Please use this identifier to cite or link to this item:
標題: 番茄嫁接栽培之研究
作者: 包德
Poudel, Suraj Raj
關鍵字: n/a
disease resistant
出版社: 園藝學系所
引用: LITERATURE CITED Abdelhafeez, A. T., H. Harssema and K. Verkerk. 1975. Effects of air temperature, soil temperature and soil moisture on growth and development of tomato itself and grafted on its own and eggplant rootstock. Sci. Hort. 3: 65-73. Abdelhaq, H. 2004. Integrated production and protection in greenhouse crops: Institut Agronomique et Veterinaire Hassan II. Abdelmageed, A.H.A., N. Gruda, and B. Geyer. 2004. Effects of temperature and grafting on the growth and development of tomato plants under controlled conditions. Deutscher Tropentag, October 5-7, 2004. Berlin, Germany. Aloni, B., L. Karnu, G. Deventurero, Z. Levin, R. Cohen, N. Katzir, M. Lotan-POmpan, M. Edelstein, H.Aktas, E.Turhan, D. M. Joel, C. Horev and Y. Kapulnik. 2008. Physiological and biochemical changes at the rootstock-scion interface in graft combinations between Cucurbita rootstocks and a melon scion. J. Hort. Sci. Biot. 83 (6): 777-783. Augustin, B., V. Graf, and N. Laun. 2002. Temperature influencing efficiency of grafted tomato cultivars against root-knot nematode (Meloidogyne arenaria) and corky root (Pyrenochaeta lycopersici). Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz- J. Plant Dise. and Prot. 109:371-383. Besri, M. 2001. New developments of alternatives to methyl bromide for the control of tomato soilborne pathogens in covered cultivation in a developing country, Morocco. 2001 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions November 5-8, 2001, San Diego, California, USA. Besri, M. 2002. Tomato grafting as an alternative to methyl bromide in Morocco. Institut Agronomieque et Veterinaire Hasan II. Morocco. Besri, M. 2003. Tomato grafting as an alternative to methyl bromide in Morocco. 2003 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions November 3-6, 2003. San Diego, CA USA. Besri, M. 2005. Current situation of tomato grafting as alternative to methyl bromide for tomato production in the Mediterranean region. 2005 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. San Diego, CA USA. Black, L.L., D.L. Wu, J.F. Wang, T. Kalb, D. Abbass, and J.H. Chen. 2003. Grafting tomatoes for production in the hot-wet season. Asian Vegetable Research & Development Center. Bletsos, F. A. 2005. Use of grafting and calcium cyanamide as alternatives to methyl bromide soil fumigation and their effects on growth, yield, quality and fusarium wilt control in melon. Phytopathology 153:155-161. Bradley, J. A. 1968. Tomato grafting to control root diseases. New Zealand J. Agri. 116:26-27. Bulder, H. A. M., A. P. M. Dennijs, E. J. Speek, P. R. Vanhasselt, and P. J. C. Kuiper. 1991. The effect of low root temperature on growth and lipid-composition of low temperature tolerant rootstock genotypes for cucumber. Plant Physiol. 138:661-666. Cheng, Y. W. and S. E. Chua (1976). The possible use of grafted tomato-brinjal plants for tomato production in lowland tropics. Singapore J. Prim. Indus., 4, 94-102. Colla, G., Y. Roupahel, M. Cardarelli, and E. Rea. 2006. Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience 41:622-627. Dropkin, V. H. 1969. Necrotic reaction of tomatoes and other hosts resistant to Meloidogyne - reversal by temperature. Phytopathology 59:1632-1633. Estan, M. T., M. M. Martinez-Rodriguez, F. Perez-Alfocea, T. J. Flowers, and M. C. Bolarin. 2005. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J. Exp. Bot. 56:703-712. Fernandez-Garcia, N., M. Carvajal, and E. Olmos. 2004. Graft union formation in tomato plants: Peroxidase and catalase involvement. Annals of Botany 93:53-60. Fernandez-Garcia, N., V. Martinez, A. Cerda, and M. Carvajal. 2002. Water and nutrient uptake of grafted tomato plants grown under saline conditions. J. Plant Physiol. 159 (8):899-905. Fernandez-Garcia, N., V. Martinez, A. Cerda, and M. Carvajal. 2004. Fruit quality of grafted tomato plants grown under saline conditions. J. Hort. Sci. Biotech. 79:995-1001. Giannakou, I. O., and D. G. Karpouzas. 2003. Evaluation of chemical and integrated strategies as alternatives to methyl bromide for the control of root-knot nematodes in Greece. Pest Management Sci. 59:883-892. Grigoriadis, I., I. Nianiou-Obeidat, and A. S. Tsaftaris. 2005. Shoot regeneration and micrografting of micropropagated hybrid tomatoes. J. Hort. Sci. Biotech. 80:183-186. Grimault, V., and P. Prior. 1994. Grafting tomato cultivars resistant or susceptible to bacterial wilt - analysis of resistance mechanisms. Journal of Phytopathology Phytopathologische Zeitschrift 141:330-334. Grimault, V., B. Gelie, M. Lemattre, P. Prior, and J. Schmit. 1994. Comparative histology of resistant and susceptible tomato cultivars infected by Pseudomonas solanacearum. Physiol. and Molec. Plant Path. 44:105-123. Ibrahim, M., M. K. Munira, M.S. Kabir, A.K.M.S. Islam, and M.M.U. Miah. 2001. Seed germination and graft compatibility of wild rootstock as tomato. J. Biolog. Sci. 1:701-703. Ioannou, N. 2001. Integrating soil solarization with grafting on resistant rootstocks for management of soil-borne pathogens of eggplant. J. Hort. Sci. Biotech. 76:396-401. Jackman, R. L., R.Y. Yada, A. Marangoni, K.L. Parkin, and D.W. Stanley. 1988. Chilling injury: a review of quality aspect. Journal of Food Science 11:253-277. Kawaguchi, M., A. Taji, D. Backhouse and M. Oda.2008. Anatomy and physiology of graft incompatibility in solanaceous plants. J. Hort. Sci. Biotech. 83 (5):581-588. Khah, E.M., E. Kakava, A. Mavromatis, D. Chachalis and C. Goulas , 2006. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. J. Appl. Hort. 8(1): 3-7. Lee, J. M. 1994. Cultivation of grafted vegetables: current status, grafting methods, and benefits. HortScience 29:235-239. Lee, J. M. 2003. Advances in vegetable grafting. Chronica Horticulturae 43:13-19. Lee, J. M. and Oda, M. 2003. Grafting of herbaceous vegetable and ornamental crops. Hort. Rev., 28: 61-124. Lee, J. M., H. J. Bang, and H. S. Ham. 1998. Grafting of vegetables. J. Jap. Soc. Hort. Sci. 67:1098-1104. Leonardi, C., and F. Giuffrida. 2006. Variation of plant growth and macronutrient uptake in grafted tomatoes and eggplants on three different rootstocks. Europ. J. Hort. Sci. 71:97-101. Lin, C. H., S. T. Hsu, K. C. Tzeng, and J. F. Wang 2008. Application of a preliminary screen to select locally adapted resistant rootstock and soil amendment for integrated management of tomato bacterial wilt in Taiwan. Plant Dis. 92:909-916. Lopez-Perez, J. A., M. Le Strange, I. Kaloshian, and A. T. Ploeg. 2006. Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Protection 25:382-388. Matsuzoe, N., M. Ali, H. Okubo and K. Fujieda 1990. Growth behaviour of tomato grafted on wild relatives of Solanum melongena J. Jap. Soc. Hort. Sci., 59: 358-359 Matsuzoe, N., H. Okubo, and K. Fujieda. 1993. Resistance of tomato plants grafted on Solanum rootstocks to bacterial wilt and root-knot nematode. J. Jap. Soc. Hort. Sci. 61:865-872. Matsuzoe, N., H. Nakamura, H. Okubo, and K. Fujieda. 1993. Growth and yield of tomato plants grafted on Solanum rootstocks. J. Jap. Soc. Hort. Sci. 61:847-855. Matsuzoe, N., H. Aida, K. Hanada, M. Ali, H. Okubo, and K. Fujieda. 1996. Fruit quality of tomato plants grafted on Solanum rootstocks. J. Jap. Soc. Hort. Sci. 65:73-80. Oda, M. 1995. New grafting methods for fruit-bearing vegetables in Japan. Jap. Agri. Res. Quart. 29:187-194. Oda, M. 1999. Grafting of vegetable to improve greenhouse production. College of Agriculture: Osaka Prefecture University. Ombrello, T. Grafted Cacti Union County College, 2006 [cited. Available from Otsuka, K. (1957). Studies on nutritional physiology of grafted plants 2. Rootstock-scion influences on growth and on ionic accumulation of solanaceous grafts. Japanese Journal of Soil Science and Plant Nutrition 28: 285-289. (In Japanese). Passam, H. C., M. Stylianou, and A. Kotsiras. 2005. Performance of eggplant grafted on tomato and eggplant rootstocks. Europ. J. Hort. Sci. 70:130-134. Pavlou, G. C., D. J. Vakalounakis, and E. K. Ligoxigakis. 2002. Control of root and stem rot of cucumber, caused by Fusarium oxysporum f. sp radicis-cucumerinum, by grafting onto resistant rootstocks. Plant Disease 86:379-382. Peregrine, W. T. H., and K. Binahmad. 1982. Grafting - a simple technique for overcoming bacterial wilt in tomato. Tropical Pest Management 28:71-76. Pogonyi, A., Z. Pek, L. Helyes, and A. Lugasi. 2005. Effect of grafting on the tomato''s yield, quality and main fruit components in spring forcing. Acta Alimentaria 34:453-462. Rahman, M.A., M.A. Rashid, M.A. Salam, M.A.T. Masud, A.S.M.H. Masum, and M.M. Hossain. 2002. Performance of some grafted eggplant genotypes on wild Solanum root stocks against root-knot nematode. J. Biol. Sci. 2:446-448. Rivero, R. M., J. M. Ruiz, and L. Romero. 2003. Role of grafting in horticultural plants under stress conditions. Food, Agri. Envi. 1:70-74. Rivero, R. M., J. M. Ruiz, and L. Romero. 2003. Can grafting in tomato plants strengthen resistance to thermal stress? J. Sci. Food and Agri. 83:1315-1319. Rivero, R. M., J. M. Ruiz, and L. Romero. 2004. Iron metabolism in tomato and watermelon plants: Influence of grafting. J. Plant Nut. 27:2221- 2234. Roberts, B.W., W.W. Fish, B.D. Bruton, T.W. Popham, and M.J. Taylor. 2005. Effects of watermelon grafting on fruit yield and quality. HortScience 40:871. Ruiz, J. M., and L. Romero. 1999. Nitrogen efficiency and metabolism in grafted melon plants. Scientia Hort. 81:113-123. Ruiz, J. M., A. Belakbir, and L. Romero. 1996. Foliar level of phosphorus and its bioindicators in Cucumis melo grafted plants. A possible effect of rootstocks. J. Plant Physiol. 149:400-404. Ruiz, J. M., B. Blasco, R. M. Rivero, and L. Romero. 2005. Nicotine-free and salttolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Physiologia Plantarum 124:465-475. Suzuki, T. and S. Komochi (1974). Problems on utilization of tomato rootstocks to prevent Verticillium wilt of eggplants. Res. Bull. Hokkaido National Agri. Exp. Stat. 108, 55-63. Tikoo, S. K., P. J. Mathai, and R. Kishan. 1979. Successful graft culture of tomato in bacterial wilt sick soils. Current Science 48:259-260. Tresky, S, and E. Walz. 1997. Testing solutions for control of bacterial wilt in tomatoes. Org. Farm. Res. Found. Bull. 4:8-9. Tsouvaltzis, P.I., A.S. Siomos and K.C. Dogras, 2004. The effect of the two tomatoes grafting on the performance, earliness and fruit quality. Proc. 21st Pan-Hellenic Cong. of the Greek Soc. Hort. Sci. Ioannina, Greece, 8-10 October 2003.11: 51-55. Tsror, L., and A. Nachmias. 1995. Significance of the root system in Verticillium wilt tolerance in potato and resistance in tomato. Israel J. Plant Sci. 43:315-323. Turquois, N., and M. Malone. 1996. Non-destructive assessment of developing hydraulic connections in the graft union of tomato. J. Exp. Bot. 47:701- 707. Upstone, M. E. 1968. Effects of methyl bromide fumigation and graftng on yield and root diseases of tomatoes. Plant Pathology 17:103-107. Vigh, L., I. Horvath, P. R. Vanhasselt, and P. J. C. Kuiper. 1985. Effect of frost hardening on lipid and fatty-acid composition of chloroplast thylakoid membranes in 2 wheat-varieties of contrasting hardiness. Plant Physiology 79:756-759. Yetisir, H., and N. Sari. 2003. Effect of different rootstock on plant growth, yield and quality of watermelon. Aus. J. Exp. Agri. 43:1269- 1274. Zijlstra, S., S. P. C. Groot, and J. Jansen. 1994. Genotypic variation of rootstocks for growth and production in cucumber - possibilities for improving the root-system by plant-breeding. Scientia Hort. 56:185-196.
摘要: n/a
The use of grafted tomato for commercial production has been implemented worldwide, where soilborne disease pressure is high. Two major soilborne diseases, bacterial wilt (caused by Ralstonia solanacearum) and fusarium wilt (caused by Fusarium oxysporum f.sp. lycopersici), were effectively managed using susceptible tomato ‘ASVEG 10' scions grafted onto two resistant rootstocks ‘EG203' and ‘VFR Takii'. The value of chlorophyll content, water potential in leaves and curving of xylem vessels immediately above graft interface were greater in eggplant rootstocks. Vegetative growth tended to be depressed, the incidence of blossom end rot (BER) and soluble solid concentration (Brix) of fruits were increased by grafting on eggplant rootstocks. Total yield and average fruit weight were also influenced by eggplant rootstock, whereas no significant difference was observed on fruit number per plant. It is concluded that eggplant rootstock reduced uptake capacity was associated with a graft union that showed convoluted xylem vessels that directly affects on poorer relative growth rate and increased hydraulic resistance at the graft union and are likely in a state of water deficiency.
其他識別: U0005-2207200911432900
Appears in Collections:園藝學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.