興大學園藝系研究所碩士論文. 朱廣廉、張建國. 1994. 對BR促進綠豆上胚軸生長的有關因素的探討. 北京大學學報. 30: 555-561. 李凱榮. 1998. 表油菜素內酯對光亮桉苗木水分脅迫的影響. 西北林學院學報. 13:1-8 李凱榮、吳發啟、王鍵. 2003. 天然油菜素內酯對黃土丘陵區蘋果生長發育和產量的影響. 水土保持學報 17:174-177. 李凱榮、張勝利、李曉軍. 2003. 天然油菜素內酯對核桃葉片水分和光合速率的影響. 園藝學報30:715-718. 李凱榮、韓剛、王紅紅. 2004. 天然油菜素內酯對側柏苗木抗旱性的影響. 西北林學院學報 19:75-78. 何宇炯、徐如涓、趙毓橘. 1995. 表油菜素內酯對油菜幼苗生長及其可溶性糖和蛋白質含量的影響. 植物生理學通訊. 31: 37-39. 林瑞松. 1989. 穴盤育苗系統之介紹. 第二屆設施園藝研討會專集. p. 83-92. 金先春、徐威生、劉安福、趙毓橘. 1988. 植物激素表油菜素內酯對小麥生理特性及產量的影響. 華北農學報. 3: 18-22. 侯雷平、李梅蘭. 2001. 油菜素內脂(BR)促進植物生長機裡研究進展. 植物學通報 18:560-566. 高景輝. 1993. 根生長與分化. 植物生長與分化. 植物編譯館主編. p. 333-364. 唐嘉義、楊美林、聞壽、李宗全. 1996. BR-120在番茄上的應用效果. 長江蔬菜. 2: 30-32. 徐如娟、李向束、何宇炯、王玉琴、趙毓橘. 1994. 油菜素內酯和胆甾內醇對葡萄座果和成熟的影響. 上海農學院學報. 2: 90-95. 翁曉燕、蔣德安、陸慶、陶月良. 1995. 表油菜素內酯對水稻產量和光合特性的影響. 浙江農業大學學報. 21: 51-54 陳冀嫺. 2001. 甘藷桃園二號對鹽分逆境之抗氧化物質的生化反應研究 國立中央大學生命科學研究所碩士論文 許佳玲. 2002. 穴格大小與苗齡對小白菜穴盤苗生育之影響. 中興大學園藝學系研究所論文. 73pp. 梁廣堅、李芸瑛、邵玲. 1998. DA-6和BR+GA3對菠菜生長和光合速率的影響. 園藝學報. 25: 356-360.黃士懿. 1996. 天然抗氧化劑面面觀. 中化藥訊. 30: 27-32. 黃玉梅. 1998. 穴格構型改善番茄、甘藍種苗盤根及其生育之研究. 中興大學園藝系研究所碩士論文. 台中. 102 pp. 黃泮宮、李美娟. 1996. 蔬菜穴盤育苗技術. 蔬菜自動化育苗技術研討會論文集. 台灣大學農業機械工程學系. 黃亮白. 2000. 穴盤型式及穴格構型改善甘藍結球白菜種苗盤根及其生育之研究. 中興大學園藝學系研究所碩士論文. 台中. 80pp. 程新君. 1994. 育苗穴格容積和苗齡對洋蔥苗株品質與早熟性的影響. 中興大學園藝學系研究所碩士論文. 台中. 109pp. 張致盛、易美秀.1996.穴格大小對菊花穴盤苗生長之影響. 臺中區農業改良研究彙報51: 9-20. 馮文虎. 1994. 淺談自由基與抗氧化物. 中華民國醫檢會報. 9: 34- 楊紹榮、余合. 1996. 穴盤格子大小及栽植株數對小白菜生育及產量之影響. 設施園藝之研究與技術開發計畫執行成果報告(八十三及八十四年度). p. 286-290. 楊紹榮、鄭榮瑞. 1998. 穴盤蔬菜栽培技術之研發與應用. 台南區農業改良場技術專刊 87-2 (No.74). 台灣省台南區農業改良場印行. 台南. 26pp. 劉永正、黃海祥、孫釗磊. 1996. 表油菜素內酯對黃瓜營養生長和產量的影響. 植物生理學通訊. 3: 2-12. 劉孔生. 1999. 蘭陽地區洋香瓜及甘藍穴盤育苗之研究. 蔬菜作物試驗研究彙報. p. 70-94. 歐湧淳. 1994. 自由基、活性氧與疾病. 中華民國醫檢會報. 9: 44-49. 駱賓山. 1986. 表油菜素內酯對大豆生長及結實性的影響. 植物生理學通訊. 2: 14-17. 戴振洋、蔡宜峰、黃勝忠. 1999. 甘藍穴盤苗與土播苗在田間生育之比較. 蔬菜作物試驗研究彙報. p. 175-185. 韓剛、孫楠、李凱榮. 2007. 油菜素內酯對沙棘和紫穗槐苗木水分生理的效應. 西北農林大學學報. (自然科學版) 35:95-100. 川島 長治. 1993. 植物の根に關する諸問題〔5〕:作物けおける根「量」について(2). 農業および園芸68: 93-98. 中元 朋實. 1993. 植物の根に關する諸問題〔6〕: 根系の分布. 農業および園芸68: 78-82. 井 真比古. 1994. 植物の根に關する諸問題〔16〕:突然變異体による伝解析. 農業および園芸69: 85-89. 青木 宏史. 1992. トマトの生理、生態と栽培技術(3). 農耕と園芸47(4): 90-91. Asada, K. 1992. Ascorbate peroxidase – a hydrogen peroxide –scavenging enzyme in plants. Physiol. Plant. 85: 235-241. Ball, Vic. 1991. Plugs-the way of the 1990s. p.137-153. In: The Ball Redbook. Geo. J. Ball Publishing Company, Inc. West Chicago. Bar-Tal, A., B. Bar-Yosef, and U. Kafkafi. 1990. Pepper transplant response to root volume and nutrition in the nursery. Agron. J. 82: 989-995. Bar-Tal, A., A. Feigin, S. Sheinfeld, R. Rosenberg, B. Sternbaum, I. Rylski, and E. Pressman. 1995. Root restriction and N-NO3 solution concentration effects on nutrient uptake, transpiration and dry matter production of tomato. Scientia Hort. 63: 195-208. Beckmam, K. B. and B. N. Ames.1998. The free radical theory of aging matures. Physiol. Rev. 78: 547-581. Bennie, A. T. 1991. Growth and mechaical impedance. p.393-416. In Y. Waisel, A. Eshel, and U. Kafkafi (eds). Plant Roots: the hidden half. Marcel Dekker, New York. Bowler, C., W. Van Camp, M. Van Montagu, and D. Inzé. 1994. Superoxide dismutase in plants. Crit Rev Plant Sci. 13: 199-218. Cakmak, I., D. Strbac, and H. Marschner. 1993. Activities of hydrogen peroxide -scavenging enzymes in germinating wheat seeds. J. Exp. Bot. 44: 127-132. Carmi, A. and B. Heuer. 1981. The role of roots in control of bean shoot growth. Ann. Bot. 48: 519-527. Carmi, A., J. D. Hesketh, W. T. Enos, and D. B. Peters. 1983. Interrelation-ships between shoot growth and photosynthesis as affected by root growth restriction. Photosynthetica 17: 240-245. Choi, J. H., G. C. Chung, S. R. Suh, J. a. Yu, J. H. Sung, and K. J. Choi. 1997. Suppression of calcium transport to shoots by root restriction in tomato plant. Plant Cell Physiol. 38: 495-498. Clouse S. D., M. Z. Daniel, and M. E. Baker. 1992. Effect of brassinolide on gene expression in elongating soybean epicotyls. Plant Physiol. 100: 1377-1383. Cobb, B. G., M. C. Drew, D. L. Amdrews, J. Johnson, D. Macalpine, T. L. Danielson, and M. A. Tarnbough. 1995. Hortscience. 30: 1160-1163. Cook, N. C. and S. Samman. 1996. Flavonoids – Chemistry, metabolism, cardioprotective effects, and dietary sources. Nutritional Biochemistry 7: 66-76. Cox, E. F. 1984. The effect of shape of compost blocks on the propagation, transplant establishment and yield of four vegetable species. J. Hort. Sci. 59: 205-212. Damato, G., L. Trotta, and A. Elia. 1994. Cell size, transplant age and cultivars effects on timing field production of broccoli (Brassica oleracea L. var. Italica plenck) for processing. Acta. Hort. 371: 53-57. Del-Río, L. A., L. M. Sandalio, J. M. Palma, P. Bueno, and F. J. Corpas. 1992. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic. Biol. Med. 13: 557-580. Dhindsa, R. S. and W. Matowe. 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J. Exp. Bot. 32: 79-91. Dufault, R. J. and L. Waters. 1985. Container size influences broccoli and califlower transplant growth but not yield. HortScience. 20: 682-684. Dufault, R. J. and W. M. Hair. 1991. Influence of cell size, hydrogel, and drought stress on bell pepper transpiration, water usage, and growth. HortScience 26: 689 (Abst). Elstner, E. F. 1982. Oxygen activation and oxygen toxicity. Annu. Rev. Plant Physiol. 33: 73-96. Fitter, A. H. 1991. Characteristics and functions of root systems. In Y. Waisel, A. Eshel, and U. Kafafi (eds). Plant Roots: the hidden half. Marcel Dekker, New York. p. 3-24. Foyer, C. H. and B. Halliwell. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21-25. Foyer, C. H., P. Descourvieres, and K. J. Kunert. 1994. Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ. 17: 507-523. Foyer, C. H., N. Souriau, S. Perret, M. Lelandais, K. J. Kunert, C. Pruvost, and L. Jouanin. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109: 1047-1057. Fridovich, I. 1986. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247: 1-11. Fryer, M. J. 1992. The antioxidant effects of thylakoid vitamin E (a- tocopherol). Plant Cell Environ. 15: 381-392. Fukuchi, N and S. Aoyagi. 1996. Studies on the plug seedlings in cabbage, lettuce and parsley effect of nursing period, compost and coated fertilizer on the growth. Bull. Chiba. Agric. Exp. Stn. 37: 73-84. Gamble, P. E. and J. J. Burke. 1984. Effect of water stress on the chloroplast antioxidant system: alterations in glutathione reductase activity. Plant Physiol. 76: 615-621. Garner, L. C. and T. Bjorkman. 1996. Mechanical conditioning for controlling excessive elongation in tomato transplant: Sensitivity to dose, frequency, and timing of brushing. J. Amer. Soc. Hort. Sci. 121: 894-900. Hall, M. R. 1989. Cell size of seedling containers influences early vine growth and yield of transplanted watermelon. HortScience. 24: 771-773. Harmon, R. H., L. A. Weston, and T. Jones. 1991. Effect of root cell size and transplant age on yield of transplanted eggplant. HortScience 26: 689(Abst.) Hartmann, H. T., D. E. Kester, F. T. Davies, and R. L. Geneve. 1997. Propagation by specialized stems and roots. In Plant Propagation: principles and practices sixth edition. Prentice-Hall, Inc. p.520-543. Hassell, R. L. and D. W. Kretchman. 1990. Tray color influences growth and quality of lettuce and tomato transplants. HortScience 25: 1120 (Abst). Herison, C., J. G. Masabni, and B. H. Zandstra. 1993. Increasing seedling density, age, and nitrogen fertilization increases onion yield. HortScience 28: 23-25. Hossain, M. A., Y. Nakano, and K. Asada. 1984. Mono dehydro ascorbate reductase in spinach hloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 25: 385-395. Ishikawa, T., K. Yoshimura, K. Sakai, M. Tamoi, T. Takeda, and S. Shigeoka. 1998. Molecular characterization and physiological role of a glyoxysome -bound ascorbate peroxidase from spinach. Plant Cell Physiol. 39: 23-34. Jablonski, P. P. and J. W. Anderson. 1981. Light dependent reduction of dehydro ascorbate by ruptured pea chloroplasts. Plant Physiol. 67: 1239-1244. Jahnke, L. S., M. R. Hull, and S. P. Long. 1991. Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis. Plant Cell Environ. 14: 97-104. Jones, R. T., L. A. Weston, and R. Harmon. 1991. Effect of root cell size and transplant age on cole crop yields. HortScience 26: 688 (Abst). Joslin, J. D. and G. S. Henderson. 1984. The determination of percentages of living tissue in woody fine root samples using triphenyltetrazolium chloride. Forist Sci. 30: 965-970. Kharkina, T. G., C. O. Ottosen, and E. Rosenqvist. 1999. Effects of root restriction on the growth and physiology of cucumber plants. Physiol. Plant. 105: 434-441. Klepper, B. 1991. Root-shoot relationship. p.287-308. In Y. Waisel, A. Eshel, and U. Kafkafi (eds). Plantv Roots: the hidden half. Marcel Dekker, New York. Knievel, D. P. 1973. Procedure for estimation ratio of live to dead root dry matter in root core samples. Crop Sci. 13: 124-126. Koranski, D. S. and S. R. Laffe. 1990. Checking out plugs up close. p. 72-84. In: Plug symposium, Estiminate mistakes/ Improve quality. Kratky, B. A., J. K. Wang, and K. Kubojiri. 1982. Effect of container size, transplant age, and plant spacing on chinese cabbage. J. Amer. Soc. Hort. Sci. 107: 345-347. Lamont, W. J. 1992. Transplant age has little effect on broccoli head weight and diameter. HortScience 27: 848. Leskovar, D. I., D. J. Cantliffe, and P. J. Stoffella. 1991. Growth and yield of tomato plants in response to age of transplants. J. Amer. Soc. Hort. Sci. 116: 416-420. Leskovar, D. I. and P. J. Stoffella. 1995. Vegetable seedling root systems:Morphology development and importance. HortScience 30: 1153-1159. Leskovar, D. I. and C. S. Vavrina. 1999. Onion growth and yield are influenced by transplant tray cell size and age. Scientia Hort. 80: 133-143. Liptay, A. 1987. Field survival and establishment of tomato transplaants of various age and size. Acta. Hort. 220: 203-209. Liptay, A. and C. Vavrina. 1999. Cell shape impacts on transplant root and shoot expression-a review. Acta Hort. 540: 33-39. Liu, A. and J. G. Latimer. 1995a. Root cell volume in the planter flat affects watermelon seedling development and fruit yield. HortScience 30: 242-246. Liu, A. and J. G. Latimer. 1995b. Water relations and abscisic acid levels of watermelen as affected by rooting volume restriction. J. Exp. Bot. 46: 1011-1015. Mano, J., T. Ushimaru, and K. Asada. 1997. Ascorbate in thylakoid lumen as an endogenous electron donor to photosystem II: protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase. Photosynth. Res. 53: 197-204. March, D. B. and K. B. Paul. 1988. Influence of container type and cell size on cabbagr transplant development and field performance. HortScience 23: 310-311. Marr, C. W. and M. Jirak. 1990. Holding tomato transplants in plug trays. HortScience 25: 173-176. Marsh, D. B. and K. B. Paul. 1988. Influence of container type and cell size on cabbage transplant development and field performance. HortScience 23: 310-311. Martine F. D., Q. Y. Wang, B. T. Sofia, and R. N. Beachy. 1998. In vitro stem dlongation of sweet pepper in media containing 24-epi-brassinolide. Plant Cell Tissue and Organ Culture 53: 79-84. May, M. J. and C. J. Leaver. 1993. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 103: 621-627. Maynard, E. T., C. S. Vavrina, and W. D. Scott. 1996. Containerized muskmelon transplants: cell volume effects on pretransplant development and subsequent yield. HortScience 31: 58-61. McCraw B. D. and J. K. Greig. 1986. Effect of transplant age and pruning procedure on yield and fruit –set of bell pepper. HortScience 21: 430.-431. Miklos, S., N. Kimga, K. K. Zsuzsanna, and J. Mathur. 1996. Brassinosteriod rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 85:171-182. Milks, R. R., W. C. Fonteno, and R. A. Larson. 1989. Hydrology of horticultural substrate:Ⅲ Prediciting air and water content of limited volume plug cells. J. Amer. Soc.Hort. Sci. 114: 57-61. Miller, D. E. 1986. Root systems in relation to stress tolerance. HrotScience 21: 963-970. Miyake, C. and K. Asada. 1992. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol. 33: 541-553. Monk, L. S., K. V. Fagerstedt, and R. M. M. Crawford. 1989. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol. Plant. 76: 456-459. Mugnai, S., P. Vernieri, and F. Tognoni. 2000. Container volume effects on morphology and physiology of tomato seedlings. Acta. Hort. 516: 49-56. NeSmith D. S. and J. R. Duval. 1998. The effect of container size. HortTechnology 8: 495-498. Nicola, S. and D. J. Cantliffe. 1996. Increasing cell size and reducing medium compression enhance lettuce transplant quality and field production. HortScience 31: 184-189. Olson, S. M. and S. J. Locascio. 1990. Influence of transplant age and container size on broccoli production. HortScience 25: 1120. Pastori, G. M. and Trippi, V. S. 1992. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol. 33: 957-961. Peterson, T. A., M. D. Reinsel, and D. T. Krizek. 1991a. Tomato (Lycopersicon esculentum Mill. cv‘Better Bush’) plant response to root restriction. J. Exp. Bot. 42: 1233-1240. Peterson, T. A., M. D. Reinsel, and D. T. Krizek. 1991b. Tomato (Lycopersicon esculentum Mill. cv.‘Better Bush’) plant response to root restriction. J. Exp. Bot. 42: 1241-1249. Robbins, N. S. and D. M. Pharr. 1988. Effect of restricted root growth on carbohydrate metabolism and whole plant growth of Cucumis sativus L. Plant Physiol. 87: 409-413. Ruff, M., D. T. Krizek, R. M. Mirecki, and D. W. Inouye. 1987. Restricted root zone volume: influence on growth and development of tomato. J. Amer. Soc. Hort. Sci. 112: 763-769. Saglio, P. H., M. Rancillac, F. Ruzan, and A. Pradet. 1984. Critical oxygen pressure for growth and respiration of excised and intact roots. Plant Physiology. 76: 151-154. Salin, M. L. 1987. Toxic oxygen species and protective systems of the chloroplast. Physiol. Plant. 72: 81-689. Salram. R. K. 1994. Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of two wheat varieties. PIant Growth Regulatlon. 14:173-179. Scandalios, J. G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101: 7-12. Siefermann-Harms, D. 1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant. 69: 561-568. Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and dessication. New Phytol. 125: 27-58. Smirnoff, N. 1996. The function and metabolism of ascorbic acid in plants. Ann. Bot. 78: 661-669. Steponkus, P. L. and F. O. Lanphera. 1967. Refinement of the triphenyl tetrazolium chloride method of determining. Plant Physiol. 42: 1423-1426. Styer, R. C. and D. S. Koranski. 1997. Controlling shoot and root growth. In: Plug and transplant production. Ball Publishing. p. 229-239. Taiz, L. and E. Zeiger. 1991. Water and plant cell in: Plant physiology. p.61-80 and p.109-117 Cummings Publishing Company, Inc. California. Takeda, T., A. Yokota, and S. Shigeoka. 1995. Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell Physiol. 36: 1089-1095. Tindall, J. A., H. A. Milla, and D. E. Radcliffe. 1990. The effect of root zone temperature on nutrient uptake of tomato. Journal of Plant Nutrition. 13: 939-956. Tsuchihashi, H., M. Kigoshi, M. Iwatsuki, and E. Niki. 1995. Action of b-carotene as an antioxidant against lipid peroxidation. Arch. Biochem. Biophys. 323: 137-147. Van Camp, W., D. Inzé, and M. Van Montagu. 1997. The regulation and function of tobacco superoxide dismutases. Free Radic. Biol. Med. 23: 515-520. Vavrina, C. S. and M. D. Orzolek. 1993. Tomato transplant age: a-review. HortTechnology 3: 313-316. Vavrina, C. S. 1998. Transplant age in vegetable crops. Hort Technology 8: 550-555. Weston, L. A. and B. H. Zandstra. 1986. Effect of root container size and location of production on growth and yield of tomato transplants. J. Amer. Soc. Hort. Sci. 111: 498-501. Weston, L. A. 1988. Effect of flat cell size transplant age, and production site on growth and yield of pepper transplants. HortScience 23: 709-711. Weston, L. A. and B. H. Zandstra. 1989. Transplant age and N and P nutrition effects on growth and yield of tomatoes. HortScience 24: 88-90. Wise, R. R. and A. W. Naylor. 1987. Chilling-enhanced photooxidation. Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 83: 278-282. Wurr, D. C. E. and J. R. Fellows. 1986. The influence of transplant age and raising conditions on the growth of crisp lettuce plants raised in techniculture plugs. J. Hort. Sci. 61: 81-87. Zhang, J. and M. B. Kirkham. 1994. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol. 35: 785-7.
摘要: 第二章 為探討不同育苗穴格容積與苗齡對小白菜穴盤苗及定植後植株生育之影響,以 ‘鳳京’小白菜為供試材料,於秋季和冬季,以穴格容積分別為60、20與8.5 ml之72、128與288格穴盤播種育苗,並採同時種植方式,於9、12、15天3種苗齡時定植,比較不同處理之穴盤苗育苗期間與定植後生育差異。 穴盤苗生育與穴格容積成正相關,地上部鮮重差異隨播種時間之增加而逐漸加大,且冬作表現較秋作佳。秋作時,自播種第6天以後,288格穴盤苗之地上部鮮重即顯著較小,至播種第12天後,72格與128格間穴盤苗之地上部鮮重也達顯著差異水準;冬作也有相似之結果,播種後之前9天,3種穴格容積間未雖達顯著差異,但288格穴盤苗有較小之趨勢,播種第12天後,也以72格穴盤苗顯著最大,128格苗次之,288格苗顯著最小。相對生長速率均隨幼苗生育日數增加而逐漸降低,並與穴格容積成正相關。穴盤苗根系發育也以在較大穴格容積育苗而有顯著較大之根部鮮重,且隨育苗時間,差異逐漸提高。 育苗之穴格容積和苗齡對小白菜定植後生育均有顯著之影響,種植季節以冬作有較佳之生育。秋季栽培時,定植後之地上部鮮重均與苗齡和育苗穴格容積成正相關,苗齡15天之72和128格穴盤苗定植植株於定植後15天,地上部鮮重可達30 g以上,以72格苗定植者顯著較高,至定植後18天,12和15天苗齡、72和128格穴盤之組合定植植株地上不鮮重均可達30 g以上,以苗齡15天之72格穴盤苗定者顯著最高,而與相同苗齡之128格穴盤苗定植植株差異不顯著;冬作時,定植15天時之苗齡12天72格與苗齡15天之72格、128格穴盤苗定植植株之地上部鮮重均可達30 g以上,而苗齡15天之72格和128格穴盤苗定植者間無顯著差異,定植後18天,除苗齡9天之288格苗定植者外,地上部鮮重均達30 g以上。秋作與冬作之定植後相對生長速率均隨栽培日數增加而逐漸下降,並均以定植苗齡愈小,相對生長速率愈高,且秋作時之相對生長速率較冬作低,秋、冬二作,定植初期相對生長速率均與育苗穴格容積成正相關,而自定植9天以後,則因不同穴格容積苗定植後相對生長速率下降速率不同而有差異。 第三章 為探討影響穴盤苗及定植後植株生育之生理原因,以‘鳳京’小白菜為供試材料,分別於秋季和冬季,以穴格容積為60、20與8.5 ml之72、128與288格3種穴盤播種育苗,並採同時種植方式,於苗齡12、15、18天時定植,比較不同處理之穴盤苗育苗期間與定植後生理之差異。 穴盤苗之葉綠素含量與育苗穴格容積成正相關,秋作時,穴格容積間差異更顯著,72和128格苗在育苗試驗之27天期間,葉綠素含量呈輕微下降,288格穴盤苗於播種後第15天下降明顯;冬作時,穴格容積間差異較不顯著,並均於播種至21天以前輕微之上升,然後下降。光合作用速率在冬作較高,與育苗穴格容積呈正相關,並逐漸下降。在秋作時,72格穴盤苗根活性隨育苗日數增極而逐漸上升,128格和288格穴盤苗於播種18天以後下降,並以288格穴盤苗較顯著;冬作時,3種穴格容積穴盤苗之根活性,至播種後27天均逐漸上升,並於播種18天以後與育苗穴格容積成負相關。根呼吸作用速率以秋作較高,秋季育苗時,播種後18天之前與育苗穴格容積成負相關,288格穴盤苗自播種18天以後逐漸下降;冬作育苗時,均呈上升趨勢,播種後初期以288格穴盤苗顯著較高,72格穴盤苗顯著最低,但128格與288格苗之上升速率隨育苗日數增加而逐漸減緩,288格苗減緩程度較大而於播種24天後差異不再顯著。在播種後15天以288格穴盤苗根部ABA含量最高,72格最低。穴盤苗根部C2H4釋放速率隨育苗時間增加而上升,自播種12天後,288格就顯著最高,72與128格穴盤苗間則無差異。 秋作時,定植後之葉綠素含量均隨田間栽培日數增加而下降,下降程度有與育苗之穴格容積成負相關,而與苗齡成正相關之趨勢;冬作栽培時,則定植後均呈上升之趨勢,以12天苗上升較不顯著。秋、冬二作之光合作用速率均於定植後逐漸下降,並均苗齡成負相關;秋作之光合作用速率較冬作低,秋作之苗齡12天穴盤苗下降最明顯,而18天苗光合作用速率均維持於較低之程度,但72和128格穴盤苗於定植6天後有上升之趨勢;冬作時光合作用速率下降較秋作不明顯,穴格容積之間差異不顯著,但有與穴格容積成正相關之趨勢。根活性則以秋作較低,與苗齡成正相關,並均隨定值日數增加而逐漸提高,穴格容積間差異不顯著。定植後初期之根部呼吸作用速率與苗齡成正相關,且以秋作較高,而秋作時,根部呼吸作用速率於定植後成上升趨勢,定植至6天以後則顯著下降,冬作則於定植後逐漸上升,無下降之現象發生。 第四章 ‘鳳京’小白菜以72、128、288格不同穴格容積穴盤育苗,在苗齡15天時,穴盤苗之葉片與根部之總抗壞血酸含量均以較小穴格容積之228格穴盤苗含量顯著最高,葉片之抗壞血酸與脫氫抗壞血酸二者含量相近,均隨育苗穴格容積提高而降低;在根部,抗壞血酸含量與脫氫抗壞血酸含量也均以72苗之含量顯著最低。 在葉片與根部之總穀胱苷肽含量均與育苗穴格容積成正相關,在葉片,72格穴盤苗之總穀胱苷肽含量顯著高於128與288格穴盤苗,128與288格穴盤苗間含量差異不顯著,但以128格穴盤苗之含量較高,在根部則72與128格穴盤苗之總穀胱苷肽顯著高於288格穴盤苗之含量,72格與128格穴盤苗含量差異不顯著。 抗氧化酵素活性上,葉片鮮重與根部鮮重所含SOD抗氧化活性在穴格容積間差異不顯著,但在葉片有隨育苗穴格容積增加而提高、在根部則隨之下降之趨勢;葉片CAT之活性在72格與128格穴盤苗間無顯著差異,288格穴盤苗顯著較低,在根部則穴格容積間差異不顯著,但有隨育苗穴格容積增加而降低之趨勢;葉片與根部之APX活性在處理間差異均未達顯著水準,但育苗穴格容積間,在葉片為正相關、根部為負相關之趨勢;288格穴盤苗葉片之GR活性顯著低於72和128格穴盤苗,72格和128格穴盤苗間無差異;在根部則與育苗穴格容積成顯著正相關,差異均達顯著水準。 第五章 小白菜在128格穴盤育苗15天,在定植前3天以濃度0.1-0.05 mg/L之Brassinolide處理,對小白菜定植後生育有顯著之影響,結果顯示在不同栽培季節有不同之效果,並可促進在水分逆境下之生育。 在十月施用,定植後7和14天,無藥劑處理之對照組地上部鮮重均顯著較低,而0.1和0.05 mg/L處理濃度無差異,到定植後21天,2個處理組與對照組織單株鮮重差異不顯著;在十一月使用,自定植苗與至定植後21天,處理組與對照組之地上部鮮重差異均不顯著;十二月份Brassinolide處理對小白菜定植後生育影響與十月份試驗結果相反,定植後21天,處理濃度間差異不顯著,但地上部鮮重均顯著低於對照組。 同樣處理與育苗方式,定植於不同土壤水分潛勢之土壤介質中,在定植後14日採收調查,在水分潛勢維持在0 MPa之土壤中栽培,處理者有顯著較高之單株鮮重,處理間無顯著差異,而乾重則呈處理與對照組間差異不顯著;在土壤水分潛勢維持在-0.04至-0.02 MPa中栽培,處理組與對照組間地上部鮮重和乾重差異均不顯著,但濃度0.1 mg/L處理者有稍高地上部鮮重之趨勢;水分潛勢維持在-1.38至-0.86 MPa之乾燥土壤中栽培,處理組與對照組間地上部鮮重和乾重均顯著高於對照組,處理間無顯著差異,但以濃度0.05mg/L處理者地上部鮮重有稍高之趨勢。 第六章 小白菜以72、128、288格穴盤育苗9、12、15天後定植,於定植後每3天調查地上部生育,從所得數據分別分析苗齡和穴格容積對生育之影響,並利用多項式回歸探討生長趨勢,作為建立生產模式之依據。試驗結果顯示,在苗齡9-15天時,小白菜穴盤苗定植後生育與苗齡和育苗穴格容積均呈顯著正相關,較大穴格容積苗定植後初期,絕對生長速率和相對生長速率亦均較大,但相對生長速率則與苗齡呈負相關。 依據穴格容積與苗齡對定植後生育、絕對生長速率與相對生長速率之影響,推薦利用小白菜穴盤育苗後栽培作為生產模式時,以縮短田間栽培日數為目標時,可利用72格穴盤育苗15天,於定植後14天單株鮮重可達30 g;針對災後迅速生產採收時,以72格穴盤育苗9天,定植後19天可達採收標準;以128格穴盤育苗15天,於定植後18天採收,可兼顧生產效益與產量,為小白菜穴盤育苗後定植生產之最佳栽培模式。
Chapter 2 The studies are focus on the influence of cell size and seedling age on growth of seedlings and transplants of Pak-Choi ( Brassica campestris L. ssp. chinensis (L.)) in plug system. The `Feng-jing'' Pak-Choi is supplied to the material in the fall and winter crops. Seedling grows in the cell size as 60, 20 and 8.5 ml of 72, 128 and 288 cells tray respectively. Transplanting at 9, 12, 15 days of 3 kinds of seedling ages. The growths of Pak-Choi seedlings become with the cell size are being related. Upside the fresh weight difference increases along with the sowing seeds time enlarges gradually. And the winter crops performance compares the fall crops. In fall crops, the fresh shoot weights of 288 cells seedling are smaller significantly sowing the 6th day later. Then sowing the 12th day later, the fresh weigh also reach the significance difference standard between the 72-and128 cells seedlings. The winter crops also has the similar result, after the sowing seeds, before, although 9 days, 3 kind of trays has not reached the remarkable difference, but the 288 cells seedling has small tendency. Then sowing the 12th day later, also by 72 cells seedling are the biggest, 128 cells seedling next best, 288 cells seedling are smallest significantly. The relative growth rate increases along with the seedling sowing date number reduces gradually, and becomes with cell size is being related. The seedling root growth also by grows seedlings in the big cell size has the remarkable more root fresh weight, and along with the growing seedlings time, the difference gradually enhances. The cell size and seedling age has the remarkable influence on the growths of Pak-Choi transplants, and has the good growths by the winter crops. In fall crops, the shoot fresh weight of transplants become is being related with the cell size and seedling age respectively. The 72 and 128 cells seedling of seedling age 15 days, upside the fresh weight may reach above 30g after transplanting 15 days later, and the 72 cells seedling transplant is the heaviest significantly. When the 18th day after transplanting, the 12 and 15 day of seedling age combination with 72 and 128 cells seedling, the fresh weight all may above 30g, and seedling age 15 day of 72 cells seedling is the heaviest, but with same seedling age of 12 cells seedling transplant has not significance difference. In winter crops, the 12 and 15 day seedling age of 72 cells seedling transplants, the fresh weight both may above 30 g after transplanting 15 days, but between seedling age 15 day of 72 and 128 cells seedling transplants has not significance difference. After transplanting 18 days, all treatment may above 30 g but seedling age 9 day of 288 cells seedling transplants. Both of fall and winter crops, the relative growth rate along with the cultivation date number increases, but drops by seedling age gradually. The smaller transplanting seedling age has the higher relative growth rate, and the fall crops compares with the winter crops to be low. In transplanting initial period of fall and winter crops, the relative growth rate with cell size to become is being related, but different has the difference transplanting 9 days later. Chapter 3 In order to find the physiology reasons of variety growth in difference plug seedlings and transplants. The `Feng-jing'' Pak-Choi is supplied to the material in the fall and winter crops. The cell size as 60, 20 and 8.5 ml of 72, 128 and 288 cells tray use for grows seedlings respectively. Transplanting at12, 15, 18 days of 3 kinds of seedling ages. Compare the physiological status of seedlings and transplants. Chlorophyll content of the seedling with sowing cells size to become is being related. In fall crops, the difference between sowing cells size is more remarkable. In 27 days of growing seedlings period, the chlorophyll content assumes the slight drop on 72 and 128 cells seedlings both, and the 288 cells seedling has significance reduce sowing 15th day later. In winter crops, the difference of chlorophyll content of seedling is not remarkable between sowing cell size, and in sowing seeds to 21 day of before slight rise, and then reduces. The photosynthesis rate is high in the winter crops, with grows seedlings cell size to be related, and drops gradually. In root activity, 72 cells seedling increases along with the sowing date number rises gradually, 128 and 288 cells seedling will sowing for 18 days later to drop, and will be remarkable by 288 cells seedling in fall crops. In winter crop, the root activity of 3 kinds of cells seedlings are rise after sowing 27 days gradually, and will sowing for 18 days later with the cell size to become the inverse correlation. In root respiration rate, the fall crops are higher than winter crops. In fall grows seedling, Sowing latter 18 days ago with grows seedlings the cell size to become the inverse correlation, and 288 cells seedling will sowing for 18 days later gradually to reduce. In winter crops, all assumes the trend of escalation in 3 kind cell size seedlings. After the sowing initial period by 288 cells seedling is the highest and 72 cells seedling is the lowest significantly. But 128 and 288 cells seedlings raise rate with the growing date number slow down gradually. The 288 cells seedlings have remarkable reduce degree, but sowing 24 days later the difference is no longer remarkable. The ABA content of seedling root after sowing 15th day, the 288 cells seedling root is the highest, and the 72 cells seedling is the lowest respectively. The C2H4 liberation rate increases along with the sowing time rises in seedling root. Sowing 12 days later, the 288 cells seedling remarkable highest, the 72 and 128 cells seedlings does not have the difference. In fall crops, the chlorophyll content reduces along with the transplanting date number increases. The reduce degree has with cell size of grows seedlings e to become the inverse correlation, but becomes tendency of the related with the seedling age. In winter crops, the chlorophyll content all assumes tendency of the rise after transplanting, but the 12 day of seedling age of transplant is not remarkable. The photosynthesis rate are reduce after transplanting gradually in fall and winter crops both, and the even seedling age becomes the inverse correlation. The photosynthesis rate of fall crops is lower than the winter crops, the transplant of seedling age 12 day reduce obviously, the transplant of seedling age 18 day maintains lower degree, but transplant of 72 and 128 cells seedling transplanting 6 days later has tendency of the rise. In winter crop, the reduce degree of photosynthesis rate compares the fall crops to do not obviously. Between the cell size, the difference of photosynthesis rate is not significance, but has tendency of the related with the cell size becomes. The root activity is lower in fall crops, becomes with the seedling age is being related, and increases along with the transplanting date gradually, but the difference is not remarkable between cell size of grow seedling. After transplanting initial period, the respiration rate of transplants root and the seedling age become are being related. In fall crops, the respiration rate of transplants root is higher compare to winter crops, and becomes the trend of escalation after transplanting, but reduce obviously transplanting 6 day later. The respiration rate of transplants root to be rise gradually does not have occurrence reduce in winter crops. Chapter 4 `Feng-jing '' Pak-choi seeds are sowing in 72, 128, 288 cells tray to grow seedlings. The total ascorbate content of leaf and root of 288 cells seedling both are the highest significantly after sowing 15days. The ascorbate and dehydroascorbate content is close and along with grows seedlings cells size to enhance reduces in the leaf. The ascorbate and dehydroascorbate content of 72 cells size seedling both are the lowest significantly in the root. The total glutathione content of leaf and root with grows seedlings cells size to become is being related. The total glutathione content of leaf of 72 cells seedling is higher significantly, but the difference between 128 and 288 cells seedling is not remarkable. The 72 and 128 cells seedling total glutathione content is higher than the 288 cells seedling obviously in the root, but between 72 and 128 cells seedling difference is not remarkable. In the SOD activity, the difference of leaf and root both are not significance between 3 kinds cells seedling, but has tendency of along with grows seedlings cell size gain to enhance in the leaf, along with that reduce in the root. In the CAT activity, the difference is not significance between 72 and 128 cells seedling, but the 288 cells seedling is lower significantly in the leaf. The CAT activity of root, there are not remarkable difference between the cell size, but has along with grows seedlings cell size gain to reduce the tendency. The difference of APX activity of leaf and root both do not reach the significance level, but tendency of being related for the grows seedlings cell size in leaf, for the inverse correlation in root. The GR activity of leaf of 288 cells seedling is lower than 72 and 128 cells seedling significantly, between 72 and 128 cells seedling difference is not remarkable. In the root, that with grows seedlings cell size to become is being related remarkable, the difference reaches the significance level. Chapter 5 The Pak-Choi grows seedlings for 15 days in 128 cells tray. The seedling is treated with the brassinolide of concentration 0.1-0.05 mg L-1 before transplanting 3 days. The result to show that has the remarkable influence on growth of transplanting Pak-Choi, finally demonstrated that has the different effect in the different crops season, and may promote under water stress. In October crops, the fresh shoot weight of control is lower significantly, but has not significance difference between 0.1-0.05 mg L-1 of brassinolide treatment after transplanting 7 or 14 days. But the single fresh shoot weight of 2 treatments and control difference not to be remarkable after transplanting 21 days. In November crops, the seedling and to transplanting latter 21days transplants of 2 brassinolide concentration treatments and control difference all not to be significance. In December crops, the result Is opposite with October corps in transplanting latter 21 days, the fresh shoot weight of control is the heaviest significantly, and has not remarkable difference between 2 brassinolide concentration treatments. Similarly processing with grows seedlings the way, the seedling are transplanted into the difference water status soil medium, and investigate at transplanting 14 days latter. In water potential of soil maintain at 0 MPa crops, the 2 brassinolide concentration treatments transplants all are higher than control on fresh shoot weight significantly, but is not remarkable difference between 2 treatments. The dry shoot weight of 2 brassinolide concentration treatments and control difference all not to be significance. The soil water potential maintain at -0.04 to -0.02 MPa, the 2 brassinolide concentration treatments and control transplants difference all not to be significance on fresh and dry shoot weight respectively, but 0.1 mg L-1 of brassinolide treats transplant has slightly high fresh weight of the tendency. In the dry soil of water potential maintain at -1.38 to -0.86 MPa cultivates, the fresh weight and the dry weight of the 2 treatments are higher than the control significantly, between treatments the difference is not remarkable, and the fresh weight of 0.05 mg L-1 treatment has the slightly high tendency by density. Chapter 6 The Pak-Choi grows seedlings in 60, 20 and 8.5 ml cell size of 72, 128 and 288 cells tray and transplanting at 9, 12, 15 days of 3 kinds of seedling ages respectively. Investigate the growth of shoot per 3 day after transplanting. Analyzes the seedling age and cells size from the obtained data to growth the influence separately. And using the polynomial regression discussion growth tendency, takes basis of the establishment production model. The result showed that the growth and the seedling age and grow seedlings cells size to assume are being related significantly in seedling age 9-15 of Pak-Choi after transplanting, In the transplanting initial period, large cells size seedling is also large to the absolute and the relative growth rate, but the relative growth rate assumes the inverse correlation with the seedling age. Based on the influence on the growth, absolute growth rate and relative growth rate of seedling age and cells size before transplanting. The recommendation is when Pak-Choi transplanting after grows seedlings in plug system for take reduces the field cultivation date as the goal, may benefit 72 cells tray to grow seedlings for 15 days, the fresh weights of shoot may reach 30g after transplanting 14 days. After the disaster when rapid production recovery, grows seedlings for 9 days by 72 cells tray, the transplant fresh weight may reach the harvest standard after transplanting 19 days. Grows seedlings for 15 days by 128 cells tray, and harvest after transplanting 18 day, may give dual attention to the production benefit and the output. The pattern is the best crops model for Pak-Choi transplanting after grows seedlings in plug system.
URI: http://hdl.handle.net/11455/29088
其他識別: U0005-2008200917211600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200918300900
Appears in Collections:園藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.